BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen Y, Ma P, Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. Biomed Res Int 2014;2014:815981. [PMID: 24995330 DOI: 10.1155/2014/815981] [Cited by in Crossref: 57] [Cited by in F6Publishing: 73] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Valente F, Simoni E, Gentilin E, Martini A, Zanoletti E, Marioni G, Nicolai P, Astolfi L. Liquid Crystalline Nanoparticles Conjugated with Dexamethasone Prevent Cisplatin Ototoxicity In Vitro. Int J Mol Sci 2022;23. [PMID: 36499206 DOI: 10.3390/ijms232314881] [Reference Citation Analysis]
2 Chandrakala V. CUBOSOMES: A BOON FOR COSMECEUTICALS AND TOPICAL DRUG DELIVERY. Int J Pharm Pharm Sci 2022. [DOI: 10.22159/ijpps.2022v14i11.45550] [Reference Citation Analysis]
3 Kadhum WR, See GL, Alhijjaj M, Kadhim MM, Arce FJ, Al-janabi AS, Al-rashidi RR, Khadom AA. Evaluation of the Skin Permeation-Enhancing Abilities of Newly Developed Water-Soluble Self-Assembled Liquid Crystal Formulations Based on Hexosomes. Crystals 2022;12:1238. [DOI: 10.3390/cryst12091238] [Reference Citation Analysis]
4 Prakash J, Kumar A, Chauhan S. Aligning Liquid Crystal Materials through Nanoparticles: A Review of Recent Progress. Liquids 2022;2:50-71. [DOI: 10.3390/liquids2020005] [Reference Citation Analysis]
5 Feng H, Zhang L, Yang J, Li S, Tang F, Li H, Zhang X, Wu D, Feng Y, Liu Q, Liu Z. Enhancement of immune responses using ovalbumin-conjugated Eucommia ulmoides leaf polysaccharides encapsulated in a cubic liquid-crystalline phase delivery system. J Sci Food Agric 2022. [PMID: 35638143 DOI: 10.1002/jsfa.12043] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Alnuqaydan AM, Almutary AG, Azam M, Manandhar B, Yin GHS, Yen LL, Madheswaran T, Paudel KR, Hansbro PM, Chellappan DK, Dua K. Evaluation of the Cytotoxic Activity and Anti-Migratory Effect of Berberine–Phytantriol Liquid Crystalline Nanoparticle Formulation on Non-Small-Cell Lung Cancer In Vitro. Pharmaceutics 2022;14:1119. [DOI: 10.3390/pharmaceutics14061119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Chountoulesi M, Pispas S, Tseti IK, Demetzos C. Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals 2022;15:429. [DOI: 10.3390/ph15040429] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Yang D, Jin C, Kang H. Vertical Alignment of Liquid Crystal on Sustainable 2,4-Di-tert-butylphenoxymethyl-Substituted Polystyrene Films. Polymers (Basel) 2022;14:1302. [PMID: 35406176 DOI: 10.3390/polym14071302] [Reference Citation Analysis]
9 Wang C, Chen J, Yue X, Xia X, Zhou Z, Wang G, Zhang X, Hu P, Huang Y, Pan X, Wu C. Improving Water-Absorption and Mechanical Strength: Lyotropic Liquid Crystalline-Based Spray Dressings as a Candidate Wound Management System. AAPS PharmSciTech 2022;23:68. [PMID: 35106685 DOI: 10.1208/s12249-021-02205-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Eldeeb AE, Salah S, Mabrouk M, Amer MS, Elkasabgy NA. Dual-Drug Delivery via Zein In Situ Forming Implants Augmented with Titanium-Doped Bioactive Glass for Bone Regeneration: Preparation, In Vitro Characterization, and In Vivo Evaluation. Pharmaceutics 2022;14:274. [DOI: 10.3390/pharmaceutics14020274] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
11 Jeon SW, Jin HS, Park YJ. Formation of Self-Assembled Liquid Crystalline Nanoparticles and Absorption Enhancement of Ω-3s by Phospholipids and Oleic Acids. Pharmaceutics 2021;14:68. [PMID: 35056964 DOI: 10.3390/pharmaceutics14010068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Wu W, Cao W, Chen J, Cai Y, Dong B, Chu X. In Situ Liquid Crystal Gel as a Promising Strategy for Improving Ocular Administration of Dexamethasone: Preparation, Characterization, and Evaluation. AAPS PharmSciTech 2021;23:36. [PMID: 34951001 DOI: 10.1208/s12249-021-02193-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Elakkad YE, Mohamed SNS, Abuelezz NZ. Potentiating the Cytotoxic Activity of a Novel Simvastatin-Loaded Cubosome against Breast Cancer Cells: Insights on Dual Cell Death via Ferroptosis and Apoptosis. Breast Cancer (Dove Med Press) 2021;13:675-89. [PMID: 34934357 DOI: 10.2147/BCTT.S336712] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
14 Cheng Y, Zhao Y, Zheng Y. Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity. Chin Med 2021;16:114. [PMID: 34743749 DOI: 10.1186/s13020-021-00525-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
15 Teba HE, Khalil IA, El Sorogy HM. Novel cubosome based system for ocular delivery of acetazolamide. Drug Deliv 2021;28:2177-86. [PMID: 34662264 DOI: 10.1080/10717544.2021.1989090] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Fu F, Li X, Zheng T, Xia X, Du M, Huang Z, Huang Y, Pan X, Wu C. Stability Evaluation of Lyotropic Liquid Crystalline Precursor for the Co-delivery of Chlorhexidine and Silver Nanoparticles. AAPS PharmSciTech 2021;22:237. [PMID: 34545436 DOI: 10.1208/s12249-021-02102-x] [Reference Citation Analysis]
17 Astolfi P, Giorgini E, Perinelli DR, Vita F, Adamo FC, Logrippo S, Parlapiano M, Bonacucina G, Pucciarelli S, Francescangeli O, Vaccari L, Pisani M. Cubic and Hexagonal Mesophases for Protein Encapsulation: Structural Effects of Insulin Confinement. Langmuir 2021;37:10166-76. [PMID: 34369787 DOI: 10.1021/acs.langmuir.1c01587] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Forys A, Chountoulesi M, Mendrek B, Konieczny T, Sentoukas T, Godzierz M, Kordyka A, Demetzos C, Pispas S, Trzebicka B. The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery. Polymers (Basel) 2021;13:2607. [PMID: 34451146 DOI: 10.3390/polym13162607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Shete A, Nadaf S, Doijad R, Killedar S. Liquid Crystals: Characteristics, Types of Phases and Applications in Drug Delivery. Pharm Chem J 2021;55:106-18. [DOI: 10.1007/s11094-021-02396-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 da Silva CSM, de Araújo JA, Silveira TS, Castro KCF, Baratto LC, Kaminski RCK, Santos GB, Nunes KM. Wound Healing Activity of Topical Formulations Containing Mauritia flexuosa Oil. Rev Bras Farmacogn 2021;31:225-31. [DOI: 10.1007/s43450-021-00149-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
21 Kitaoka M, Nguyen TC, Goto M. Water-in-oil microemulsions composed of monoolein enhanced the transdermal delivery of nicotinamide. Int J Cosmet Sci 2021;43:302-10. [PMID: 33566391 DOI: 10.1111/ics.12695] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
22 Zhang X, Wu W. Liquid Crystalline Phases for Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021;22:81. [PMID: 33619612 DOI: 10.1208/s12249-021-01951-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Meikle TG, Keizer DW, Babon JJ, Drummond CJ, Separovic F, Conn CE, Yao S. Chemical Exchange of Hydroxyl Groups in Lipidic Cubic Phases Characterized by NMR. J Phys Chem B 2021;125:571-80. [PMID: 33251799 DOI: 10.1021/acs.jpcb.0c08699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
24 Miranda MA, de Araujo MM, Gaspari AR, Silva LB, Carvalho IPS, Campos JCL, Marcato PD. Lipid Nanocarriers. Nanocarriers for Drug Delivery 2021. [DOI: 10.1007/978-3-030-63389-9_2] [Reference Citation Analysis]
25 Cretu C, Maiuolo L, Lombardo D, Szerb EI, Calandra P, Comini E. Luminescent Supramolecular Nano- or Microstructures Formed in Aqueous Media by Amphiphile-Noble Metal Complexes. Journal of Nanomaterials 2020;2020:1-24. [DOI: 10.1155/2020/5395048] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Nasr M, Teiama M, Ismail A, Ebada A, Saber S. In vitro and in vivo evaluation of cubosomal nanoparticles as an ocular delivery system for fluconazole in treatment of keratomycosis. Drug Deliv and Transl Res 2020;10:1841-52. [DOI: 10.1007/s13346-020-00830-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
27 Gajda E, Godlewska M, Mariak Z, Nazaruk E, Gawel D. Combinatory Treatment with miR-7-5p and Drug-Loaded Cubosomes Effectively Impairs Cancer Cells. Int J Mol Sci 2020;21:E5039. [PMID: 32708846 DOI: 10.3390/ijms21145039] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
28 Ramezanpour M, Schmidt ML, Bashe BYM, Pruim JR, Link ML, Cullis PR, Harper PE, Thewalt JL, Tieleman DP. Structural Properties of Inverted Hexagonal Phase: A Hybrid Computational and Experimental Approach. Langmuir 2020;36:6668-80. [PMID: 32437159 DOI: 10.1021/acs.langmuir.0c00600] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
29 Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020;12:E510. [PMID: 32503171 DOI: 10.3390/pharmaceutics12060510] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
30 Selivanova NM, Gubaidullin AT, Galyametdinov YG. Incorporating a Tetrapeptide into Lyotropic Direct Hexagonal Mesophase. J Phys Chem B 2020;124:2715-22. [PMID: 32207304 DOI: 10.1021/acs.jpcb.0c00512] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
31 Elechalawar CK, Hossen MN, McNally L, Bhattacharya R, Mukherjee P. Analysing the nanoparticle-protein corona for potential molecular target identification. J Control Release 2020;322:122-36. [PMID: 32165239 DOI: 10.1016/j.jconrel.2020.03.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
32 Coelho ALS, Feuser PE, Carciofi BAM, de Andrade CJ, de Oliveira D. Mannosylerythritol lipids: antimicrobial and biomedical properties. Appl Microbiol Biotechnol 2020;104:2297-318. [PMID: 31980917 DOI: 10.1007/s00253-020-10354-z] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
33 Rajak P, Nath LK, Mazumder B. Evaluation of pH Responsive Flipping Mechanism of 5-Fluorouracil Loaded LLC System for Colon Targeting. J Pharm Innov 2021;16:99-109. [DOI: 10.1007/s12247-019-09425-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
34 Shan QQ, Jiang XJ, Wang FY, Shu ZX, Gui SY. Cubic and hexagonal liquid crystals as drug carriers for the transdermal delivery of triptolide. Drug Deliv 2019;26:490-8. [PMID: 31081409 DOI: 10.1080/10717544.2019.1602796] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
35 Chountoulesi M, Pippa N, Chrysostomou V, Pispas S, Chrysina ED, Forys A, Otulakowski L, Trzebicka B, Demetzos C. Stimuli-Responsive Lyotropic Liquid Crystalline Nanosystems with Incorporated Poly(2-Dimethylamino Ethyl Methacrylate)-b-Poly(Lauryl Methacrylate) Amphiphilic Block Copolymer.Polymers (Basel). 2019;11. [PMID: 31454966 DOI: 10.3390/polym11091400] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
36 Hu J, Albadawi H, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A, Oklu R. Advances in Biomaterials and Technologies for Vascular Embolization. Adv Mater 2019;31:e1901071. [PMID: 31168915 DOI: 10.1002/adma.201901071] [Cited by in Crossref: 65] [Cited by in F6Publishing: 72] [Article Influence: 16.3] [Reference Citation Analysis]
37 Chu XQ, Zhang Y, Huang J, Li Q, Li ZG, Jiang JQ, Gui SY. The Effect of Prescription on the Framework of Lipid Matrix and In Vitro Properties. Curr Drug Deliv 2019;16:737-50. [PMID: 31250753 DOI: 10.2174/1567201816666190620115403] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
38 Zhai J, Fong C, Tran N, Drummond CJ. Non-Lamellar Lyotropic Liquid Crystalline Lipid Nanoparticles for the Next Generation of Nanomedicine. ACS Nano 2019;13:6178-206. [PMID: 31082192 DOI: 10.1021/acsnano.8b07961] [Cited by in Crossref: 96] [Cited by in F6Publishing: 104] [Article Influence: 24.0] [Reference Citation Analysis]
39 Prajapati R, Gontsarik M, Yaghmur A, Salentinig S. pH-Responsive Nano-Self-Assemblies of the Anticancer Drug 2-Hydroxyoleic Acid. Langmuir 2019;35:7954-61. [PMID: 31150248 DOI: 10.1021/acs.langmuir.9b00838] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
40 Pisano S, Giustiniani M, Francis L, Gonzalez D, Margarit L, Sheldon IM, Paolino D, Fresta M, Conlan RS, Healey GD. Liquid crystal delivery of ciprofloxacin to treat infections of the female reproductive tract. Biomed Microdevices 2019;21:36. [PMID: 30923927 DOI: 10.1007/s10544-019-0385-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
41 Walicka A, Falicki J, Iwanowska-chomiak B. Rheology of Drugs For Topical and Transdermal Delivery. International Journal of Applied Mechanics and Engineering 2019;24:179-98. [DOI: 10.2478/ijame-2019-0012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
42 Craciun AM. Cinnamyl-Imine-Chitosan Hydrogels. Morphology Control. Acta Chemica Iasi 2018;26:221-32. [DOI: 10.2478/achi-2018-0014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
43 Wang X, Zhang Y, Gui S, Huang J, Cao J, Li Z, Li Q, Chu X. Characterization of Lipid-Based Lyotropic Liquid Crystal and Effects of Guest Molecules on Its Microstructure: a Systematic Review. AAPS PharmSciTech 2018;19:2023-40. [PMID: 29869308 DOI: 10.1208/s12249-018-1069-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 5.6] [Reference Citation Analysis]
44 Aida KL, Kreling PF, Caiaffa KS, Calixto GMF, Chorilli M, Spolidorio DM, Santos-Filho NA, Cilli EM, Duque C. Antimicrobial peptide-loaded liquid crystalline precursor bioadhesive system for the prevention of dental caries. Int J Nanomedicine 2018;13:3081-91. [PMID: 29872295 DOI: 10.2147/IJN.S155245] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
45 Kumar A, Molinero V. Why Is Gyroid More Difficult to Nucleate from Disordered Liquids than Lamellar and Hexagonal Mesophases? J Phys Chem B 2018;122:4758-70. [PMID: 29620902 DOI: 10.1021/acs.jpcb.8b02381] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
46 Jain S, Yadav P, Swami R, Swarnakar NK, Kushwah V, Katiyar SS. Lyotropic Liquid Crystalline Nanoparticles of Amphotericin B: Implication of Phytantriol and Glyceryl Monooleate on Bioavailability Enhancement. AAPS PharmSciTech 2018;19:1699-711. [PMID: 29532426 DOI: 10.1208/s12249-018-0986-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
47 Musa MN, David SR, Zulkipli IN, Mahadi AH, Chakravarthi S, Rajabalaya R. Development and evaluation of exemestane-loaded lyotropic liquid crystalline gel formulations. Bioimpacts 2017;7:227-39. [PMID: 29435430 DOI: 10.15171/bi.2017.27] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
48 Singhvi G, Banerjee S, Khosa A. Lyotropic liquid crystal nanoparticles. Organic Materials as Smart Nanocarriers for Drug Delivery 2018. [DOI: 10.1016/b978-0-12-813663-8.00011-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
49 Alcaraz N, Liu Q, Hanssen E, Johnston A, Boyd BJ. Clickable Cubosomes for Antibody-Free Drug Targeting and Imaging Applications. Bioconjug Chem 2018;29:149-57. [PMID: 29182866 DOI: 10.1021/acs.bioconjchem.7b00659] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
50 Kulkarni CV, Vishwapathi VK, Quarshie A, Moinuddin Z, Page J, Kendrekar P, Mashele SS. Self-Assembled Lipid Cubic Phase and Cubosomes for the Delivery of Aspirin as a Model Drug. Langmuir 2017;33:9907-15. [DOI: 10.1021/acs.langmuir.7b02486] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
51 Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro Junior JA, Chiavacci LA. Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 2017;12:4991-5011. [PMID: 28761340 DOI: 10.2147/IJN.S133832] [Cited by in Crossref: 81] [Cited by in F6Publishing: 88] [Article Influence: 13.5] [Reference Citation Analysis]
52 Balguri SP, Adelli GR, Janga KY, Bhagav P, Majumdar S. Ocular disposition of ciprofloxacin from topical, PEGylated nanostructured lipid carriers: Effect of molecular weight and density of poly (ethylene) glycol. Int J Pharm 2017;529:32-43. [PMID: 28634139 DOI: 10.1016/j.ijpharm.2017.06.042] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 6.3] [Reference Citation Analysis]
53 Putaux JL, Lancelon-Pin C, Legrand FX, Pastrello M, Choisnard L, Gèze A, Rochas C, Wouessidjewe D. Self-Assembly of Amphiphilic Biotransesterified β-Cyclodextrins: Supramolecular Structure of Nanoparticles and Surface Properties. Langmuir 2017;33:7917-28. [PMID: 28492333 DOI: 10.1021/acs.langmuir.7b01136] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
54 de Souza JF, Pontes KD, Alves TF, Amaral VA, Rebelo MA, Hausen MA, Chaud MV. Spotlight on Biomimetic Systems Based on Lyotropic Liquid Crystal. Molecules 2017;22:E419. [PMID: 28272377 DOI: 10.3390/molecules22030419] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
55 Jia S, Du JD, Hawley A, Fong WK, Graham B, Boyd BJ. Investigation of Donor-Acceptor Stenhouse Adducts as New Visible Wavelength-Responsive Switching Elements for Lipid-Based Liquid Crystalline Systems. Langmuir 2017;33:2215-21. [PMID: 28099807 DOI: 10.1021/acs.langmuir.6b03726] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
56 Rajabalaya R, Musa MN, Kifli N, David SR. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Drug Des Devel Ther 2017;11:393-406. [PMID: 28243062 DOI: 10.2147/DDDT.S103505] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 10.7] [Reference Citation Analysis]
57 Lam MT, Fitzgerald PA, Warr GG. Hydrophobic Monomer Type and Hydrophilic Monomer Ionization Modulate the Lyotropic Phase Stability of Diblock Co-oligomer Amphiphiles. Langmuir 2017;33:1013-22. [DOI: 10.1021/acs.langmuir.6b03133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
58 Wang Y, Chen Q, Shen X. Radiolytic syntheses of hollow UO 2 nanospheres in Triton X-100-based lyotropic liquid crystals. Radiochimica Acta 2017;105:369-78. [DOI: 10.1515/ract-2016-2626] [Reference Citation Analysis]
59 Healey GD, Conlan RS. Therapeutic Development and the Evolution of Precision Medicine. Nanoscience and Nanotechnology for Human Health 2016. [DOI: 10.1002/9783527692057.ch17] [Reference Citation Analysis]
60 Kulkarni C. Lipid Self-Assemblies and Nanostructured Emulsions for Cosmetic Formulations. Cosmetics 2016;3:37. [DOI: 10.3390/cosmetics3040037] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
61 Freag MS, Elnaggar YS, Abdelmonsif DA, Abdallah OY. Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies. Int J Nanomedicine 2016;11:4799-818. [PMID: 27703348 DOI: 10.2147/IJN.S111736] [Cited by in Crossref: 44] [Cited by in F6Publishing: 48] [Article Influence: 6.3] [Reference Citation Analysis]
62 Fonseca-Santos B, Dos Santos AM, Rodero CF, Gremião MP, Chorilli M. Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery. Int J Nanomedicine 2016;11:4553-62. [PMID: 27660447 DOI: 10.2147/IJN.S108675] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
63 Boge L, Bysell H, Ringstad L, Wennman D, Umerska A, Cassisa V, Eriksson J, Joly-Guillou ML, Edwards K, Andersson M. Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect. Langmuir 2016;32:4217-28. [PMID: 27033359 DOI: 10.1021/acs.langmuir.6b00338] [Cited by in Crossref: 94] [Cited by in F6Publishing: 99] [Article Influence: 13.4] [Reference Citation Analysis]
64 Lee DR, Park JS, Bae IH, Lee Y, Kim BM. Liquid crystal nanoparticle formulation as an oral drug delivery system for liver-specific distribution. Int J Nanomedicine 2016;11:853-71. [PMID: 27042053 DOI: 10.2147/IJN.S97000] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
65 Miyamoto M, Yamashita Y, Tokudome Y. Novel Bicontinuous Alpha-Gel Formation with Amphiphilic Tranexamic Acid Derivative and Its Application to Cosmetics. Oleoscience 2016;16:337-344. [DOI: 10.5650/oleoscience.16.337] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
66 Pluhackova K, Morhenn H, Lautner L, Lohstroh W, Nemkovski KS, Unruh T, Böckmann RA. Extension of the LOPLS-AA Force Field for Alcohols, Esters, and Monoolein Bilayers and its Validation by Neutron Scattering Experiments. J Phys Chem B 2015;119:15287-99. [DOI: 10.1021/acs.jpcb.5b08569] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
67 Calandra P, Caschera D, Turco Liveri V, Lombardo D. How self-assembly of amphiphilic molecules can generate complexity in the nanoscale. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015;484:164-83. [DOI: 10.1016/j.colsurfa.2015.07.058] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 6.9] [Reference Citation Analysis]
68 Chen Y, Liang X, Ma P, Tao Y, Wu X, Wu X, Chu X, Gui S. Phytantriol-based in situ liquid crystals with long-term release for intra-articular administration. AAPS PharmSciTech 2015;16:846-54. [PMID: 25573438 DOI: 10.1208/s12249-014-0277-6] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]