BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dalia AB, Standish AJ, Weiser JN. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect Immun 2010;78:2108-16. [PMID: 20160017 DOI: 10.1128/IAI.01125-09] [Cited by in Crossref: 95] [Cited by in F6Publishing: 98] [Article Influence: 7.9] [Reference Citation Analysis]
Number Citing Articles
1 Gil E, Noursadeghi M, Brown JS. Streptococcus pneumoniae interactions with the complement system. Front Cell Infect Microbiol 2022;12:929483. [DOI: 10.3389/fcimb.2022.929483] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Takemura M, Yamaguchi M, Kobayashi M, Sumitomo T, Hirose Y, Okuzaki D, Ono M, Motooka D, Goto K, Nakata M, Uzawa N, Kawabata S. Pneumococcal BgaA Promotes Host Organ Bleeding and Coagulation in a Mouse Sepsis Model. Front Cell Infect Microbiol 2022;12:844000. [DOI: 10.3389/fcimb.2022.844000] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Simmons SR, Tchalla EYI, Bhalla M, Bou Ghanem EN. The Age-Driven Decline in Neutrophil Function Contributes to the Reduced Efficacy of the Pneumococcal Conjugate Vaccine in Old Hosts. Front Cell Infect Microbiol 2022;12:849224. [DOI: 10.3389/fcimb.2022.849224] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Gingerich AD, Mousa JJ. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies. Front Cell Infect Microbiol 2022;12:824788. [DOI: 10.3389/fcimb.2022.824788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Cacacho MFC, Ghori HJC, Endriga MA, Frio EJL. Targeting Neuraminidase A of Multidrug-Resistant Streptococcus pneumoniae: Molecular Docking and Redesign of Traditional Chinese Medicine Compounds. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2021. [DOI: 10.1109/bibm52615.2021.9669691] [Reference Citation Analysis]
6 Yan Z, Cui Y, Huang X, Lei S, Zhou W, Tong W, Chen W, Shen M, Wu K, Jiang Y. Molecular Characterization Based on Whole-Genome Sequencing of Streptococcus pneumoniae in Children Living in Southwest China During 2017-2019. Front Cell Infect Microbiol 2021;11:726740. [PMID: 34796125 DOI: 10.3389/fcimb.2021.726740] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Anil A, Apte S, Joseph J, Parthasarathy A, Madhavan S, Banerjee A. Pyruvate Oxidase as a Key Determinant of Pneumococcal Viability during Transcytosis across Brain Endothelium. J Bacteriol 2021;203:e0043921. [PMID: 34606370 DOI: 10.1128/JB.00439-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Higgins MA, Tegl G, MacDonald SS, Arnal G, Brumer H, Withers SG, Ryan KS. N-Glycan Degradation Pathways in Gut- and Soil-Dwelling Actinobacteria Share Common Core Genes. ACS Chem Biol 2021;16:701-11. [PMID: 33764747 DOI: 10.1021/acschembio.0c00995] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Bhalla M, Heinzinger LR, Morenikeji OB, Marzullo B, Thomas BN, Bou Ghanem EN. Transcriptome profiling reveals CD73 and age-driven changes in neutrophil responses against Streptococcus pneumoniae.. [DOI: 10.1101/2021.04.14.439887] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Baek JY, Kim SJ, Shin J, Chung YJ, Kang CI, Chung DR, Song JH, Ko KS. Genome-Wide Analysis of the Temporal Genetic Changes in Streptococcus pneumoniae Isolates of Genotype ST320 and Serotype 19A from South Korea. Microorganisms 2021;9:795. [PMID: 33920171 DOI: 10.3390/microorganisms9040795] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Gómez Delgado I, Corvillo F, Nozal P, Arjona E, Madrid Á, Melgosa M, Bravo J, Szilágyi Á, Csuka D, Veszeli N, Prohászka Z, Sánchez-Corral P. Complement Genetic Variants and FH Desialylation in S. pneumoniae-Haemolytic Uraemic Syndrome. Front Immunol 2021;12:641656. [PMID: 33777036 DOI: 10.3389/fimmu.2021.641656] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
12 Bhalla M, Simmons SR, Tchalla EYI, Bou Ghanem EN. Testing Anti-Pneumococcal Antibody Function Using Bacteria and Primary Neutrophils. Methods Mol Biol 2021;2183:559-74. [PMID: 32959268 DOI: 10.1007/978-1-0716-0795-4_33] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Bricio-Moreno L, Chaguza C, Yahya R, Shears RK, Cornick JE, Hokamp K, Yang M, Neill DR, French N, Hinton JCD, Everett DB, Kadioglu A. Lower Density and Shorter Duration of Nasopharyngeal Carriage by Pneumococcal Serotype 1 (ST217) May Explain Its Increased Invasiveness over Other Serotypes. mBio 2020;11:e00814-20. [PMID: 33293378 DOI: 10.1128/mBio.00814-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Hanachi M, Kiran A, Cornick J, Harigua-Souiai E, Everett D, Benkahla A, Souiai O. Genomic Characteristics of Invasive Streptococcus pneumoniae Serotype 1 in New Caledonia Prior to the Introduction of PCV13. Bioinform Biol Insights 2020;14:1177932220962106. [PMID: 33088176 DOI: 10.1177/1177932220962106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Yamaguchi M, Takemura M, Higashi K, Goto K, Hirose Y, Sumitomo T, Nakata M, Uzawa N, Kawabata S. Role of BgaA as a Pneumococcal Virulence Factor Elucidated by Molecular Evolutionary Analysis. Front Microbiol 2020;11:582437. [PMID: 33072054 DOI: 10.3389/fmicb.2020.582437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Chaguza C, Senghore M, Bojang E, Gladstone RA, Lo SW, Tientcheu PE, Bancroft RE, Worwui A, Foster-Nyarko E, Ceesay F, Okoi C, McGee L, Klugman KP, Breiman RF, Barer MR, Adegbola RA, Antonio M, Bentley SD, Kwambana-Adams BA. Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation. Nat Commun 2020;11:3442. [PMID: 32651390 DOI: 10.1038/s41467-020-17327-w] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
17 Chen P, Liu R, Huang M, Zhu J, Wei D, Castellino FJ, Dang G, Xie F, Li G, Cui Z, Liu S, Zhang Y. A unique combination of glycoside hydrolases in Streptococcus suis specifically and sequentially acts on host-derived αGal-epitope glycans. J Biol Chem 2020;295:10638-52. [PMID: 32518157 DOI: 10.1074/jbc.RA119.011977] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020;9:E387. [PMID: 32443590 DOI: 10.3390/pathogens9050387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Andreassen PR, Trappetti C, Minhas V, Nielsen FD, Pakula K, Paton JC, Jørgensen MG. Host-glycan metabolism is regulated by a species-conserved two-component system in Streptococcus pneumoniae. PLoS Pathog 2020;16:e1008332. [PMID: 32130269 DOI: 10.1371/journal.ppat.1008332] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: Invasion and Inflammation. Gram-Positive Pathogens 2019. [DOI: 10.1128/9781683670131.ch20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
21 Hobbs JK, Meier EPW, Pluvinage B, Mey MA, Boraston AB. Molecular analysis of an enigmatic Streptococcus pneumoniae virulence factor: The raffinose-family oligosaccharide utilization system. J Biol Chem 2019;294:17197-208. [PMID: 31591266 DOI: 10.1074/jbc.RA119.010280] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
22 Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018;16:355-67. [PMID: 29599457 DOI: 10.1038/s41579-018-0001-8] [Cited by in Crossref: 381] [Cited by in F6Publishing: 390] [Article Influence: 127.0] [Reference Citation Analysis]
23 Yamaguchi M, Hirose Y, Takemura M, Ono M, Sumitomo T, Nakata M, Terao Y, Kawabata S. Streptococcus pneumoniae Evades Host Cell Phagocytosis and Limits Host Mortality Through Its Cell Wall Anchoring Protein PfbA. Front Cell Infect Microbiol 2019;9:301. [PMID: 31482074 DOI: 10.3389/fcimb.2019.00301] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
24 Hobbs JK, Pluvinage B, Robb M, Smith SP, Boraston AB. Two complementary α-fucosidases from Streptococcus pneumoniae promote complete degradation of host-derived carbohydrate antigens. J Biol Chem 2019;294:12670-82. [PMID: 31266803 DOI: 10.1074/jbc.RA119.009368] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
25 Keller LE, Rueff AS, Kurushima J, Veening JW. Three New Integration Vectors and Fluorescent Proteins for Use in the Opportunistic Human Pathogen Streptococcus pneumoniae. Genes (Basel) 2019;10:E394. [PMID: 31121970 DOI: 10.3390/genes10050394] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
26 Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: Invasion and Inflammation. Microbiol Spectr 2019;7. [PMID: 30873934 DOI: 10.1128/microbiolspec.GPP3-0004-2018] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 14.0] [Reference Citation Analysis]
27 Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2018;9:1521-38. [PMID: 30289054 DOI: 10.1080/21505594.2018.1520545] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
28 Keller LE, Rueff A, Kurushima J, Veening J. Three new integration vectors and fluorescent proteins for use in the opportunistic human pathogenStreptococcus pneumoniae.. [DOI: 10.1101/594697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Obolski U, Gori A, Lourenço J, Thompson C, Thompson R, French N, Heyderman RS, Gupta S. Identifying genes associated with invasive disease in S. pneumoniae by applying a machine learning approach to whole genome sequence typing data. Sci Rep 2019;9:4049. [PMID: 30858412 DOI: 10.1038/s41598-019-40346-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
30 Nganje CN, Haynes SA, Qabar CM, Lent RC, Bou Ghanem EN, Shainheit MG. PepN is a non-essential, cell wall-localized protein that contributes to neutrophil elastase-mediated killing of Streptococcus pneumoniae. PLoS One 2019;14:e0211632. [PMID: 30707714 DOI: 10.1371/journal.pone.0211632] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
31 Ortigoza MB, Blaser SB, Zafar MA, Hammond AJ, Weiser JN. An Infant Mouse Model of Influenza Virus Transmission Demonstrates the Role of Virus-Specific Shedding, Humoral Immunity, and Sialidase Expression by Colonizing Streptococcus pneumoniae. mBio 2018;9:e02359-18. [PMID: 30563897 DOI: 10.1128/mBio.02359-18] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
32 Ortigoza MB, Blaser S, Zafar MA, Hammond A, Weiser JN. An infant mouse model of influenza virus transmission demonstrates the role of virus-specific shedding, humoral immunity, and sialidase expression by colonizingStreptococcus pneumoniae.. [DOI: 10.1101/456665] [Reference Citation Analysis]
33 Nganje CN, Haynes SA, Qabar CM, Lent RC, Bou Ghanem EN, Shainheit MG. PepN is a non-essential, cell wall-localized protein that contributes to neutrophil elastase-mediated killing ofStreptococcus pneumoniae.. [DOI: 10.1101/313569] [Reference Citation Analysis]
34 Obolski U, Gori A, Lourenço J, Thompson C, Thompson R, French N, Heyderman R, Gupta S. IdentifyingStreptococcus pneumoniaegenes associated with invasive disease using pangenome-based whole genome sequence typing.. [DOI: 10.1101/314666] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Johnson DI. Streptococcus spp. Bacterial Pathogens and Their Virulence Factors 2018. [DOI: 10.1007/978-3-319-67651-7_10] [Reference Citation Analysis]
36 Gratz N, Loh LN, Mann B, Gao G, Carter R, Rosch J, Tuomanen EI. Pneumococcal neuraminidase activates TGF-β signalling. Microbiology (Reading) 2017;163:1198-207. [PMID: 28749326 DOI: 10.1099/mic.0.000511] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
37 Bou Ghanem EN, Lee JN, Joma BH, Meydani SN, Leong JM, Panda A. The Alpha-Tocopherol Form of Vitamin E Boosts Elastase Activity of Human PMNs and Their Ability to Kill Streptococcus pneumoniae. Front Cell Infect Microbiol 2017;7:161. [PMID: 28516066 DOI: 10.3389/fcimb.2017.00161] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 8.2] [Reference Citation Analysis]
38 Wren JT, Blevins LK, Pang B, Basu Roy A, Oliver MB, Reimche JL, Wozniak JE, Alexander-Miller MA, Swords WE. Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 2017;85:e01044-16. [PMID: 28096183 DOI: 10.1128/IAI.01044-16] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 3.6] [Reference Citation Analysis]
39 Kahya HF, Andrew PW, Yesilkaya H. Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence. PLoS Pathog 2017;13:e1006263. [PMID: 28257499 DOI: 10.1371/journal.ppat.1006263] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
40 Andre GO, Converso TR, Politano WR, Ferraz LF, Ribeiro ML, Leite LC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017;8:224. [PMID: 28265264 DOI: 10.3389/fmicb.2017.00224] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
41 Robb M, Hobbs JK, Woodiga SA, Shapiro-Ward S, Suits MD, McGregor N, Brumer H, Yesilkaya H, King SJ, Boraston AB. Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog 2017;13:e1006090. [PMID: 28056108 DOI: 10.1371/journal.ppat.1006090] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 8.8] [Reference Citation Analysis]
42 Afzal M, Shafeeq S, Manzoor I, Henriques-Normark B, Kuipers OP. N-acetylglucosamine-Mediated Expression of nagA and nagB in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016;6:158. [PMID: 27900287 DOI: 10.3389/fcimb.2016.00158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
43 Blanchette KA, Shenoy AT, Milner J 2nd, Gilley RP, McClure E, Hinojosa CA, Kumar N, Daugherty SC, Tallon LJ, Ott S, King SJ, Ferreira DM, Gordon SB, Tettelin H, Orihuela CJ. Neuraminidase A-Exposed Galactose Promotes Streptococcus pneumoniae Biofilm Formation during Colonization. Infect Immun 2016;84:2922-32. [PMID: 27481242 DOI: 10.1128/IAI.00277-16] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 6.2] [Reference Citation Analysis]
44 Ogunniyi AD, Paton JC. Regulation of Pneumococcal Surface Proteins and Capsule. Regulation of Bacterial Virulence 2016. [DOI: 10.1128/9781555818524.ch10] [Reference Citation Analysis]
45 Afzal M, Shafeeq S, Ahmed H, Kuipers OP. N-acetylgalatosamine-Mediated Regulation of the aga Operon by AgaR in Streptococcus pneumoniae. Front Cell Infect Microbiol 2016;6:101. [PMID: 27672623 DOI: 10.3389/fcimb.2016.00101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
46 Fleming E, Camilli A. ManLMN is a glucose transporter and central metabolic regulator in Streptococcus pneumoniae. Mol Microbiol 2016;102:467-87. [PMID: 27472033 DOI: 10.1111/mmi.13473] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
47 Yamaguchi M, Hirose Y, Nakata M, Uchiyama S, Yamaguchi Y, Goto K, Sumitomo T, Lewis AL, Kawabata S, Nizet V. Evolutionary inactivation of a sialidase in group B Streptococcus. Sci Rep 2016;6:28852. [PMID: 27352769 DOI: 10.1038/srep28852] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
48 Awad MM, Singleton J, Lyras D. The Sialidase NanS Enhances Non-TcsL Mediated Cytotoxicity of Clostridium sordellii. Toxins (Basel) 2016;8:E189. [PMID: 27322322 DOI: 10.3390/toxins8060189] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
49 Shenoy AT, Orihuela CJ. Anatomical site-specific contributions of pneumococcal virulence determinants. Pneumonia (Nathan) 2016;8:7. [PMID: 27635368 DOI: 10.1186/s41479-016-0007-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
50 Robb M, Robb CS, Higgins MA, Hobbs JK, Paton JC, Boraston AB. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans. J Biol Chem 2015;290:30888-900. [PMID: 26491009 DOI: 10.1074/jbc.M115.688630] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
51 Paixão L, Caldas J, Kloosterman TG, Kuipers OP, Vinga S, Neves AR. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism. Front Microbiol 2015;6:1041. [PMID: 26500614 DOI: 10.3389/fmicb.2015.01041] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
52 Hergott CB, Roche AM, Naidu NA, Mesaros C, Blair IA, Weiser JN. Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection. J Clin Invest 2015;125:3878-90. [PMID: 26426079 DOI: 10.1172/JCI81888] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
53 Thamadilok S, Roche-Håkansson H, Håkansson AP, Ruhl S. Absence of capsule reveals glycan-mediated binding and recognition of salivary mucin MUC7 by Streptococcus pneumoniae. Mol Oral Microbiol 2016;31:175-88. [PMID: 26172471 DOI: 10.1111/omi.12113] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
54 Mochan-Keef E, Swigon D, Ermentrout GB, Clermont G. A Three-Tiered Study of Differences in Murine Intrahost Immune Response to Multiple Pneumococcal Strains. PLoS One 2015;10:e0134012. [PMID: 26244863 DOI: 10.1371/journal.pone.0134012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
55 Fleming E, Lazinski DW, Camilli A. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments. Mol Microbiol 2015;97:360-80. [PMID: 25898857 DOI: 10.1111/mmi.13033] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
56 Afzal M, Shafeeq S, Ahmed H, Kuipers OP. Sialic acid-mediated gene expression in Streptococcus pneumoniae and role of NanR as a transcriptional activator of the nan gene cluster. Appl Environ Microbiol 2015;81:3121-31. [PMID: 25724955 DOI: 10.1128/AEM.00499-15] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
57 Hilleringmann M, Kohler S, Gámez G, Hammerschmidt S. Pneumococcal Pili and Adhesins. Streptococcus Pneumoniae 2015. [DOI: 10.1016/b978-0-12-410530-0.00017-x] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
58 Dockrell DH, Brown JS. Streptococcus pneumoniae Interactions with Macrophages and Mechanisms of Immune Evasion. Streptococcus Pneumoniae 2015. [DOI: 10.1016/b978-0-12-410530-0.00021-1] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
59 Ramos-Sevillano E, Urzainqui A, Campuzano S, Moscoso M, González-Camacho F, Domenech M, Rodríguez de Córdoba S, Sánchez-Madrid F, Brown JS, García E, Yuste J. Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response. Infect Immun 2015;83:591-603. [PMID: 25404032 DOI: 10.1128/IAI.02811-14] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 5.4] [Reference Citation Analysis]
60 Singh AK, Pluvinage B, Higgins MA, Dalia AB, Woodiga SA, Flynn M, Lloyd AR, Weiser JN, Stubbs KA, Boraston AB, King SJ. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA. PLoS Pathog 2014;10:e1004364. [PMID: 25210925 DOI: 10.1371/journal.ppat.1004364] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
61 Imaki H, Tomoyasu T, Yamamoto N, Taue C, Masuda S, Takao A, Maeda N, Tabata A, Whiley RA, Nagamune H. Identification and characterization of a novel secreted glycosidase with multiple glycosidase activities in Streptococcus intermedius. J Bacteriol 2014;196:2817-26. [PMID: 24858187 DOI: 10.1128/JB.01727-14] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
62 Hu D, Zhang F, Zhang H, Hao L, Gong X, Geng M, Cao M, Zheng F, Zhu J, Pan X, Tang J, Feng Y, Wang C. The β-galactosidase (BgaC) of the zoonotic pathogen Streptococcus suis is a surface protein without the involvement of bacterial virulence. Sci Rep 2014;4:4140. [PMID: 24556915 DOI: 10.1038/srep04140] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
63 Daniels CC, Kim KH, Burton RL, Mirza S, Walker M, King J, Hale Y, Coan P, Rhee DK, Nahm MH, Briles DE. Modified opsonization, phagocytosis, and killing assays to measure potentially protective antibodies against pneumococcal surface protein A. Clin Vaccine Immunol 2013;20:1549-58. [PMID: 23925886 DOI: 10.1128/CVI.00371-13] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
64 Murphy TF, Chonmaitree T, Barenkamp S, Kyd J, Nokso-Koivisto J, Patel JA, Heikkinen T, Yamanaka N, Ogra P, Swords WE, Sih T, Pettigrew MM. Panel 5: Microbiology and immunology panel. Otolaryngol Head Neck Surg 2013;148:E64-89. [PMID: 23536533 DOI: 10.1177/0194599812459636] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
65 Muchnik L, Adawi A, Ohayon A, Dotan S, Malka I, Azriel S, Shagan M, Portnoi M, Kafka D, Nahmani H, Porgador A, Gershoni JM, Morrison DA, Mitchell A, Tal M, Ellis R, Dagan R, Nebenzahl YM. NADH oxidase functions as an adhesin in Streptococcus pneumoniae and elicits a protective immune response in mice. PLoS One 2013;8:e61128. [PMID: 23577197 DOI: 10.1371/journal.pone.0061128] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
66 Dorrington MG, Roche AM, Chauvin SE, Tu Z, Mossman KL, Weiser JN, Bowdish DM. MARCO is required for TLR2- and Nod2-mediated responses to Streptococcus pneumoniae and clearance of pneumococcal colonization in the murine nasopharynx. J Immunol 2013;190:250-8. [PMID: 23197261 DOI: 10.4049/jimmunol.1202113] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 6.7] [Reference Citation Analysis]
67 Parker RB, McCombs JE, Kohler JJ. Sialidase specificity determined by chemoselective modification of complex sialylated glycans. ACS Chem Biol 2012;7:1509-14. [PMID: 22704707 DOI: 10.1021/cb300241v] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 2.5] [Reference Citation Analysis]
68 Dalia AB, Weiser JN. Minimization of bacterial size allows for complement evasion and is overcome by the agglutinating effect of antibody. Cell Host Microbe 2011;10:486-96. [PMID: 22100164 DOI: 10.1016/j.chom.2011.09.009] [Cited by in Crossref: 97] [Cited by in F6Publishing: 91] [Article Influence: 9.7] [Reference Citation Analysis]
69 Underwood M, Bakaletz L. Innate immunity and the role of defensins in otitis media. Curr Allergy Asthma Rep 2011;11:499-507. [PMID: 21901304 DOI: 10.1007/s11882-011-0223-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
70 Garbe J, Collin M. Bacterial hydrolysis of host glycoproteins - powerful protein modification and efficient nutrient acquisition. J Innate Immun 2012;4:121-31. [PMID: 22222876 DOI: 10.1159/000334775] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
71 Wakeman CA, Skaar EP. Metalloregulation of Gram-positive pathogen physiology. Curr Opin Microbiol 2012;15:169-74. [PMID: 22155062 DOI: 10.1016/j.mib.2011.11.008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
72 Stafford G, Roy S, Honma K, Sharma A. Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast! Mol Oral Microbiol 2012;27:11-22. [PMID: 22230462 DOI: 10.1111/j.2041-1014.2011.00630.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 4.1] [Reference Citation Analysis]
73 Carvalho SM, Kloosterman TG, Kuipers OP, Neves AR. CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae. PLoS One 2011;6:e26707. [PMID: 22039538 DOI: 10.1371/journal.pone.0026707] [Cited by in Crossref: 98] [Cited by in F6Publishing: 105] [Article Influence: 8.9] [Reference Citation Analysis]
74 Hyams C, Opel S, Hanage W, Yuste J, Bax K, Henriques-Normark B, Spratt BG, Brown JS. Effects of Streptococcus pneumoniae strain background on complement resistance. PLoS One 2011;6:e24581. [PMID: 22022358 DOI: 10.1371/journal.pone.0024581] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
75 Ramos-Sevillano E, Moscoso M, García P, García E, Yuste J. Nasopharyngeal colonization and invasive disease are enhanced by the cell wall hydrolases LytB and LytC of Streptococcus pneumoniae. PLoS One 2011;6:e23626. [PMID: 21886805 DOI: 10.1371/journal.pone.0023626] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 4.3] [Reference Citation Analysis]
76 Marion C, Burnaugh AM, Woodiga SA, King SJ. Sialic acid transport contributes to pneumococcal colonization. Infect Immun 2011;79:1262-9. [PMID: 21189320 DOI: 10.1128/IAI.00832-10] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 4.7] [Reference Citation Analysis]
77 Hartman AH, Liu H, Melville SB. Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens. Appl Environ Microbiol 2011;77:471-8. [PMID: 21097603 DOI: 10.1128/AEM.01536-10] [Cited by in Crossref: 66] [Cited by in F6Publishing: 67] [Article Influence: 5.5] [Reference Citation Analysis]
78 Honma K, Mishima E, Sharma A. Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect Immun 2011;79:393-401. [PMID: 21078857 DOI: 10.1128/IAI.00629-10] [Cited by in Crossref: 50] [Cited by in F6Publishing: 52] [Article Influence: 4.2] [Reference Citation Analysis]
79 Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 2010;11:R107. [PMID: 21034474 DOI: 10.1186/gb-2010-11-10-r107] [Cited by in Crossref: 279] [Cited by in F6Publishing: 294] [Article Influence: 23.3] [Reference Citation Analysis]
80 Paterson GK, Orihuela CJ. Pneumococci: immunology of the innate host response. Respirology 2010;15:1057-63. [PMID: 20646240 DOI: 10.1111/j.1440-1843.2010.01814.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]