BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Parker D, Soong G, Planet P, Brower J, Ratner AJ, Prince A. The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 2009;77:3722-30. [PMID: 19564377 DOI: 10.1128/IAI.00228-09] [Cited by in Crossref: 110] [Cited by in F6Publishing: 110] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Sharapova Y, Suplatov D. Loop 422–437 in NanA from Streptococcus pneumoniae plays the role of an active site lid and is associated with allosteric regulation. Computers in Biology and Medicine 2022;144:105290. [DOI: 10.1016/j.compbiomed.2022.105290] [Reference Citation Analysis]
2 Gingerich AD, Mousa JJ. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies. Front Cell Infect Microbiol 2022;12:824788. [DOI: 10.3389/fcimb.2022.824788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Mirzaei R, Ranjbar R. Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int Immunopharmacol 2021;103:108471. [PMID: 34952466 DOI: 10.1016/j.intimp.2021.108471] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
4 Yu ACY, Volkers G, Jongkees SAK, Worrall LJ, Withers SG, Strynadka NCJ. Crystal structure of the Propionibacterium acnes surface sialidase, a drug target for P. acnes-associated diseases. Glycobiology 2021:cwab094. [PMID: 34792586 DOI: 10.1093/glycob/cwab094] [Reference Citation Analysis]
5 Wang XL, Du Y, Zhao CG, Wu YB, Yang N, Pei L, Wang LJ, Wang QS. Streptococcal pneumonia-associated hemolytic uremic syndrome treated by T-antibody-negative plasma exchange in children: Two case reports. World J Clin Cases 2021; 9(27): 8164-8170 [PMID: 34621876 DOI: 10.12998/wjcc.v9.i27.8164] [Reference Citation Analysis]
6 Agarwal HS, Latifi SQ. Streptococcus Pneumoniae-Associated Hemolytic Uremic Syndrome in the Era of Pneumococcal Vaccine. Pathogens 2021;10:727. [PMID: 34207609 DOI: 10.3390/pathogens10060727] [Reference Citation Analysis]
7 Fuji N, Pichichero ME, Kaur R. Comparison of specific in-vitro virulence gene expression and innate host response in locally invasive vs colonizer strains of Streptococcus pneumoniae. Med Microbiol Immunol 2021;210:111-20. [PMID: 33751214 DOI: 10.1007/s00430-021-00701-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Akhter F, Womack E, Vidal JE, Le Breton Y, McIver KS, Pawar S, Eichenbaum Z. Hemoglobin Induces Early and Robust Biofilm Development in Streptococcus pneumoniae by a Pathway That Involves comC but Not the Cognate comDE Two-Component System. Infect Immun 2021;89:e00779-20. [PMID: 33397818 DOI: 10.1128/IAI.00779-20] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Tseng YW, Chang CC, Chang YC. Novel Virulence Role of Pneumococcal NanA in Host Inflammation and Cell Death Through the Activation of Inflammasome and the Caspase Pathway. Front Cell Infect Microbiol 2021;11:613195. [PMID: 33777832 DOI: 10.3389/fcimb.2021.613195] [Reference Citation Analysis]
10 Kurukulasuriya SP, Patterson MH, Hill JE. Slipped-Strand Mispairing in the Gene Encoding Sialidase NanH3 in Gardnerella spp. Infect Immun 2021;89:e00583-20. [PMID: 33361200 DOI: 10.1128/IAI.00583-20] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Yadav P, Verma S, Bauer R, Kumari M, Dua M, Johri AK, Yadav V, Spellerberg B. Deciphering Streptococcal Biofilms. Microorganisms 2020;8:E1835. [PMID: 33233415 DOI: 10.3390/microorganisms8111835] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
12 Vyas HKN, Indraratna AD, Everest-Dass A, Packer NH, De Oliveira DMP, Ranson M, McArthur JD, Sanderson-Smith ML. Assessing the Role of Pharyngeal Cell Surface Glycans in Group A Streptococcus Biofilm Formation. Antibiotics (Basel) 2020;9:E775. [PMID: 33158121 DOI: 10.3390/antibiotics9110775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
13 Jirru E, Lee S, Harris R, Yang J, Cho SJ, Stout-Delgado H. Impact of Influenza on Pneumococcal Vaccine Effectiveness during Streptococcus pneumoniae Infection in Aged Murine Lung. Vaccines (Basel) 2020;8:E298. [PMID: 32545261 DOI: 10.3390/vaccines8020298] [Reference Citation Analysis]
14 Frey AM, Satur MJ, Phansopa C, Honma K, Urbanowicz PA, Spencer DIR, Pratten J, Bradshaw D, Sharma A, Stafford G. Characterization of Porphyromonas gingivalis sialidase and disruption of its role in host-pathogen interactions. Microbiology (Reading) 2019;165:1181-97. [PMID: 31517596 DOI: 10.1099/mic.0.000851] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
15 Guan S, Zhu K, Dong Y, Li H, Yang S, Wang S, Shan Y. Exploration of Binding Mechanism of a Potential Streptococcus pneumoniae Neuraminidase Inhibitor from Herbaceous Plants by Molecular Simulation. Int J Mol Sci 2020;21:E1003. [PMID: 32028720 DOI: 10.3390/ijms21031003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wang YH. Sialidases From Clostridium perfringens and Their Inhibitors. Front Cell Infect Microbiol 2019;9:462. [PMID: 31998664 DOI: 10.3389/fcimb.2019.00462] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wu S, Lin X, Hui KM, Yang S, Wu X, Tan Y, Li M, Qin AQ, Wang Q, Zhao Q, Ding P, Shi K, Li XJ. A Biochemiluminescent Sialidase Assay for Diagnosis of Bacterial Vaginosis. Sci Rep 2019;9:20024. [PMID: 31882933 DOI: 10.1038/s41598-019-56371-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
18 Memariani H, Memariani M, Ghasemian A. An overview on anti-biofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol 2019;35:143. [PMID: 31493142 DOI: 10.1007/s11274-019-2719-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
19 Syed S, Hakala P, Singh AK, Lapatto HAK, King SJ, Meri S, Jokiranta TS, Haapasalo K. Role of Pneumococcal NanA Neuraminidase Activity in Peripheral Blood. Front Cell Infect Microbiol 2019;9:218. [PMID: 31297339 DOI: 10.3389/fcimb.2019.00218] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
20 Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2018;9:1521-38. [PMID: 30289054 DOI: 10.1080/21505594.2018.1520545] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
21 Sudhakara P, Sellamuthu I, Aruni AW. Bacterial sialoglycosidases in Virulence and Pathogenesis. Pathogens 2019;8:E39. [PMID: 30909660 DOI: 10.3390/pathogens8010039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
22 Wang J, Song M, Pan J, Shen X, Liu W, Zhang X, Li H, Deng X. Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J Cell Mol Med 2018;22:6228-37. [PMID: 30334338 DOI: 10.1111/jcmm.13910] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
23 Xiong J, Zhang C, Xu D. Catalytic mechanism of type C sialidase from Streptococcus pneumoniae: from covalent intermediate to final product. J Mol Model 2018;24:297. [PMID: 30259133 DOI: 10.1007/s00894-018-3822-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
24 Kato D, Kurebayashi Y, Takahashi T, Otsubo T, Otake H, Yamazaki M, Tamoto C, Minami A, Ikeda K, Suzuki T. An easy, rapid, and sensitive method for detection of drug-resistant influenza virus by using a sialidase fluorescent imaging probe, BTP3-Neu5Ac. PLoS One 2018;13:e0200761. [PMID: 30001430 DOI: 10.1371/journal.pone.0200761] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
25 Murdock RC, Gallegos KM, Hagen JA, Kelley-Loughnane N, Weiss AA, Papautsky I. Development of a point-of-care diagnostic for influenza detection with antiviral treatment effectiveness indication. Lab Chip 2017;17:332-40. [PMID: 27966711 DOI: 10.1039/c6lc01074a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
26 Song M, Teng Z, Li M, Niu X, Wang J, Deng X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J Cell Mol Med 2017;21:2586-98. [PMID: 28402019 DOI: 10.1111/jcmm.13179] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 7.2] [Reference Citation Analysis]
27 Wren JT, Blevins LK, Pang B, Basu Roy A, Oliver MB, Reimche JL, Wozniak JE, Alexander-Miller MA, Swords WE. Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 2017;85:e01044-16. [PMID: 28096183 DOI: 10.1128/IAI.01044-16] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
28 Lee Y, Youn HS, Lee JG, An JY, Park KR, Kang JY, Ryu YB, Jin MS, Park KH, Eom SH. Crystal structure of the catalytic domain of Clostridium perfringens neuraminidase in complex with a non-carbohydrate-based inhibitor, 2-(cyclohexylamino)ethanesulfonic acid. Biochem Biophys Res Commun 2017;486:470-5. [PMID: 28315686 DOI: 10.1016/j.bbrc.2017.03.064] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
29 Kahya HF, Andrew PW, Yesilkaya H. Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence. PLoS Pathog 2017;13:e1006263. [PMID: 28257499 DOI: 10.1371/journal.ppat.1006263] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
30 Hardy L, Jespers V, Van den Bulck M, Buyze J, Mwambarangwe L, Musengamana V, Vaneechoutte M, Crucitti T. The presence of the putative Gardnerella vaginalis sialidase A gene in vaginal specimens is associated with bacterial vaginosis biofilm. PLoS One 2017;12:e0172522. [PMID: 28241058 DOI: 10.1371/journal.pone.0172522] [Cited by in Crossref: 38] [Cited by in F6Publishing: 49] [Article Influence: 7.6] [Reference Citation Analysis]
31 Blanchette KA, Shenoy AT, Milner J 2nd, Gilley RP, McClure E, Hinojosa CA, Kumar N, Daugherty SC, Tallon LJ, Ott S, King SJ, Ferreira DM, Gordon SB, Tettelin H, Orihuela CJ. Neuraminidase A-Exposed Galactose Promotes Streptococcus pneumoniae Biofilm Formation during Colonization. Infect Immun 2016;84:2922-32. [PMID: 27481242 DOI: 10.1128/IAI.00277-16] [Cited by in Crossref: 29] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
32 Awad MM, Singleton J, Lyras D. The Sialidase NanS Enhances Non-TcsL Mediated Cytotoxicity of Clostridium sordellii. Toxins (Basel) 2016;8:E189. [PMID: 27322322 DOI: 10.3390/toxins8060189] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
33 Shenoy AT, Orihuela CJ. Anatomical site-specific contributions of pneumococcal virulence determinants. Pneumonia (Nathan) 2016;8:7. [PMID: 27635368 DOI: 10.1186/s41479-016-0007-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
34 Xu Z, von Grafenstein S, Walther E, Fuchs JE, Liedl KR, Sauerbrei A, Schmidtke M. Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility. Sci Rep 2016;6:25169. [PMID: 27125351 DOI: 10.1038/srep25169] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
35 Haines-Menges BL, Whitaker WB, Lubin JB, Boyd EF. Host Sialic Acids: A Delicacy for the Pathogen with Discerning Taste. Microbiol Spectr 2015;3. [PMID: 26350327 DOI: 10.1128/microbiolspec.MBP-0005-2014] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
36 Walther E, Xu Z, Richter M, Kirchmair J, Grienke U, Rollinger JM, Krumbholz A, Saluz HP, Pfister W, Sauerbrei A, Schmidtke M. Dual Acting Neuraminidase Inhibitors Open New Opportunities to Disrupt the Lethal Synergism between Streptococcus pneumoniae and Influenza Virus. Front Microbiol 2016;7:357. [PMID: 27047471 DOI: 10.3389/fmicb.2016.00357] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
37 Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL, Walsh MA. Streptococcus pneumoniae NanC: STRUCTURAL INSIGHTS INTO THE SPECIFICITY AND MECHANISM OF A SIALIDASE THAT PRODUCES A SIALIDASE INHIBITOR. J Biol Chem 2015;290:27736-48. [PMID: 26370075 DOI: 10.1074/jbc.M115.673632] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
38 Yang L, Connaris H, Potter JA, Taylor GL. Structural characterization of the carbohydrate-binding module of NanA sialidase, a pneumococcal virulence factor. BMC Struct Biol 2015;15:15. [PMID: 26289431 DOI: 10.1186/s12900-015-0042-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
39 Afzal M, Shafeeq S, Ahmed H, Kuipers OP. Sialic acid-mediated gene expression in Streptococcus pneumoniae and role of NanR as a transcriptional activator of the nan gene cluster. Appl Environ Microbiol 2015;81:3121-31. [PMID: 25724955 DOI: 10.1128/AEM.00499-15] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
40 Vandevelde NM, Tulkens PM, Muccioli GG, Van Bambeke F. Modulation of the activity of moxifloxacin and solithromycin in an in vitro pharmacodynamic model of Streptococcus pneumoniae naive and induced biofilms. J Antimicrob Chemother 2015;70:1713-26. [PMID: 25712316 DOI: 10.1093/jac/dkv032] [Reference Citation Analysis]
41 Chao Y, Marks LR, Pettigrew MM, Hakansson AP. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 2014;4:194. [PMID: 25629011 DOI: 10.3389/fcimb.2014.00194] [Cited by in Crossref: 61] [Cited by in F6Publishing: 83] [Article Influence: 8.7] [Reference Citation Analysis]
42 Walther E, Richter M, Xu Z, Kramer C, von Grafenstein S, Kirchmair J, Grienke U, Rollinger JM, Liedl KR, Slevogt H, Sauerbrei A, Saluz HP, Pfister W, Schmidtke M. Antipneumococcal activity of neuraminidase inhibiting artocarpin. Int J Med Microbiol 2015;305:289-97. [PMID: 25592264 DOI: 10.1016/j.ijmm.2014.12.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
43 Kjos M, Aprianto R, Fernandes VE, Andrew PW, van Strijp JA, Nijland R, Veening JW. Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions. J Bacteriol 2015;197:807-18. [PMID: 25512311 DOI: 10.1128/JB.02221-14] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
44 Almagro-Moreno S, Boyd EF. Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut Microbes 2010;1:45-50. [PMID: 21327116 DOI: 10.4161/gmic.1.1.10386] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
45 Singh AK, Pluvinage B, Higgins MA, Dalia AB, Woodiga SA, Flynn M, Lloyd AR, Weiser JN, Stubbs KA, Boraston AB, King SJ. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA. PLoS Pathog 2014;10:e1004364. [PMID: 25210925 DOI: 10.1371/journal.ppat.1004364] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
46 Smith CM, Sandrini S, Datta S, Freestone P, Shafeeq S, Radhakrishnan P, Williams G, Glenn SM, Kuipers OP, Hirst RA, Easton AJ, Andrew PW, O'Callaghan C. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med 2014;190:196-207. [PMID: 24941423 DOI: 10.1164/rccm.201311-2110OC] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 9.0] [Reference Citation Analysis]
47 Steel HC, Cockeran R, Anderson R, Feldman C. Overview of community-acquired pneumonia and the role of inflammatory mechanisms in the immunopathogenesis of severe pneumococcal disease. Mediators Inflamm 2013;2013:490346. [PMID: 24453422 DOI: 10.1155/2013/490346] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 5.7] [Reference Citation Analysis]
48 Tremblay YD, Lévesque C, Segers RP, Jacques M. Method to grow Actinobacillus pleuropneumoniae biofilm on a biotic surface. BMC Vet Res 2013;9:213. [PMID: 24139070 DOI: 10.1186/1746-6148-9-213] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
49 Yadav MK, Chae SW, Park K, Song JJ. Hyaluronic acid derived from other streptococci supports Streptococcus pneumoniae in vitro biofilm formation. Biomed Res Int 2013;2013:690217. [PMID: 24171169 DOI: 10.1155/2013/690217] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
50 Niu S, Luo M, Tang J, Zhou H, Zhang Y, Min X, Cai X, Zhang W, Xu W, Li D, Ding J, Hu Y, Wang D, Huang A, Yin Y, Wang D. Structural basis of the novel S. pneumoniae virulence factor, GHIP, a glycosyl hydrolase 25 participating in host-cell invasion. PLoS One 2013;8:e68647. [PMID: 23874703 DOI: 10.1371/journal.pone.0068647] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
51 Sakai F, Talekar SJ, Lanata CF, Grijalva CG, Klugman KP, Vidal JE; RESPIRA PERU Group., Investigators Group. Expression of Streptococcus pneumoniae Virulence-Related Genes in the Nasopharynx of Healthy Children. PLoS One 2013;8:e67147. [PMID: 23825636 DOI: 10.1371/journal.pone.0067147] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.6] [Reference Citation Analysis]
52 Murphy TF, Chonmaitree T, Barenkamp S, Kyd J, Nokso-Koivisto J, Patel JA, Heikkinen T, Yamanaka N, Ogra P, Swords WE, Sih T, Pettigrew MM. Panel 5: Microbiology and immunology panel. Otolaryngol Head Neck Surg 2013;148:E64-89. [PMID: 23536533 DOI: 10.1177/0194599812459636] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
53 Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP. Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infect Immun 2013;81:1341-53. [PMID: 23403556 DOI: 10.1128/IAI.01096-12] [Cited by in Crossref: 60] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
54 Vimr ER. Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids. ISRN Microbiol 2013;2013:816713. [PMID: 23724337 DOI: 10.1155/2013/816713] [Cited by in Crossref: 58] [Cited by in F6Publishing: 64] [Article Influence: 6.4] [Reference Citation Analysis]
55 Marks LR, Reddinger RM, Hakansson AP. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 2012;3:e00200-12. [PMID: 23015736 DOI: 10.1128/mBio.00200-12] [Cited by in Crossref: 112] [Cited by in F6Publishing: 112] [Article Influence: 11.2] [Reference Citation Analysis]
56 Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L, Trappetti C, Pozzi G, Docquier JD, Andrew P, Ricci S, Oggioni MR. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol 2012;12:200. [PMID: 22963456 DOI: 10.1186/1471-2180-12-200] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
57 Blanchette KA, Orihuela CJ. Future perspective on host-pathogen interactions during bacterial biofilm formation within the nasopharynx. Future Microbiol 2012;7:227-39. [PMID: 22324992 DOI: 10.2217/fmb.11.160] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
58 Marks LR, Parameswaran GI, Hakansson AP. Pneumococcal interactions with epithelial cells are crucial for optimal biofilm formation and colonization in vitro and in vivo. Infect Immun 2012;80:2744-60. [PMID: 22645283 DOI: 10.1128/IAI.00488-12] [Cited by in Crossref: 113] [Cited by in F6Publishing: 107] [Article Influence: 11.3] [Reference Citation Analysis]
59 Chang YC, Uchiyama S, Varki A, Nizet V. Leukocyte inflammatory responses provoked by pneumococcal sialidase. mBio 2012;3:e00220-11. [PMID: 22215570 DOI: 10.1128/mBio.00220-11] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 4.1] [Reference Citation Analysis]
60 Sanchez CJ, Kumar N, Lizcano A, Shivshankar P, Dunning Hotopp JC, Jorgensen JH, Tettelin H, Orihuela CJ. Streptococcus pneumoniae in biofilms are unable to cause invasive disease due to altered virulence determinant production. PLoS One 2011;6:e28738. [PMID: 22174882 DOI: 10.1371/journal.pone.0028738] [Cited by in Crossref: 86] [Cited by in F6Publishing: 81] [Article Influence: 7.8] [Reference Citation Analysis]
61 Stafford G, Roy S, Honma K, Sharma A. Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast! Mol Oral Microbiol 2012;27:11-22. [PMID: 22230462 DOI: 10.1111/j.2041-1014.2011.00630.x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
62 Li C, Kurniyati, Hu B, Bian J, Sun J, Zhang W, Liu J, Pan Y, Li C. Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis. Infect Immun 2012;80:3-13. [PMID: 22025518 DOI: 10.1128/IAI.05773-11] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.6] [Reference Citation Analysis]
63 Kouki A, Haataja S, Loimaranta V, Pulliainen AT, Nilsson UJ, Finne J. Identification of a novel streptococcal adhesin P (SadP) protein recognizing galactosyl-α1-4-galactose-containing glycoconjugates: convergent evolution of bacterial pathogens to binding of the same host receptor. J Biol Chem 2011;286:38854-64. [PMID: 21908601 DOI: 10.1074/jbc.M111.260992] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
64 Domenech M, García E, Moscoso M. Biofilm formation in Streptococcus pneumoniae. Microb Biotechnol 2012;5:455-65. [PMID: 21906265 DOI: 10.1111/j.1751-7915.2011.00294.x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 4.3] [Reference Citation Analysis]
65 Vidal JE, Ludewick HP, Kunkel RM, Zähner D, Klugman KP. The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun 2011;79:4050-60. [PMID: 21825061 DOI: 10.1128/IAI.05186-11] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 8.3] [Reference Citation Analysis]
66 Trappetti C, Ogunniyi AD, Oggioni MR, Paton JC. Extracellular matrix formation enhances the ability of Streptococcus pneumoniae to cause invasive disease. PLoS One 2011;6:e19844. [PMID: 21611130 DOI: 10.1371/journal.pone.0019844] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 4.3] [Reference Citation Analysis]
67 Aruni W, Vanterpool E, Osbourne D, Roy F, Muthiah A, Dou Y, Fletcher HM. Sialidase and sialoglycoproteases can modulate virulence in Porphyromonas gingivalis. Infect Immun 2011;79:2779-91. [PMID: 21502589 DOI: 10.1128/IAI.00106-11] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
68 Trappetti C, Gualdi L, Di Meola L, Jain P, Korir CC, Edmonds P, Iannelli F, Ricci S, Pozzi G, Oggioni MR. The impact of the competence quorum sensing system on Streptococcus pneumoniae biofilms varies depending on the experimental model. BMC Microbiol 2011;11:75. [PMID: 21492426 DOI: 10.1186/1471-2180-11-75] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
69 Singer AC, Colizza V, Schmitt H, Andrews J, Balcan D, Huang WE, Keller VD, Vespignani A, Williams RJ. Assessing the ecotoxicologic hazards of a pandemic influenza medical response. Environ Health Perspect 2011;119:1084-90. [PMID: 21367688 DOI: 10.1289/ehp.1002757] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
70 Weimer KE, Armbruster CE, Juneau RA, Hong W, Pang B, Swords WE. Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease. J Infect Dis 2010;202:1068-75. [PMID: 20715928 DOI: 10.1086/656046] [Cited by in Crossref: 84] [Cited by in F6Publishing: 74] [Article Influence: 7.0] [Reference Citation Analysis]
71 Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Sullam PM, Sauer K, Hermans PW, Orihuela CJ. The pneumococcal serine-rich repeat protein is an intra-species bacterial adhesin that promotes bacterial aggregation in vivo and in biofilms. PLoS Pathog 2010;6:e1001044. [PMID: 20714350 DOI: 10.1371/journal.ppat.1001044] [Cited by in Crossref: 131] [Cited by in F6Publishing: 130] [Article Influence: 10.9] [Reference Citation Analysis]
72 Roy S, Douglas CW, Stafford GP. A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia. J Bacteriol 2010;192:2285-93. [PMID: 20190043 DOI: 10.1128/JB.00079-10] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 4.2] [Reference Citation Analysis]
73 Dalia AB, Standish AJ, Weiser JN. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect Immun 2010;78:2108-16. [PMID: 20160017 DOI: 10.1128/IAI.01125-09] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 7.3] [Reference Citation Analysis]