BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sharma V, Chitranshi N, Agarwal AK. Significance and biological importance of pyrimidine in the microbial world. Int J Med Chem 2014;2014:202784. [PMID: 25383216 DOI: 10.1155/2014/202784] [Cited by in Crossref: 53] [Cited by in F6Publishing: 32] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 El-kalyoubi SA, Taher ES, Ibrahim TS, El-behairy MF, Al-mahmoudy AMM. Uracil as a Zn-Binding Bioisostere of the Allergic Benzenesulfonamide in the Design of Quinoline–Uracil Hybrids as Anticancer Carbonic Anhydrase Inhibitors. Pharmaceuticals 2022;15:494. [DOI: 10.3390/ph15050494] [Reference Citation Analysis]
2 Bhat AR, Dongre RS, Shalla AH, Naikoo GA, Ul Hassan I. Computational analysis for antimicrobial active pyrano[2,3-d]pyrimidine derivatives on the basis of theoretical and experimental ground. Journal of the Association of Arab Universities for Basic and Applied Sciences 2018;20:19-25. [DOI: 10.1016/j.jaubas.2015.12.004] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
3 Venkatesh T, Bodke YD, Manjunatha B, Ravi Kumar S. Synthesis, antitubercular activity and molecular docking study of substituted [1,3]dioxino[4,5-d]pyrimidine derivatives via facile CAN catalyzed Biginelli reaction. Nucleosides Nucleotides Nucleic Acids 2021;40:1037-49. [PMID: 34470580 DOI: 10.1080/15257770.2021.1972310] [Reference Citation Analysis]
4 Wang S, Luo N, Li Y, Wang C. DBU-Mediated Cyclization of Acylcyclopropanecarboxylates with Amidines: Access to Polysubstituted Pyrimidines. Org Lett 2019;21:4544-8. [PMID: 31184171 DOI: 10.1021/acs.orglett.9b01436] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
5 Bhale PS, Chavan HV, Shringare SN, Khedkar VM, Tigote RM, Mali NN, Jadhav TD, Kamble NB, Kolat SP, Bandgar BP, Patil HS. Design, synthesis of anticancer and anti-inflammatory 4-(1-methyl-1 H -indol-3-yl)-6-(methylthio) pyrimidine-5-carbonitriles. Synthetic Communications. [DOI: 10.1080/00397911.2022.2048860] [Reference Citation Analysis]
6 Abuawad A, Mbadugha C, Ghaemmaghami AM, Kim DH. Metabolic characterisation of THP-1 macrophage polarisation using LC-MS-based metabolite profiling. Metabolomics 2020;16:33. [PMID: 32114632 DOI: 10.1007/s11306-020-01656-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
7 Zheng Y, Li S, Song K, Ye J, Li W, Zhong Y, Feng Z, Liang S, Cai Z, Xu K. A Broad Antiviral Strategy: Inhibitors of Human DHODH Pave the Way for Host-Targeting Antivirals against Emerging and Re-Emerging Viruses. Viruses 2022;14:928. [DOI: 10.3390/v14050928] [Reference Citation Analysis]
8 Diray-Arce J, Conti MG, Petrova B, Kanarek N, Angelidou A, Levy O. Integrative Metabolomics to Identify Molecular Signatures of Responses to Vaccines and Infections. Metabolites 2020;10:E492. [PMID: 33266347 DOI: 10.3390/metabo10120492] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Deng X, Zheng W, Jin C, Bai L. Synthesis of Novel 6-Aryloxy-4-chloro-2-phenylpyrimidines as Fungicides and Herbicide Safeners. ACS Omega 2020;5:23996-4004. [PMID: 32984721 DOI: 10.1021/acsomega.0c03300] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Provenzani R, San-Martin-Galindo P, Hassan G, Legehar A, Kallio A, Xhaard H, Fallarero A, Yli-Kauhaluoma J. Multisubstituted pyrimidines effectively inhibit bacterial growth and biofilm formation of Staphylococcus aureus. Sci Rep 2021;11:7931. [PMID: 33846401 DOI: 10.1038/s41598-021-86852-5] [Reference Citation Analysis]
11 Abdellattif MH, Shahbaaz M, Arief MMH, Hussien MA. Oxazinethione Derivatives as a Precursor to Pyrazolone and Pyrimidine Derivatives: Synthesis, Biological Activities, Molecular Modeling, ADME, and Molecular Dynamics Studies. Molecules 2021;26:5482. [PMID: 34576953 DOI: 10.3390/molecules26185482] [Reference Citation Analysis]
12 Malik A, Rasool N, Kanwal I, Hashmi MA, Zahoor AF, Ahmad G, Altaf AA, Shah SAA, Sultan S, Zakaria ZA. Suzuki–Miyaura Reactions of (4-bromophenyl)-4,6-dichloropyrimidine through Commercially Available Palladium Catalyst: Synthesis, Optimization and Their Structural Aspects Identification through Computational Studies. Processes 2020;8:1342. [DOI: 10.3390/pr8111342] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
13 Picconi P, Hind C, Jamshidi S, Nahar K, Clifford M, Wand ME, Sutton JM, Rahman KM. Triaryl Benzimidazoles as a New Class of Antibacterial Agents against Resistant Pathogenic Microorganisms. J Med Chem 2017;60:6045-59. [PMID: 28650661 DOI: 10.1021/acs.jmedchem.7b00108] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
14 El-shershaby MH, El-gamal KM, Bayoumi AH, El-adl K, Alswah M, Ahmed HEA, Al-karmalamy AA, Abulkhair HS. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. New J Chem 2021;45:13986-4004. [DOI: 10.1039/d1nj02838c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 13.0] [Reference Citation Analysis]
15 Rossi R, Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules 2020;25:E5133. [PMID: 33158247 DOI: 10.3390/molecules25215133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Valiey E, Dekamin MG, Alirezvani Z. Sulfamic acid pyromellitic diamide-functionalized MCM-41 as a multifunctional hybrid catalyst for melting-assisted solvent-free synthesis of bioactive 3,4-dihydropyrimidin-2-(1H)-ones. Sci Rep 2021;11:11199. [PMID: 34045484 DOI: 10.1038/s41598-021-89572-y] [Reference Citation Analysis]
17 Nguyen TK, Titov GD, Khoroshilova OV, Kinzhalov MA, Rostovskii NV. Light-induced one-pot synthesis of pyrimidine derivatives from vinyl azides. Org Biomol Chem 2020;18:4971-82. [PMID: 32558855 DOI: 10.1039/d0ob00693a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Jadhav CK, Nipate AS, Chate AV, Songire VD, Patil AP, Gill CH. Efficient Rapid Access to Biginelli for the Multicomponent Synthesis of 1,2,3,4-Tetrahydropyrimidines in Room-Temperature Diisopropyl Ethyl Ammonium Acetate. ACS Omega 2019;4:22313-24. [PMID: 31909314 DOI: 10.1021/acsomega.9b02286] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
19 Gavrilović M, Janković N, Joksović L, Petronijević J, Joksimović N, Bugarčić Z. Water ultrasound-assisted oxidation of 2-oxo-1,2,3,4-tetrahydropyrimidines and benzylic acid salts. Environ Chem Lett 2018;16:1501-6. [DOI: 10.1007/s10311-018-0766-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
20 M. Elsharif A. Synthesis of New Pyrimidinone Derivatives and Their Respective Biological Activity Assessment. Orient J Chem 2019;35:658-67. [DOI: 10.13005/ojc/350221] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Bhat R, Begum NS. Synthesis, characterization and molecular docking studies of new indol(1H-3-yl)pyrimidine derivatives: Insights into their role in DNA interaction. Nucleosides Nucleotides Nucleic Acids 2021;40:619-34. [PMID: 33988075 DOI: 10.1080/15257770.2021.1922700] [Reference Citation Analysis]
22 Sedenkova KN, Averina EB, Grishin YK, Kolodyazhnaya JV, Rybakov VB, Kuznetsova TS, Hughes A, Gomes GDP, Alabugin IV, Zefirov NS. Substituent effects on stereoselectivity of dihalocarbene reactions with cyclohexadiene and on the reactivity of bis-dihalocyclopropanes in electrophilic nitrations en route to pyrimidine N-oxides. Org Biomol Chem 2017;15:9433-41. [PMID: 29095467 DOI: 10.1039/c7ob02463k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
23 Abdolmaleki S, Ghadermazi M, Fattahi A, Shokraii S, Alimoradi M, Shahbazi B, Judy Azar AR. Synthesis, crystallographic and spectroscopic studies, evaluation as antimicrobial and cytotoxic agents of a novel mixed-ligand nickel(II) complex. Journal of Coordination Chemistry 2017;70:1406-23. [DOI: 10.1080/00958972.2017.1293821] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 3.2] [Reference Citation Analysis]
24 Balasubramaniyam T, Oh KI, Jin HS, Ahn HB, Kim BS, Lee JH. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int J Mol Sci 2021;22:9552. [PMID: 34502459 DOI: 10.3390/ijms22179552] [Reference Citation Analysis]
25 Kawczak P, Bober L, Bączek T. Evaluation of Chemotherapeutic Activity of the Selected Bases' Analogues of Nucleic Acids Supported by ab initio Various Quantum Chemical Calculations. Curr Comput Aided Drug Des 2020;16:93-103. [PMID: 30727911 DOI: 10.2174/1573409915666190206212024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
26 Mahmoud A, Afifi MM, El Shenawy F, Salem W, Elesawy BH. Syzygium aromaticum Extracts as a Potential Antibacterial Inhibitors against Clinical Isolates of Acinetobacter baumannii: An In-Silico-Supported In-Vitro Study. Antibiotics (Basel) 2021;10:1062. [PMID: 34572644 DOI: 10.3390/antibiotics10091062] [Reference Citation Analysis]
27 García-garcía A, Noriega L, Meléndez-bustamante FJ, Castro ME, Sánchez-gaytán BL, Choquesillo-lazarte D, González-vergara E, Rodríguez-diéguez A. 2-Aminopyrimidinium Decavanadate: Experimental and Theoretical Characterization, Molecular Docking, and Potential Antineoplastic Activity. Inorganics 2021;9:67. [DOI: 10.3390/inorganics9090067] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
28 Tran TN, Henary M. Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents. Molecules 2022;27:2700. [DOI: 10.3390/molecules27092700] [Reference Citation Analysis]
29 Mondal R, Chakraborty G, Guin AK, Sarkar S, Paul ND. Iron-Catalyzed Alkyne-Based Multicomponent Synthesis of Pyrimidines under Air. J Org Chem 2021;86:13186-97. [PMID: 34528802 DOI: 10.1021/acs.joc.1c00867] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Gong Z, Xie Z, Qiu J, Wang G. Synthesis, Biological Evaluation and Molecular Docking Study of 2-Substituted-4,6-Diarylpyrimidines as α-Glucosidase Inhibitors. Molecules 2017;22:E1865. [PMID: 29084182 DOI: 10.3390/molecules22111865] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
31 Raj T, Sharma H, Mayank, Singh A, Aree T, Kaur N, Singh N, Jang DO. “Solvent-Less” Mechanochemical Approach to the Synthesis of Pyrimidine Derivatives. ACS Sustainable Chem Eng 2016;5:1468-75. [DOI: 10.1021/acssuschemeng.6b02030] [Cited by in Crossref: 32] [Cited by in F6Publishing: 12] [Article Influence: 6.4] [Reference Citation Analysis]
32 Alghanmi RM. Synthesis, Characterization, and Biological Evaluation of a New Hydrogen-Bonded Charge-Transfer Complex of 2-Amino-4-methoxy-6-methylpyrimidine. Journal of Chemistry 2019;2019:1-14. [DOI: 10.1155/2019/1743147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
33 Sympli HD. Estimation of drug-likeness properties of GC-MS separated bioactive compounds in rare medicinal Pleione maculata using molecular docking technique and SwissADME in silico tools. Netw Model Anal Health Inform Bioinform 2021;10:14. [PMID: 33643765 DOI: 10.1007/s13721-020-00276-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Aparna EP, Devaky KS. Advances in the Solid-Phase Synthesis of Pyrimidine Derivatives. ACS Comb Sci 2019;21:35-68. [DOI: 10.1021/acscombsci.8b00172] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
35 Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020;27:3706-34. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
36 Fuji M, Obora Y. FeCl3-Assisted Niobium-Catalyzed Cycloaddition of Nitriles and Alkynes: Synthesis of Alkyl- and Arylpyrimidines Based on Independent Functions of NbCl5 and FeCl3 Lewis Acids. Org Lett 2017;19:5569-72. [PMID: 28968133 DOI: 10.1021/acs.orglett.7b02708] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
37 Kaur M, Garg S, Malhi DS, Sohal HS. A Review on Synthesis, Reactions and Biological Properties of Seven Membered Heterocyclic Compounds: Azepine, Azepane, Azepinone. COC 2021;25:449-506. [DOI: 10.2174/1385272825999210104222338] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
38 Viveka S, Dinesha, Madhu LN, Nagaraja GK. Synthesis of new pyrazole derivatives via multicomponent reaction and evaluation of their antimicrobial and antioxidant activities. Monatsh Chem 2015;146:1547-55. [DOI: 10.1007/s00706-015-1428-5] [Cited by in Crossref: 23] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
39 Castro Jara M, Silva ACA, Ritter M, da Silva AF, Gonçalves CL, dos Santos PR, Borja LS, de Pereira CMP, da Silva Nascente P. Dihydropyrimidinones Against Multiresistant Bacteria. Front Microbiol 2022;13:743213. [DOI: 10.3389/fmicb.2022.743213] [Reference Citation Analysis]
40 Beerappa M, Shivashankar K. Synthesis of 4,6-diarylpyrimidin-2(1 H )-one derivatives from benzyl halides and (1-bromoethyl)benzene under solvent-free conditions. Synthetic Communications 2018;48:2150-8. [DOI: 10.1080/00397911.2018.1479757] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Khan A, Shin OS, Na J, Kim JK, Seong RK, Park MS, Noh JY, Song JY, Cheong HJ, Park YH, Kim WJ. A Systems Vaccinology Approach Reveals the Mechanisms of Immunogenic Responses to Hantavax Vaccination in Humans. Sci Rep 2019;9:4760. [PMID: 30886186 DOI: 10.1038/s41598-019-41205-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
42 Rane JS, Pandey P, Chatterjee A, Khan R, Kumar A, Prakash A, Ray S. Targeting virus-host interaction by novel pyrimidine derivative: an in silico approach towards discovery of potential drug against COVID-19. J Biomol Struct Dyn 2021;39:5768-78. [PMID: 32684109 DOI: 10.1080/07391102.2020.1794969] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
43 Fatahala SS, Sayed AI, Mahgoub S, Taha H, El-Sayed MK, El-Shehry MF, Awad SM, Abd El-Hameed RH. Synthesis of Novel 2-Thiouracil-5-Sulfonamide Derivatives as Potent Inducers of Cell Cycle Arrest and CDK2A Inhibition Supported by Molecular Docking. Int J Mol Sci 2021;22:11957. [PMID: 34769385 DOI: 10.3390/ijms222111957] [Reference Citation Analysis]
44 Sarma P, Shekhar N, Prajapat M, Avti P, Kaur H, Kumar S, Singh S, Kumar H, Prakash A, Dhibar DP, Medhi B. In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). J Biomol Struct Dyn 2021;39:2724-32. [PMID: 32266867 DOI: 10.1080/07391102.2020.1753580] [Cited by in Crossref: 99] [Cited by in F6Publishing: 100] [Article Influence: 49.5] [Reference Citation Analysis]
45 Kim T, Cho S, Oh H, Hur J, Kim H, Choi YH, Jeon S, Yang YD, Kim SH. Design of Anticancer 2,4-Diaminopyrimidines as Novel Anoctamin 1 (ANO1) Ion Channel Blockers. Molecules 2020;25:E5180. [PMID: 33172169 DOI: 10.3390/molecules25215180] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
46 Abd El-Hameed RH, Sayed AI, Mahmoud Ali S, Mosa MA, Khoder ZM, Fatahala SS. Synthesis of novel pyrroles and fused pyrroles as antifungal and antibacterial agents. J Enzyme Inhib Med Chem 2021;36:2183-98. [PMID: 34602000 DOI: 10.1080/14756366.2021.1984904] [Reference Citation Analysis]
47 Rajam A, Muthiah PT, Butcher RJ, Jasinski JP, Glidewell C. Cation tautomerism, twinning and disorder in the triclinic and monoclinic forms of 4-amino-5-chloro-2,6-dimethylpyrimidinium 5-chloro-2-hydroxybenzoate and a new disordered refinement of 2-amino-4,6-dimethoxypyrimidin-1-ium thiophene-2-carboxylate. Acta Crystallogr C Struct Chem 2017;73:862-8. [PMID: 29111510 DOI: 10.1107/S2053229617013481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
48 Bistrović A, Krstulović L, Stolić I, Drenjančević D, Talapko J, Taylor MC, Kelly JM, Bajić M, Raić-Malić S. Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. J Enzyme Inhib Med Chem 2018;33:1323-34. [PMID: 30165753 DOI: 10.1080/14756366.2018.1484733] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]