BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ting G, Chang CH, Wang HE, Lee TW. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J Biomed Biotechnol. 2010;2010:pii 953537. [PMID: 20811605 DOI: 10.1155/2010/953537] [Cited by in Crossref: 65] [Cited by in F6Publishing: 70] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. J Biomater Sci Polym Ed 2023;:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Reference Citation Analysis]
2 Yousry C, Farrag NS, Amin AM. Radiolabeling of statistically optimized nanosized atorvastatin suspension for liver targeting and extensive imaging of hepatocellular carcinoma. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104171] [Reference Citation Analysis]
3 Sarkar P, Khatana S, Mukherjee B, Shukla J, Das B, Dutta G. Application of Radiopharmaceuticals in Diagnostics and Therapy. Next-Generation Nanobiosensor Devices for Point-Of-Care Diagnostics 2023. [DOI: 10.1007/978-981-19-7130-3_10] [Reference Citation Analysis]
4 Chawla S, Bansal I, Rai P. Modified carbon nanomaterials for diagnosis, drug delivery and stem cell therapy. Functionalized Carbon Nanomaterials for Theranostic Applications 2023. [DOI: 10.1016/b978-0-12-824366-4.00001-7] [Reference Citation Analysis]
5 Rajagopal RA, Krishnaswami V, Maruthamuthu V, Kandasamy R. Functionalized carbon nanomaterials for biomedical imaging. Functionalized Carbon Nanomaterials for Theranostic Applications 2023. [DOI: 10.1016/b978-0-12-824366-4.00007-8] [Reference Citation Analysis]
6 Salih S, Alkatheeri A, Alomaim W, Elliyanti A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules 2022;27:5231. [DOI: 10.3390/molecules27165231] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Secchi V, Monguzzi A, Villa I. Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy. Int J Mol Sci 2022;23:8736. [PMID: 35955867 DOI: 10.3390/ijms23158736] [Reference Citation Analysis]
8 Karpov T, Postovalova A, Akhmetova D, Muslimov AR, Eletskaya E, Zyuzin MV, Timin AS. Universal Chelator-Free Radiolabeling of Organic and Inorganic-Based Nanocarriers with Diagnostic and Therapeutic Isotopes for Internal Radiotherapy. Chem Mater . [DOI: 10.1021/acs.chemmater.2c01507] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Moghaddam-banaem L, Aghaei Amirkhizi N, Sadjadi S, Johari-deha F, Athari-allaf M. The Preparation, Biodistribution, and Dosimetry of Encapsulated Radio-Scandium in a Dendrimer for Radio-nano-pharmaceutical Application. Iran J Pharm Res 2022;21. [DOI: 10.5812/ijpr-126912] [Reference Citation Analysis]
10 Desai P, Rimal R, Sahnoun SEM, Mottaghy FM, Möller M, Morgenroth A, Singh S. Radiolabeled Nanocarriers as Theranostics—Advancement from Peptides to Nanocarriers. Small. [DOI: 10.1002/smll.202200673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Dikusar EA, Pushkarchuk AL, Bezyazychnaya TV, Akishina EA, Potkin VI, Soldatov AG, Kutsen SA, Stepin SG, Nizovtsev AP, Kilin SY, Babichev LF. DFT Simulation of Cortisone-Fullerenol Agents in the Therapy of Oncological Diseases. Nonlinear Phenomena in Complex Systems 2022. [DOI: 10.33581/1561-4085-2022-25-1-92-98] [Reference Citation Analysis]
12 Dikusar EA, Pushkarchuk AL, Bezyazychnaya TV, Akishina EA, Soldatov AG, Kuten SA, Stepin SG, Nizovtsev AP, Kilin SY, Potkin VI. Quantum-chemical modeling of cortisone-fullerenol agents of cancer therapy. Vescì Akademìì navuk Belarusì Seryâ himičnyh navuk 2021;57:400-407. [DOI: 10.29235/1561-8331-2021-57-4-400-407] [Reference Citation Analysis]
13 Wu S, Helal-Neto E, Matos APDS, Jafari A, Kozempel J, Silva YJA, Serrano-Larrea C, Alves Junior S, Ricci-Junior E, Alexis F, Santos-Oliveira R. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv 2020;27:1544-61. [PMID: 33118416 DOI: 10.1080/10717544.2020.1837296] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
14 Li Q, Dong Z, Chen M, Feng L. Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews 2021;439:213912. [DOI: 10.1016/j.ccr.2021.213912] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
15 Chang CH, Chang MC, Chang YJ, Chen LC, Lee TW, Ting G. Translating Research for the Radiotheranostics of Nanotargeted 188Re-Liposome. Int J Mol Sci 2021;22:3868. [PMID: 33918011 DOI: 10.3390/ijms22083868] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Ding D, Li S, Xu H, Zhu L, Meng S, Liu J, Lin Q, Leung SW, Sun W, Li Y, Chen H. X-ray-Activated Simultaneous Near-Infrared and Short-Wave Infrared Persistent Luminescence Imaging for Long-Term Tracking of Drug Delivery. ACS Appl Mater Interfaces 2021;13:16166-72. [PMID: 33797886 DOI: 10.1021/acsami.1c02372] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
17 Aliev RA, Kormazeva ES, Furkina EB, Moiseeva AN, Zagryadskiy VA. Rhenium Radioisotopes: Production, Properties, and Targeted Delivery Using Nanostructures. Nanotechnol Russia 2020;15:428-36. [DOI: 10.1134/s1995078020040023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Liu SY, Lo SN, Lee WC, Hsu WC, Lee TW, Chang CH. Evaluation of Nanotargeted 111In-Cyclic RGDfK-Liposome in a Human Melanoma Xenotransplantation Model. Int J Mol Sci 2021;22:1099. [PMID: 33499267 DOI: 10.3390/ijms22031099] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Driver CHS, Ebenhan T, Szucs Z, Parker MI, Zeevaart JR, Hunter R. Towards the development of a targeted albumin-binding radioligand: Synthesis, radiolabelling and preliminary in vivo studies. Nucl Med Biol 2021;94-95:53-66. [PMID: 33550011 DOI: 10.1016/j.nucmedbio.2021.01.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Shaw TK, Khamkat P, Ghosh A, Ghosh MK. Nanotargeted radiopharmaceuticals for cancer theranostics. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00002-5] [Reference Citation Analysis]
21 Das S, Das MK. Technological challenges of theranostics in oncology. Multifunctional Theranostic Nanomedicines in Cancer 2021. [DOI: 10.1016/b978-0-12-821712-2.00014-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Coughlin BP, Mace CR, Sykes ECH. Opportunities in the Synthesis and Design of Radioactive Thin Films and Nanoparticles. J Phys Chem Lett 2020;11:4017-28. [DOI: 10.1021/acs.jpclett.0c00412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Martínez Martínez T, García Aliaga Á, López-gonzález I, Abella Tarazona A, Ibáñez Ibáñez MJ, Cenis JL, Meseguer-olmo L, Lozano-pérez AA. Fluorescent DTPA-Silk Fibroin Nanoparticles Radiolabeled with 111 In: A Dual Tool for Biodistribution and Stability Studies. ACS Biomater Sci Eng 2020;6:3299-309. [DOI: 10.1021/acsbiomaterials.0c00247] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
24 Ardestani MS, Bitarafan-rajabi A, Mohammadzadeh P, Mortazavi-derazkola S, Sabzevari O, Azar AD, Kazemi S, Hosseini SR, Ghoreishi SM. Synthesis and characterization of novel 99mTc-DGC nano-complexes for improvement of heart diagnostic. Bioorganic Chemistry 2020;96:103572. [DOI: 10.1016/j.bioorg.2020.103572] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
25 Karpuz M, Gunay MS, Ozer AY. Liposomes and phytosomes for phytoconstituents. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents 2020. [DOI: 10.1016/b978-0-12-819666-3.00018-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Dikusar EA, Pushkarchuk AL, Bezyazychnaya TV, Potkin VI, Soldatov AG, Kuten SA, Stepin SG, Nizovtsev AP, Kilin SY. Quantum-chemical modeling of methotrexate fullerenol radionuclide agents for cancer therapy. Vescì Akademìì navuk Belarusì Seryâ himičnyh navuk 2019;55:163-170. [DOI: 10.29235/1561-8331-2019-55-2-163-170] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
27 Silindir-Gunay M, Sarcan ET, Ozer AY. Near-infrared imaging of diseases: A nanocarrier approach. Drug Dev Res 2019. [PMID: 30893508 DOI: 10.1002/ddr.21532] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
28 Chang YJ, Ho CL, Cheng KH, Kuo WI, Lee WC, Lan KL, Chang CH. Biodistribution, pharmacokinetics and radioimmunotherapy of 188Re-cetuximab in NCI-H292 human lung tumor-bearing nude mice. Invest New Drugs 2019;37:961-72. [PMID: 30612308 DOI: 10.1007/s10637-018-00718-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
29 Yu J, Yang L, Yan J, Wang W, Chen Y, Chen H, Lin C. Carbon Nanomaterials for Photothermal Therapies. Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy 2018. [DOI: 10.1002/9781119373476.ch12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
30 Farzin L, Sheibani S, Moassesi ME, Shamsipur M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 2019;107:251-85. [PMID: 30358098 DOI: 10.1002/jbm.a.36550] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 9.8] [Reference Citation Analysis]
31 Aghaei-Amirkhizi N, Sadjadi S, Moghaddam-Banaem L, Athari-Allaf M, Johari-Deha F. Dosimetry of 175Ytterbium-poly (amidoamine) Therapy for Humans' Organs. J Med Phys 2018;43:173-8. [PMID: 30305775 DOI: 10.4103/jmp.JMP_8_18] [Reference Citation Analysis]
32 LIANG-CHENG CHEN, WAN-CHI LEE, CHUNG-LI HO, YA-JEN CHANG, SU-JUNG CHEN, CHIH-HSIEN CHANG. Biodistribution, Pharmacokinetics and Efficacy of 188Re(I)-Tricarbonyl-Labeled Human Serum Albumin Microspheres in an Orthotopic Hepatoma Rat Model. In Vivo 2018;32. [PMID: 29695562 DOI: 10.21873/invivo.112277] [Reference Citation Analysis]
33 Chen LC, Lee WC, Ho CL, Chang YJ, Chen SJ, Chang CH. Biodistribution, Pharmacokinetics and Efficacy of 188Re(I)-Tricarbonyl-Labeled Human Serum Albumin Microspheres in an Orthotopic Hepatoma Rat Model. In Vivo 2018;32:567-73. [PMID: 29695562 DOI: 10.21873/invivo.11277] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Li W, Sun D, Li N, Shen Y, Hu Y, Tan J. Therapy of cervical cancer using 131I-labeled nanoparticles. J Int Med Res 2018;46:2359-70. [PMID: 29658363 DOI: 10.1177/0300060518761787] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
35 Ferreira CA, Goel S, Cai W. Exogenous Radionanomedicine: Inorganic Nanomaterials. Radionanomedicine 2018. [DOI: 10.1007/978-3-319-67720-0_2] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
36 Silindir-gunay M, Ozer AY. Liposomes and micelles as nanocarriers for diagnostic and imaging purposes. Design of Nanostructures for Theranostics Applications 2018. [DOI: 10.1016/b978-0-12-813669-0.00008-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
37 Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017;117:13566-638. [DOI: 10.1021/acs.chemrev.7b00258] [Cited by in Crossref: 993] [Cited by in F6Publishing: 1059] [Article Influence: 165.5] [Reference Citation Analysis]
38 Chen LC, Chang YJ, Chen SJ, Lee WC, Chang CH, Lee TW, Shien JH. Imaging, biodistribution and efficacy evaluation of 188Re-human serum albumin microspheres via intraarterial route in an orthotopic hepatoma model. Int J Radiat Biol 2017;93:477-86. [PMID: 28045339 DOI: 10.1080/09553002.2017.1276308] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
39 Datta N, Krishnan S, Speiser D, Neufeld E, Kuster N, Bodis S, Hofmann H. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics? Cancer Treatment Reviews 2016;50:217-27. [DOI: 10.1016/j.ctrv.2016.09.016] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 9.4] [Reference Citation Analysis]
40 Hrubý M, Kučka J, Pánek J, Štěpánek P. Seven years of radionuclide laboratory at IMC - important achievements. Physiol Res 2016;65:S191-201. [PMID: 27762585 DOI: 10.33549/physiolres.933421] [Reference Citation Analysis]
41 Palazzo B, Palazzo B, Scialla S, Scalera F, Margiotta N, Gervaso F. Nanostructured Ceramics and Bioceramics for Bone Cancer Treatment. Advanced Composite Materials 2016. [DOI: 10.1002/9781119242666.ch5] [Reference Citation Analysis]
42 Qaim SM. Nuclear data for production and medical application of radionuclides: Present status and future needs. Nucl Med Biol 2017;44:31-49. [PMID: 27821344 DOI: 10.1016/j.nucmedbio.2016.08.016] [Cited by in Crossref: 100] [Cited by in F6Publishing: 107] [Article Influence: 14.3] [Reference Citation Analysis]
43 Li W, Ji YH, Li CX, Liu ZY, Li N, Fang L, Chang J, Tan J. Evaluation of therapeutic effectiveness of 131I-antiEGFR-BSA-PCL in a mouse model of colorectal cancer. World J Gastroenterol 2016; 22(14): 3758-3768 [PMID: 27076760 DOI: 10.3748/wjg.v22.i14.3758] [Cited by in CrossRef: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
44 Gabbasov R, Polikarpov M, Safronov V, Sozontov E, Yurenya A, Panchenko V. Monte Carlo simulation of dose distribution in water around 57Fe3O4 magnetite nanoparticle in the nuclear gamma resonance condition. Hyperfine Interact 2016;237. [DOI: 10.1007/s10751-016-1267-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
45 Rauscher A, Frindel M, Rajerison H, Gouard S, Maurel C, Barbet J, Faivre-Chauvet A, Mougin-Degraef M. Improvement of the Targeting of Radiolabeled and Functionalized Liposomes with a Two-Step System Using a Bispecific Monoclonal Antibody (Anti-CEA × Anti-DTPA-In). Front Med (Lausanne) 2015;2:83. [PMID: 26636087 DOI: 10.3389/fmed.2015.00083] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
46 Li W, Liu Z, Li C, Li N, Fang L, Chang J, Tan J. Radionuclide therapy using 131I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression. J Cancer Res Clin Oncol 2016;142:619-32. [DOI: 10.1007/s00432-015-2067-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
47 Al Faraj A, Alotaibi B, Shaik AP, Shamma KZ, Al Jammaz I, Gerl J. Sodium-22-radiolabeled silica nanoparticles as new radiotracer for biomedical applications: in vivo positron emission tomography imaging, biodistribution, and biocompatibility. Int J Nanomedicine 2015;10:6293-302. [PMID: 26504381 DOI: 10.2147/IJN.S93523] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
48 Weichert JP, Clark PA, Kandela IK, Vaccaro AM, Clarke W, Longino MA, Pinchuk AN, Farhoud M, Swanson KI, Floberg JM, Grudzinski J, Titz B, Traynor AM, Chen HE, Hall LT, Pazoles CJ, Pickhardt PJ, Kuo JS. Alkylphosphocholine analogs for broad-spectrum cancer imaging and therapy. Sci Transl Med 2014;6:240ra75. [PMID: 24920661 DOI: 10.1126/scitranslmed.3007646] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 8.9] [Reference Citation Analysis]
49 Tsiapa I, Loudos G, Fragogeorgi EA, Bouziotis P, Psimadas D, Xanthopoulos S, Paravatou-Petsotas M, Palamaris L, Varvarigou AD, Karnabatidis D, Kagadis GC. Evaluation of ανβ3-mediated tumor expression with a 99mTc-labeled ornithine-modified RGD derivative during glioblastoma growth in vivo. Cancer Biother Radiopharm 2014;29:444-50. [PMID: 25405951 DOI: 10.1089/cbr.2014.1672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
50 Hsu W, Liu S, Chang Y, Chang C, Ting G, Lee T. The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model. Nuclear Medicine and Biology 2014;41:765-71. [DOI: 10.1016/j.nucmedbio.2014.05.142] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
51 Narayanan D, Jayakumar R, Chennazhi KP. Versatile carboxymethyl chitin and chitosan nanomaterials: a review: Versatile carboxymethyl chitin and chitosan nanomaterials. WIREs Nanomed Nanobiotechnol 2014;6:574-98. [DOI: 10.1002/wnan.1301] [Cited by in Crossref: 54] [Cited by in F6Publishing: 55] [Article Influence: 6.0] [Reference Citation Analysis]
52 Lee H, Zheng J, Gaddy D, Orcutt KD, Leonard S, Geretti E, Hesterman J, Harwell C, Hoppin J, Jaffray DA, Wickham T, Hendriks BS, Kirpotin D. A gradient-loadable (64)Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomedicine 2015;11:155-65. [PMID: 25200610 DOI: 10.1016/j.nano.2014.08.011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 4.3] [Reference Citation Analysis]
53 Popwell SJ, Schulz MD, Wagener KB, Batich CD, Milner RJ, Lagmay J, Bolch WE. Synthesis of polymeric phosphonates for selective delivery of radionuclides to osteosarcoma. Cancer Biother Radiopharm 2014;29:273-82. [PMID: 25111903 DOI: 10.1089/cbr.2014.1615] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
54 Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, Kordas GC, Mihailidis D, Nikiforidis GC, Xanthopoulos S, Psimadas D, Paravatou-Petsotas M, Palamaris L, Hazle JD, Kagadis GC. (99m)Tc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interface Sci 2014;433:163-75. [PMID: 25128864 DOI: 10.1016/j.jcis.2014.07.032] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 4.9] [Reference Citation Analysis]
55 Martin TM, Bhakta V, Al-Harbi A, Hackemack M, Tabacaru G, Tribble R, Shankar S, Akabani G. Preliminary production of 211At at the Texas A&M University Cyclotron Institute. Health Phys 2014;107:1-9. [PMID: 24849899 DOI: 10.1097/HP.0000000000000042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
56 Piotrowska A, Leszczuk E, Bruchertseifer F, Morgenstern A, Bilewicz A. Functionalized NaA nanozeolites labeled with 224,225Ra for targeted alpha therapy. J Nanopart Res 2013;15:2082. [PMID: 24307862 DOI: 10.1007/s11051-013-2082-7] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 4.6] [Reference Citation Analysis]
57 Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH. Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 2013;1:401-28. [DOI: 10.1039/c2tb00085g] [Cited by in Crossref: 152] [Cited by in F6Publishing: 154] [Article Influence: 15.2] [Reference Citation Analysis]
58 Tsiapa I, Loudos G, Varvarigou A, Fragogeorgi E, Psimadas D, Tsotakos T, Xanthopoulos S, Mihailidis D, Bouziotis P, Nikiforidis GC, Kagadis GC. Biological evaluation of an ornithine-modified (99m)Tc-labeled RGD peptide as an angiogenesis imaging agent. Nucl Med Biol 2013;40:262-72. [PMID: 23238128 DOI: 10.1016/j.nucmedbio.2012.10.015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
59 Vanpouille-Box C, Hindré F. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity. Front Oncol 2012;2:136. [PMID: 23087900 DOI: 10.3389/fonc.2012.00136] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
60 Psimadas D, Georgoulias P, Valotassiou V, Loudos G. Molecular Nanomedicine Towards Cancer: 111In-Labeled Nanoparticles. Journal of Pharmaceutical Sciences 2012;101:2271-80. [DOI: 10.1002/jps.23146] [Cited by in Crossref: 121] [Cited by in F6Publishing: 126] [Article Influence: 11.0] [Reference Citation Analysis]
61 Huang FY, Lee TW, Kao CH, Chang CH, Zhang X, Lee WY, Chen WJ, Wang SC, Lo JM. Imaging, autoradiography, and biodistribution of (188)Re-labeled PEGylated nanoliposome in orthotopic glioma bearing rat model. Cancer Biother Radiopharm 2011;26:717-25. [PMID: 22145660 DOI: 10.1089/cbr.2011.1052] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 1.7] [Reference Citation Analysis]
62 Silindir M, Erdoğan S, Özer AY, Maia S. Liposomes and their applications in molecular imaging. Journal of Drug Targeting 2012;20:401-15. [DOI: 10.3109/1061186x.2012.685477] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
63 Muscarella M, Pathak Y. Targeted Nanoparticles in Radiotherapy. Antibody-Mediated Drug Delivery Systems 2012. [DOI: 10.1002/9781118229019.ch6] [Reference Citation Analysis]
64 Chang CH, Chang YJ, Lee TW, Ting G, Chang KP. Dosimetric evaluation of nanotargeted (188)Re-liposome with the MIRDOSE3 and OLINDA/EXM programs. Ann Nucl Med 2012;26:419-25. [PMID: 22450826 DOI: 10.1007/s12149-012-0593-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
65 Arora G, Shukla J, Ghosh S, Maulik SK, Malhotra A, Bandopadhyaya G. PLGA nanoparticles for peptide receptor radionuclide therapy of neuroendocrine tumors: a novel approach towards reduction of renal radiation dose. PLoS One 2012;7:e34019. [PMID: 22442740 DOI: 10.1371/journal.pone.0034019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
66 Hruby M. Nano-sized Carrier Systems as New Materials for Nuclear Medicine. Intelligent Nanomaterials 2012. [DOI: 10.1002/9781118311974.ch19] [Reference Citation Analysis]
67 Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 2012;23:671-82. [PMID: 22242601 DOI: 10.1021/bc200264c] [Cited by in Crossref: 93] [Cited by in F6Publishing: 96] [Article Influence: 8.5] [Reference Citation Analysis]
68 Chen L, Wu Y, Liu I, Ho C, Lee W, Chang C, Lan K, Ting G, Lee T, Shien J. Pharmacokinetics, dosimetry and comparative efficacy of 188Re-liposome and 5-FU in a CT26-luc lung-metastatic mice model. Nuclear Medicine and Biology 2012;39:35-43. [DOI: 10.1016/j.nucmedbio.2011.06.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 2.3] [Reference Citation Analysis]
69 Kazmierska J. New technology in radiotherapy. European Journal of Cancer 2011;47:S322-S323. [DOI: 10.1016/s0959-8049(11)70187-3] [Reference Citation Analysis]
70 Ali Z, Abbasi AZ, Zhang F, Arosio P, Lascialfari A, Casula MF, Wenk A, Kreyling W, Plapper R, Seidel M, Niessner R, Knöll J, Seubert A, Parak WJ. Multifunctional nanoparticles for dual imaging. Anal Chem 2011;83:2877-82. [PMID: 21413785 DOI: 10.1021/ac103261y] [Cited by in Crossref: 95] [Cited by in F6Publishing: 96] [Article Influence: 7.9] [Reference Citation Analysis]