BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 2006;74:4014-20. [PMID: 16790774 DOI: 10.1128/IAI.01237-05] [Cited by in Crossref: 140] [Cited by in F6Publishing: 129] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Yu ACY, Volkers G, Jongkees SAK, Worrall LJ, Withers SG, Strynadka NCJ. Crystal structure of the Propionibacterium acnes surface sialidase, a drug target for P. acnes-associated diseases. Glycobiology 2021:cwab094. [PMID: 34792586 DOI: 10.1093/glycob/cwab094] [Reference Citation Analysis]
2 Musikant D, Higa R, Rodríguez CE, Edreira MM, Campetella O, Jawerbaum A, Leguizamón MS. Sialic acid removal by trans-sialidase modulates MMP-2 activity during Trypanosoma cruzi infection. Biochimie 2021;186:82-93. [PMID: 33891967 DOI: 10.1016/j.biochi.2021.04.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Hammond AJ, Binsker U, Aggarwal SD, Ortigoza MB, Loomis C, Weiser JN. Neuraminidase B controls neuraminidase A-dependent mucus production and evasion. PLoS Pathog 2021;17:e1009158. [PMID: 33819312 DOI: 10.1371/journal.ppat.1009158] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
4 Tseng YW, Chang CC, Chang YC. Novel Virulence Role of Pneumococcal NanA in Host Inflammation and Cell Death Through the Activation of Inflammasome and the Caspase Pathway. Front Cell Infect Microbiol 2021;11:613195. [PMID: 33777832 DOI: 10.3389/fcimb.2021.613195] [Reference Citation Analysis]
5 Zukancic A, Khan MA, Gurmen SJ, Gliniecki QM, Moritz-Kinkade DL, Maddox CW, Alam MT. Staphylococcal Protein A (spa) Locus Is a Hot Spot for Recombination and Horizontal Gene Transfer in Staphylococcus pseudintermedius. mSphere 2020;5:e00666-20. [PMID: 33115833 DOI: 10.1128/mSphere.00666-20] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
6 Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Rama JR, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance, and Production of Antimicrobial and Virulence Factors in Streptococcus Species Associated with Bovine Mastitis. Could Enzybiotics Represent Novel Therapeutic Agents Against These Pathogens? Antibiotics (Basel) 2020;9:E302. [PMID: 32512932 DOI: 10.3390/antibiotics9060302] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
7 Jensen CS, Norsigian CJ, Fang X, Nielsen XC, Christensen JJ, Palsson BO, Monk JM. Reconstruction and Validation of a Genome-Scale Metabolic Model of Streptococcus oralis (iCJ415), a Human Commensal and Opportunistic Pathogen. Front Genet 2020;11:116. [PMID: 32194617 DOI: 10.3389/fgene.2020.00116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Norolahi F, Siadat SD, Malekan M, Mousavi SH, Janani A, Mousavi SF. Relationship Between Prevalence of Pneumococcal Serotypes and Their Neuraminidases in Carriers, Predictive Facts? Arch Pediatr Infect Dis 2020;8. [DOI: 10.5812/pedinfect.14100] [Reference Citation Analysis]
9 Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, Davies GJ. Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nat Commun 2019;10:4816. [PMID: 31645552 DOI: 10.1038/s41467-019-12684-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2018;9:1521-38. [PMID: 30289054 DOI: 10.1080/21505594.2018.1520545] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
11 Xiao K, Wang X, Yu H. Comparative studies of catalytic pathways for Streptococcus pneumoniae sialidases NanA, NanB and NanC. Sci Rep 2019;9:2157. [PMID: 30770840 DOI: 10.1038/s41598-018-38131-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
12 Minhas V, Harvey RM, McAllister LJ, Seemann T, Syme AE, Baines SL, Paton JC, Trappetti C. Capacity To Utilize Raffinose Dictates Pneumococcal Disease Phenotype. mBio 2019;10:e02596-18. [PMID: 30647157 DOI: 10.1128/mBio.02596-18] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
13 Benton AH, Marquart ME. The Role of Pneumococcal Virulence Factors in Ocular Infectious Diseases. Interdiscip Perspect Infect Dis 2018;2018:2525173. [PMID: 30538741 DOI: 10.1155/2018/2525173] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
14 Slack TJ, Li W, Shi D, McArthur JB, Zhao G, Li Y, Xiao A, Khedri Z, Yu H, Liu Y, Chen X. Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase. Bioorg Med Chem 2018;26:5751-7. [PMID: 30389408 DOI: 10.1016/j.bmc.2018.10.028] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Wang J, Song M, Pan J, Shen X, Liu W, Zhang X, Li H, Deng X. Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J Cell Mol Med 2018;22:6228-37. [PMID: 30334338 DOI: 10.1111/jcmm.13910] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
16 Xiong J, Zhang C, Xu D. Catalytic mechanism of type C sialidase from Streptococcus pneumoniae: from covalent intermediate to final product. J Mol Model 2018;24:297. [PMID: 30259133 DOI: 10.1007/s00894-018-3822-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Xiao A, Slack TJ, Li Y, Shi D, Yu H, Li W, Liu Y, Chen X. Streptococcus pneumoniae Sialidase SpNanB-Catalyzed One-Pot Multienzyme (OPME) Synthesis of 2,7-Anhydro-Sialic Acids as Selective Sialidase Inhibitors. J Org Chem 2018;83:10798-804. [PMID: 30105908 DOI: 10.1021/acs.joc.8b01519] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
18 Miao X, He J, Zhang L, Zhao X, Ge R, He QY, Sun X. A Novel Iron Transporter SPD_1590 in Streptococcus pneumoniae Contributing to Bacterial Virulence Properties. Front Microbiol 2018;9:1624. [PMID: 30079056 DOI: 10.3389/fmicb.2018.01624] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
19 Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC Struct Biol 2018;18:7. [PMID: 29769048 DOI: 10.1186/s12900-018-0086-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
20 Ercoli G, Fernandes VE, Chung WY, Wanford JJ, Thomson S, Bayliss CD, Straatman K, Crocker PR, Dennison A, Martinez-Pomares L, Andrew PW, Moxon ER, Oggioni MR. Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat Microbiol 2018;3:600-10. [PMID: 29662129 DOI: 10.1038/s41564-018-0147-1] [Cited by in Crossref: 48] [Cited by in F6Publishing: 57] [Article Influence: 12.0] [Reference Citation Analysis]
21 Nasher F, Förster S, Yildirim EC, Grandgirard D, Leib SL, Heller M, Hathaway LJ. Foreign peptide triggers boost in pneumococcal metabolism and growth. BMC Microbiol 2018;18:23. [PMID: 29580217 DOI: 10.1186/s12866-018-1167-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
22 Yang WH, Heithoff DM, Aziz PV, Sperandio M, Nizet V, Mahan MJ, Marth JD. Recurrent infection progressively disables host protection against intestinal inflammation. Science 2017;358:eaao5610. [PMID: 29269445 DOI: 10.1126/science.aao5610] [Cited by in Crossref: 31] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
23 Bitzan M, Zieg J. Influenza-associated thrombotic microangiopathies. Pediatr Nephrol 2018;33:2009-25. [PMID: 28884355 DOI: 10.1007/s00467-017-3783-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
24 Gratz N, Loh LN, Mann B, Gao G, Carter R, Rosch J, Tuomanen EI. Pneumococcal neuraminidase activates TGF-β signalling. Microbiology (Reading) 2017;163:1198-207. [PMID: 28749326 DOI: 10.1099/mic.0.000511] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
25 Li MF, Li XL, Fan KL, Yu YY, Gong J, Geng SY, Liang YF, Huang L, Qiu JH, Tian XH, Wang WT, Zhang XL, Yu QX, Zhang YF, Lin P, Wang LN, Li X, Hou M, Liu LY, Peng J. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial. J Hematol Oncol 2017;10:104. [PMID: 28494777 DOI: 10.1186/s13045-017-0476-1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 5.4] [Reference Citation Analysis]
26 Song M, Teng Z, Li M, Niu X, Wang J, Deng X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J Cell Mol Med 2017;21:2586-98. [PMID: 28402019 DOI: 10.1111/jcmm.13179] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 7.2] [Reference Citation Analysis]
27 Wren JT, Blevins LK, Pang B, Basu Roy A, Oliver MB, Reimche JL, Wozniak JE, Alexander-Miller MA, Swords WE. Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 2017;85:e01044-16. [PMID: 28096183 DOI: 10.1128/IAI.01044-16] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
28 Kahya HF, Andrew PW, Yesilkaya H. Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence. PLoS Pathog 2017;13:e1006263. [PMID: 28257499 DOI: 10.1371/journal.ppat.1006263] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
29 Hentrich K, Löfling J, Pathak A, Nizet V, Varki A, Henriques-Normark B. Streptococcus pneumoniae Senses a Human-like Sialic Acid Profile via the Response Regulator CiaR. Cell Host Microbe 2016;20:307-17. [PMID: 27593514 DOI: 10.1016/j.chom.2016.07.019] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
30 Yamaguchi M, Hirose Y, Nakata M, Uchiyama S, Yamaguchi Y, Goto K, Sumitomo T, Lewis AL, Kawabata S, Nizet V. Evolutionary inactivation of a sialidase in group B Streptococcus. Sci Rep 2016;6:28852. [PMID: 27352769 DOI: 10.1038/srep28852] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
31 Awad MM, Singleton J, Lyras D. The Sialidase NanS Enhances Non-TcsL Mediated Cytotoxicity of Clostridium sordellii. Toxins (Basel) 2016;8:E189. [PMID: 27322322 DOI: 10.3390/toxins8060189] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
32 Xu Z, von Grafenstein S, Walther E, Fuchs JE, Liedl KR, Sauerbrei A, Schmidtke M. Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility. Sci Rep 2016;6:25169. [PMID: 27125351 DOI: 10.1038/srep25169] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
33 Haines-Menges BL, Whitaker WB, Lubin JB, Boyd EF. Host Sialic Acids: A Delicacy for the Pathogen with Discerning Taste. Microbiol Spectr 2015;3. [PMID: 26350327 DOI: 10.1128/microbiolspec.MBP-0005-2014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
34 McCombs JE, Kohler JJ. Pneumococcal Neuraminidase Substrates Identified through Comparative Proteomics Enabled by Chemoselective Labeling. Bioconjug Chem 2016;27:1013-22. [PMID: 26954852 DOI: 10.1021/acs.bioconjchem.6b00050] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
35 Walther E, Xu Z, Richter M, Kirchmair J, Grienke U, Rollinger JM, Krumbholz A, Saluz HP, Pfister W, Sauerbrei A, Schmidtke M. Dual Acting Neuraminidase Inhibitors Open New Opportunities to Disrupt the Lethal Synergism between Streptococcus pneumoniae and Influenza Virus. Front Microbiol 2016;7:357. [PMID: 27047471 DOI: 10.3389/fmicb.2016.00357] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
36 Robb M, Robb CS, Higgins MA, Hobbs JK, Paton JC, Boraston AB. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans. J Biol Chem 2015;290:30888-900. [PMID: 26491009 DOI: 10.1074/jbc.M115.688630] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
37 Yang WH, Aziz PV, Heithoff DM, Mahan MJ, Smith JW, Marth JD. An intrinsic mechanism of secreted protein aging and turnover. Proc Natl Acad Sci U S A 2015;112:13657-62. [PMID: 26489654 DOI: 10.1073/pnas.1515464112] [Cited by in Crossref: 61] [Cited by in F6Publishing: 59] [Article Influence: 8.7] [Reference Citation Analysis]
38 Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL, Walsh MA. Streptococcus pneumoniae NanC: STRUCTURAL INSIGHTS INTO THE SPECIFICITY AND MECHANISM OF A SIALIDASE THAT PRODUCES A SIALIDASE INHIBITOR. J Biol Chem 2015;290:27736-48. [PMID: 26370075 DOI: 10.1074/jbc.M115.673632] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
39 Yang L, Connaris H, Potter JA, Taylor GL. Structural characterization of the carbohydrate-binding module of NanA sialidase, a pneumococcal virulence factor. BMC Struct Biol 2015;15:15. [PMID: 26289431 DOI: 10.1186/s12900-015-0042-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
40 Mochan-Keef E, Swigon D, Ermentrout GB, Clermont G. A Three-Tiered Study of Differences in Murine Intrahost Immune Response to Multiple Pneumococcal Strains. PLoS One 2015;10:e0134012. [PMID: 26244863 DOI: 10.1371/journal.pone.0134012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
41 Fleming E, Lazinski DW, Camilli A. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments. Mol Microbiol 2015;97:360-80. [PMID: 25898857 DOI: 10.1111/mmi.13033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
42 Paixão L, Oliveira J, Veríssimo A, Vinga S, Lourenço EC, Ventura MR, Kjos M, Veening JW, Fernandes VE, Andrew PW, Yesilkaya H, Neves AR. Host glycan sugar-specific pathways in Streptococcus pneumoniae: galactose as a key sugar in colonisation and infection [corrected]. PLoS One 2015;10:e0121042. [PMID: 25826206 DOI: 10.1371/journal.pone.0121042] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 6.6] [Reference Citation Analysis]
43 Thornton JA, Tullos NA, Sanders ME, Ridout G, Wang YD, Taylor SD, McDaniel LS, Marquart ME. Differential bacterial gene expression during experimental pneumococcal endophthalmitis. Ophthalmic Res 2015;53:149-61. [PMID: 25791614 DOI: 10.1159/000371713] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
44 Afzal M, Shafeeq S, Ahmed H, Kuipers OP. Sialic acid-mediated gene expression in Streptococcus pneumoniae and role of NanR as a transcriptional activator of the nan gene cluster. Appl Environ Microbiol 2015;81:3121-31. [PMID: 25724955 DOI: 10.1128/AEM.00499-15] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
45 Nita-Lazar M, Banerjee A, Feng C, Amin MN, Frieman MB, Chen WH, Cross AS, Wang LX, Vasta GR. Desialylation of airway epithelial cells during influenza virus infection enhances pneumococcal adhesion via galectin binding. Mol Immunol 2015;65:1-16. [PMID: 25597246 DOI: 10.1016/j.molimm.2014.12.010] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 7.6] [Reference Citation Analysis]
46 Singh AK, Pluvinage B, Higgins MA, Dalia AB, Woodiga SA, Flynn M, Lloyd AR, Weiser JN, Stubbs KA, Boraston AB, King SJ. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA. PLoS Pathog 2014;10:e1004364. [PMID: 25210925 DOI: 10.1371/journal.ppat.1004364] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
47 Pettigrew MM, Marks LR, Kong Y, Gent JF, Roche-Hakansson H, Hakansson AP. Dynamic changes in the Streptococcus pneumoniae transcriptome during transition from biofilm formation to invasive disease upon influenza A virus infection. Infect Immun 2014;82:4607-19. [PMID: 25135685 DOI: 10.1128/IAI.02225-14] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 8.5] [Reference Citation Analysis]
48 Sandrini S, Alghofaili F, Freestone P, Yesilkaya H. Host stress hormone norepinephrine stimulates pneumococcal growth, biofilm formation and virulence gene expression. BMC Microbiol 2014;14:180. [PMID: 24996423 DOI: 10.1186/1471-2180-14-180] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
49 Mochan E, Swigon D, Ermentrout GB, Lukens S, Clermont G. A mathematical model of intrahost pneumococcal pneumonia infection dynamics in murine strains. J Theor Biol 2014;353:44-54. [PMID: 24594373 DOI: 10.1016/j.jtbi.2014.02.021] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
50 Grewal PK, Aziz PV, Uchiyama S, Rubio GR, Lardone RD, Le D, Varki NM, Nizet V, Marth JD. Inducing host protection in pneumococcal sepsis by preactivation of the Ashwell-Morell receptor. Proc Natl Acad Sci U S A 2013;110:20218-23. [PMID: 24284176 DOI: 10.1073/pnas.1313905110] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 5.7] [Reference Citation Analysis]
51 Franklin L, Nobbs AH, Bricio-Moreno L, Wright CJ, Maddocks SE, Sahota JS, Ralph J, O'Connor M, Jenkinson HF, Kadioglu A. The AgI/II family adhesin AspA is required for respiratory infection by Streptococcus pyogenes. PLoS One 2013;8:e62433. [PMID: 23638083 DOI: 10.1371/journal.pone.0062433] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
52 Nicholls JM, Moss RB, Haslam SM. The use of sialidase therapy for respiratory viral infections. Antiviral Res 2013;98:401-9. [PMID: 23602850 DOI: 10.1016/j.antiviral.2013.04.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
53 Olson ME, King JM, Yahr TL, Horswill AR. Sialic acid catabolism in Staphylococcus aureus. J Bacteriol 2013;195:1779-88. [PMID: 23396916 DOI: 10.1128/JB.02294-12] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
54 Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L, Trappetti C, Pozzi G, Docquier JD, Andrew P, Ricci S, Oggioni MR. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol 2012;12:200. [PMID: 22963456 DOI: 10.1186/1471-2180-12-200] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
55 Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti C, Oggioni MR. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS One 2012;7:e33320. [PMID: 22428019 DOI: 10.1371/journal.pone.0033320] [Cited by in Crossref: 116] [Cited by in F6Publishing: 112] [Article Influence: 11.6] [Reference Citation Analysis]
56 Coats MT, Murphy T, Paton JC, Gray B, Briles DE. Exposure of Thomsen-Friedenreich antigen in Streptococcus pneumoniae infection is dependent on pneumococcal neuraminidase A. Microb Pathog 2011;50:343-9. [PMID: 21377521 DOI: 10.1016/j.micpath.2011.02.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
57 Marion C, Burnaugh AM, Woodiga SA, King SJ. Sialic acid transport contributes to pneumococcal colonization. Infect Immun 2011;79:1262-9. [PMID: 21189320 DOI: 10.1128/IAI.00832-10] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 4.6] [Reference Citation Analysis]
58 Norcross EW, Tullos NA, Taylor SD, Sanders ME, Marquart ME. Assessment of Streptococcus pneumoniae capsule in conjunctivitis and keratitis in vivo neuraminidase activity increases in nonencapsulated pneumococci following conjunctival infection. Curr Eye Res 2010;35:787-98. [PMID: 20795860 DOI: 10.3109/02713683.2010.492462] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
59 Banerjee A, Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell Microbiol 2010;12:1576-88. [PMID: 20557315 DOI: 10.1111/j.1462-5822.2010.01490.x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 4.8] [Reference Citation Analysis]
60 Johnston C, Hinds J, Smith A, van der Linden M, Van Eldere J, Mitchell TJ. Detection of large numbers of pneumococcal virulence genes in streptococci of the mitis group. J Clin Microbiol 2010;48:2762-9. [PMID: 20519466 DOI: 10.1128/JCM.01746-09] [Cited by in Crossref: 53] [Cited by in F6Publishing: 56] [Article Influence: 4.4] [Reference Citation Analysis]
61 Hedlund M, Aschenbrenner LM, Jensen K, Larson JL, Fang F. Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection. J Infect Dis 2010;201:1007-15. [PMID: 20170378 DOI: 10.1086/651170] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 2.1] [Reference Citation Analysis]
62 Dalia AB, Standish AJ, Weiser JN. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect Immun 2010;78:2108-16. [PMID: 20160017 DOI: 10.1128/IAI.01125-09] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 7.3] [Reference Citation Analysis]
63 Terra VS, Homer KA, Rao SG, Andrew PW, Yesilkaya H. Characterization of novel beta-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae. Infect Immun 2010;78:348-57. [PMID: 19841081 DOI: 10.1128/IAI.00721-09] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 3.0] [Reference Citation Analysis]
64 Yesilkaya H, Spissu F, Carvalho SM, Terra VS, Homer KA, Benisty R, Porat N, Neves AR, Andrew PW. Pyruvate formate lyase is required for pneumococcal fermentative metabolism and virulence. Infect Immun 2009;77:5418-27. [PMID: 19752030 DOI: 10.1128/IAI.00178-09] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 3.0] [Reference Citation Analysis]
65 King QO, Lei B, Harmsen AG. Pneumococcal surface protein A contributes to secondary Streptococcus pneumoniae infection after influenza virus infection. J Infect Dis 2009;200:537-45. [PMID: 19586418 DOI: 10.1086/600871] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 1.7] [Reference Citation Analysis]
66 Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, Hightower G, Mitchell TJ, Doran KS, Nizet V. The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med 2009;206:1845-52. [PMID: 19687228 DOI: 10.1084/jem.20090386] [Cited by in Crossref: 126] [Cited by in F6Publishing: 118] [Article Influence: 9.7] [Reference Citation Analysis]
67 Chiarezza M, Lyras D, Pidot SJ, Flores-Díaz M, Awad MM, Kennedy CL, Cordner LM, Phumoonna T, Poon R, Hughes ML, Emmins JJ, Alape-Girón A, Rood JI. The NanI and NanJ sialidases of Clostridium perfringens are not essential for virulence. Infect Immun 2009;77:4421-8. [PMID: 19651873 DOI: 10.1128/IAI.00548-09] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 2.8] [Reference Citation Analysis]
68 Parker D, Soong G, Planet P, Brower J, Ratner AJ, Prince A. The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 2009;77:3722-30. [PMID: 19564377 DOI: 10.1128/IAI.00228-09] [Cited by in Crossref: 110] [Cited by in F6Publishing: 110] [Article Influence: 8.5] [Reference Citation Analysis]
69 Hsiao YS, Parker D, Ratner AJ, Prince A, Tong L. Crystal structures of respiratory pathogen neuraminidases. Biochem Biophys Res Commun 2009;380:467-71. [PMID: 19284989 DOI: 10.1016/j.bbrc.2009.01.108] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 1.7] [Reference Citation Analysis]
70 Chiavolini D, Pozzi G, Ricci S. Animal models of Streptococcus pneumoniae disease. Clin Microbiol Rev 2008;21:666-85. [PMID: 18854486 DOI: 10.1128/CMR.00012-08] [Cited by in Crossref: 79] [Cited by in F6Publishing: 73] [Article Influence: 5.6] [Reference Citation Analysis]
71 Muñoz-Elías EJ, Marcano J, Camilli A. Isolation of Streptococcus pneumoniae biofilm mutants and their characterization during nasopharyngeal colonization. Infect Immun 2008;76:5049-61. [PMID: 18794289 DOI: 10.1128/IAI.00425-08] [Cited by in Crossref: 104] [Cited by in F6Publishing: 108] [Article Influence: 7.4] [Reference Citation Analysis]
72 Xu G, Li X, Andrew PW, Taylor GL. Structure of the catalytic domain of Streptococcus pneumoniae sialidase NanA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008;64:772-5. [PMID: 18765901 DOI: 10.1107/S1744309108024044] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 2.2] [Reference Citation Analysis]
73 Song XM, Connor W, Hokamp K, Babiuk LA, Potter AA. Streptococcus pneumoniae early response genes to human lung epithelial cells. BMC Res Notes 2008;1:64. [PMID: 18710517 DOI: 10.1186/1756-0500-1-64] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 1.5] [Reference Citation Analysis]
74 Kilian M, Poulsen K, Blomqvist T, Håvarstein LS, Bek-Thomsen M, Tettelin H, Sørensen UB. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 2008;3:e2683. [PMID: 18628950 DOI: 10.1371/journal.pone.0002683] [Cited by in Crossref: 206] [Cited by in F6Publishing: 188] [Article Influence: 14.7] [Reference Citation Analysis]
75 Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 2008;14:648-55. [PMID: 18488037 DOI: 10.1038/nm1760] [Cited by in Crossref: 240] [Cited by in F6Publishing: 232] [Article Influence: 17.1] [Reference Citation Analysis]
76 Mahdi LK, Ogunniyi AD, LeMessurier KS, Paton JC. Pneumococcal virulence gene expression and host cytokine profiles during pathogenesis of invasive disease. Infect Immun 2008;76:646-57. [PMID: 18039836 DOI: 10.1128/IAI.01161-07] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 3.5] [Reference Citation Analysis]
77 Burnaugh AM, Frantz LJ, King SJ. Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol 2008;190:221-30. [PMID: 17981977 DOI: 10.1128/JB.01251-07] [Cited by in Crossref: 123] [Cited by in F6Publishing: 115] [Article Influence: 8.2] [Reference Citation Analysis]
78 Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 2006;61:1196-210. [PMID: 16925554 DOI: 10.1111/j.1365-2958.2006.05310.x] [Cited by in Crossref: 186] [Cited by in F6Publishing: 175] [Article Influence: 11.6] [Reference Citation Analysis]
79 Simell B, Jaakkola T, Lahdenkari M, Briles D, Hollingshead S, Kilpi TM, Käyhty H. Serum antibodies to pneumococcal neuraminidase NanA in relation to pneumococcal carriage and acute otitis media. Clin Vaccine Immunol 2006;13:1177-9. [PMID: 16928889 DOI: 10.1128/CVI.00257-06] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]