BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Adamichou C, Genitsaridi I, Nikolopoulos D, Nikoloudaki M, Repa A, Bortoluzzi A, Fanouriakis A, Sidiropoulos P, Boumpas DT, Bertsias GK. Lupus or not? SLE Risk Probability Index (SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus. Ann Rheum Dis 2021:annrheumdis-2020-219069. [PMID: 33568388 DOI: 10.1136/annrheumdis-2020-219069] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
Number Citing Articles
1 Akal F, Batu ED, Sonmez HE, Karadağ ŞG, Demir F, Ayaz NA, Sözeri B. Diagnosing growing pains in children by using machine learning: a cross-sectional multicenter study. Med Biol Eng Comput 2022;60:3601-3614. [DOI: 10.1007/s11517-022-02699-6] [Reference Citation Analysis]
2 Stojanowski J, Konieczny A, Rydzyńska K, Kasenberg I, Mikołajczak A, Gołębiowski T, Krajewska M, Kusztal M. Artificial neural network - an effective tool for predicting the lupus nephritis outcome. BMC Nephrol 2022;23:381. [DOI: 10.1186/s12882-022-02978-2] [Reference Citation Analysis]
3 Zhou Y, Wang M, Zhao S, Yan Y. Machine Learning for Diagnosis of Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. Computational Intelligence and Neuroscience 2022;2022:1-14. [DOI: 10.1155/2022/7167066] [Reference Citation Analysis]
4 Singh JKJ, Ponnusamy RR, Ling ECW, Chin LS. Early Prediction of Lupus Disease: A Study on the Variations of Decision Tree Models.. [DOI: 10.21203/rs.3.rs-2062852/v1] [Reference Citation Analysis]
5 Kingsmore KM, Lipsky PE. Recent advances in the use of machine learning and artificial intelligence to improve diagnosis, predict flares, and enrich clinical trials in lupus. Curr Opin Rheumatol 2022. [PMID: 36001343 DOI: 10.1097/BOR.0000000000000902] [Reference Citation Analysis]
6 Zhao Y, Qi Y, Liu X, Cui Y, Zhao Z, Ciccacci C. Efficiency of Disease and Disease Activity Diagnosis Models of Systemic Lupus Erythematosus Based on Protein Array Analysis. Journal of Immunology Research 2022;2022:1-14. [DOI: 10.1155/2022/1830431] [Reference Citation Analysis]
7 De Cock D, Myasoedova E, Aletaha D, Studenic P. Big data analyses and individual health profiling in the arena of rheumatic and musculoskeletal diseases (RMDs). Ther Adv Musculoskelet Dis 2022;14:1759720X221105978. [PMID: 35794905 DOI: 10.1177/1759720X221105978] [Reference Citation Analysis]
8 Munroe ME, Young KA, Guthridge JM, Kamen DL, Gilkeson GS, Weisman MH, Ishimori ML, Wallace DJ, Karp DR, Harley JB, Norris JM, James JA. Pre-Clinical Autoimmunity in Lupus Relatives: Self-Reported Questionnaires and Immune Dysregulation Distinguish Relatives Who Develop Incomplete or Classified Lupus From Clinically Unaffected Relatives and Unaffected, Unrelated Individuals. Front Immunol 2022;13:866181. [DOI: 10.3389/fimmu.2022.866181] [Reference Citation Analysis]
9 Nikolopoulos D, Fotis L, Gioti O, Fanouriakis A. Tailored treatment strategies and future directions in systemic lupus erythematosus. Rheumatol Int 2022. [PMID: 35449237 DOI: 10.1007/s00296-022-05133-0] [Reference Citation Analysis]
10 Wilde V. Shame, Name, Give Up the Game? Three Approaches to Uncertainty. Diagnoses Without Names 2022. [DOI: 10.1007/978-3-031-04935-4_21] [Reference Citation Analysis]
11 Bertsias G. Dialogue: High-throughput studies in rheumatology: time for unsupervised clustering? Lupus Sci Med 2021;8:e000643. [PMID: 34952891 DOI: 10.1136/lupus-2021-000643] [Reference Citation Analysis]
12 . Risiko-Wahrscheinlichkeits-Index zur Diagnose eines Lupus erythematodes. Aktuelle Rheumatologie 2021;46:508-9. [DOI: 10.1055/a-1547-3498] [Reference Citation Analysis]
13 Lee YW, Choi JW, Shin E. Machine learning model for diagnostic method prediction in parasitic disease using clinical information. Expert Systems with Applications 2021;185:115658. [DOI: 10.1016/j.eswa.2021.115658] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Ceccarelli F, Lapucci M, Olivieri G, Sortino A, Natalucci F, Spinelli FR, Alessandri C, Sciandrone M, Conti F. Can machine learning models support physicians in systemic lupus erythematosus diagnosis? Results from a monocentric cohort. Joint Bone Spine 2021;89:105292. [PMID: 34655794 DOI: 10.1016/j.jbspin.2021.105292] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Bergier H, Duron L, Sordet C, Kawka L, Schlencker A, Chasset F, Arnaud L. Digital health, big data and smart technologies for the care of patients with systemic autoimmune diseases: Where do we stand? Autoimmun Rev 2021;20:102864. [PMID: 34118454 DOI: 10.1016/j.autrev.2021.102864] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]