BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: DuPont JJ, Ramick MG, Farquhar WB, Townsend RR, Edwards DG. NADPH oxidase-derived reactive oxygen species contribute to impaired cutaneous microvascular function in chronic kidney disease. Am J Physiol Renal Physiol 2014;306:F1499-506. [PMID: 24761000 DOI: 10.1152/ajprenal.00058.2014] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 La Favor JD, Dubis GS, Yan H, White JD, Nelson MA, Anderson EJ, Hickner RC. Microvascular Endothelial Dysfunction in Sedentary, Obese Humans Is Mediated by NADPH Oxidase: Influence of Exercise Training. Arterioscler Thromb Vasc Biol 2016;36:2412-20. [PMID: 27765769 DOI: 10.1161/ATVBAHA.116.308339] [Cited by in Crossref: 38] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
2 Trinity JD, Broxterman RM, Richardson RS. Regulation of exercise blood flow: Role of free radicals. Free Radic Biol Med 2016;98:90-102. [PMID: 26876648 DOI: 10.1016/j.freeradbiomed.2016.01.017] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
3 Wang J, Liu S, Qin N, Yang Q, Guo H, Zhang F, Yin X. Jak2/Stat1 pathway mediated tetrahydrobiopterin up-regulation contributes to nitric oxide overproduction in high-glucose cultured rat mesangial cells. Can J Physiol Pharmacol 2015;93:81-9. [DOI: 10.1139/cjpp-2014-0255] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
4 Verma S, Singh P, Khurana S, Ganguly NK, Kukreti R, Saso L, Rana DS, Taneja V, Bhargava V. Implications of oxidative stress in chronic kidney disease: a review on current concepts and therapies. Kidney Res Clin Pract 2021;40:183-93. [PMID: 34078023 DOI: 10.23876/j.krcp.20.163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Mcgarr GW, Fujii N, Mcneely BD, Hatam K, Nishiyasu T, Sigal RJ, Boulay P, Kenny GP. Superoxide and NADPH oxidase do not modulate skin blood flow in older exercising adults with and without type 2 diabetes. Microvascular Research 2019;125:103886. [DOI: 10.1016/j.mvr.2019.103886] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
6 Patik JC, Curtis BM, Nasirian A, Vranish JR, Fadel PJ, Brothers RM. Sex differences in the mechanisms mediating blunted cutaneous microvascular function in young black men and women. Am J Physiol Heart Circ Physiol 2018;315:H1063-71. [PMID: 30074835 DOI: 10.1152/ajpheart.00142.2018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
7 Brunt VE, Eymann TM, Francisco MA, Howard MJ, Minson CT. Passive heat therapy improves cutaneous microvascular function in sedentary humans via improved nitric oxide-dependent dilation. J Appl Physiol (1985) 2016;121:716-23. [PMID: 27418688 DOI: 10.1152/japplphysiol.00424.2016] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 10.7] [Reference Citation Analysis]
8 Gage MC, Thippeswamy T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs 2021;35:1-20. [PMID: 33515429 DOI: 10.1007/s40263-020-00787-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Fu Q, Colgan SP, Shelley CS. Hypoxia: The Force that Drives Chronic Kidney Disease. Clin Med Res 2016;14:15-39. [PMID: 26847481 DOI: 10.3121/cmr.2015.1282] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 12.2] [Reference Citation Analysis]
10 Cheung KL, Stefanick ML, Allison MA, LeBlanc ES, Vitolins MZ, Shara N, Chertow GM, Winkelmayer WC, Kurella Tamura M. Menopausal symptoms in women with chronic kidney disease. Menopause 2015;22:1006-11. [PMID: 25628057 DOI: 10.1097/GME.0000000000000416] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Braschi A. Potential Protective Role of Blood Pressure-Lowering Drugs on the Balance between Hemostasis and Fibrinolysis in Hypertensive Patients at Rest and During Exercise. Am J Cardiovasc Drugs 2019;19:133-71. [PMID: 30714087 DOI: 10.1007/s40256-018-00316-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Zarling JA, Brunt VE, Vallerga AK, Li W, Tao A, Zarling DA, Minson CT. Nitroxide pharmaceutical development for age-related degeneration and disease. Front Genet 2015;6:325. [PMID: 26594225 DOI: 10.3389/fgene.2015.00325] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
13 Wong BJ, Keen JT, Levitt EL. Cutaneous reactive hyperaemia is unaltered by dietary nitrate supplementation in healthy humans. Clin Physiol Funct Imaging 2018;38:772-8. [DOI: 10.1111/cpf.12478] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kirkman DL, Ramick MG, Muth BJ, Stock JM, Pohlig RT, Townsend RR, Edwards DG. Effects of aerobic exercise on vascular function in nondialysis chronic kidney disease: a randomized controlled trial. Am J Physiol Renal Physiol 2019;316:F898-905. [PMID: 30810061 DOI: 10.1152/ajprenal.00539.2018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
15 Kirkman DL, Muth BJ, Ramick MG, Townsend RR, Edwards DG. Role of mitochondria-derived reactive oxygen species in microvascular dysfunction in chronic kidney disease. Am J Physiol Renal Physiol 2018;314:F423-9. [PMID: 29117995 DOI: 10.1152/ajprenal.00321.2017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
16 Clarke H, Hickner RC, Ormsbee MJ. The Potential Role of Creatine in Vascular Health. Nutrients 2021;13:857. [PMID: 33807747 DOI: 10.3390/nu13030857] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
17 Chu S, Mao X, Guo H, Wang L, Li Z, Zhang Y, Wang Y, Wang H, Zhang X, Peng W. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats. Free Radic Res 2017;51:237-52. [PMID: 28277985 DOI: 10.1080/10715762.2017.1296575] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
18 Kirkman DL, Bohmke N, Carbone S, Garten RS, Rodriguez-Miguelez P, Franco RL, Kidd JM, Abbate A. Exercise intolerance in kidney diseases: physiological contributors and therapeutic strategies. Am J Physiol Renal Physiol 2021;320:F161-73. [PMID: 33283641 DOI: 10.1152/ajprenal.00437.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Sutterfield SL, Caldwell JT, Post HK, Lovoy GM, Banister HR, Ade CJ. Lower cutaneous microvascular reactivity in adult cancer patients receiving chemotherapy. J Appl Physiol (1985) 2018;125:1141-9. [PMID: 30091663 DOI: 10.1152/japplphysiol.00394.2018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
20 Kaesler N, Babler A, Floege J, Kramann R. Cardiac Remodeling in Chronic Kidney Disease. Toxins (Basel) 2020;12:E161. [PMID: 32150864 DOI: 10.3390/toxins12030161] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
21 Nakagawa K, Itoya M, Takemoto N, Matsuura Y, Tawa M, Matsumura Y, Ohkita M. Indoxyl sulfate induces ROS production via the aryl hydrocarbon receptor-NADPH oxidase pathway and inactivates NO in vascular tissues. Life Sci 2021;265:118807. [PMID: 33232689 DOI: 10.1016/j.lfs.2020.118807] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Hirata Y, Yamamoto E, Tokitsu T, Fujisue K, Kurokawa H, Sugamura K, Sakamoto K, Tsujita K, Tanaka T, Kaikita K, Hokimoto S, Sugiyama S, Ogawa H. The Pivotal Role of a Novel Biomarker of Reactive Oxygen Species in Chronic Kidney Disease. Medicine (Baltimore) 2015;94:e1040. [PMID: 26107676 DOI: 10.1097/MD.0000000000001040] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.1] [Reference Citation Analysis]
23 Hurr C, Patik JC, Kim K, Christmas KM, Brothers RM. Tempol augments the blunted cutaneous microvascular thermal reactivity in healthy young African Americans. Exp Physiol 2018;103:343-9. [PMID: 29271085 DOI: 10.1113/EP086776] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
24 Ramick MG, Brian MS, Matthews EL, Patik JC, Seals DR, Lennon SL, Farquhar WB, Edwards DG. Apocynin and Tempol ameliorate dietary sodium-induced declines in cutaneous microvascular function in salt-resistant humans. Am J Physiol Heart Circ Physiol 2019;317:H97-H103. [PMID: 31074652 DOI: 10.1152/ajpheart.00786.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
25 Greaney JL, Saunders EFH, Santhanam L, Alexander LM. Oxidative Stress Contributes to Microvascular Endothelial Dysfunction in Men and Women With Major Depressive Disorder. Circ Res 2019;124:564-74. [PMID: 30582458 DOI: 10.1161/CIRCRESAHA.118.313764] [Cited by in Crossref: 29] [Cited by in F6Publishing: 10] [Article Influence: 9.7] [Reference Citation Analysis]
26 Martens CR, Kirkman DL, Edwards DG. The Vascular Endothelium in Chronic Kidney Disease: A Novel Target for Aerobic Exercise. Exerc Sport Sci Rev 2016;44:12-9. [PMID: 26509484 DOI: 10.1249/JES.0000000000000065] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
27 Ng HH, Leo CH, O'Sullivan K, Alexander SA, Davies MJ, Schiesser CH, Parry LJ. 1,4-Anhydro-4-seleno-d-talitol (SeTal) protects endothelial function in the mouse aorta by scavenging superoxide radicals under conditions of acute oxidative stress. Biochem Pharmacol 2017;128:34-45. [PMID: 28027880 DOI: 10.1016/j.bcp.2016.12.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
28 Li W, Cheng F, Songyang YY, Yang SY, Wei J, Ruan Y. CTRP1 Attenuates UUO-induced Renal Fibrosis via AMPK/NOX4 Pathway in Mice. Curr Med Sci 2020;40:48-54. [PMID: 32166664 DOI: 10.1007/s11596-020-2145-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Coombs GB, Akins JD, Patik JC, Vizcardo-Galindo GA, Figueroa-Mujica R, Tymko MM, Stacey BS, Iannetelli A, Bailey DM, Villafuerte FC, Ainslie PN, Brothers RM. Global Reach 2018: Nitric oxide-mediated cutaneous vasodilation is reduced in chronic, but not acute, hypoxia independently of enzymatic superoxide formation. Free Radic Biol Med 2021;172:451-8. [PMID: 34129928 DOI: 10.1016/j.freeradbiomed.2021.06.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Katulka EK, Hirt AE, Kirkman DL, Edwards DG, Witman MAH. Altered vascular function in chronic kidney disease: evidence from passive leg movement. Physiol Rep 2019;7:e14075. [PMID: 31016878 DOI: 10.14814/phy2.14075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]