BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin J, Michel LO, Zhang Q. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob Agents Chemother 2002;46:2124-31. [PMID: 12069964 DOI: 10.1128/AAC.46.7.2124-2131.2002] [Cited by in Crossref: 354] [Cited by in F6Publishing: 178] [Article Influence: 18.6] [Reference Citation Analysis]
Number Citing Articles
1 Bolla J, Garnotel É. Les infections á Campylobacter. Revue Francophone des Laboratoires 2008;2008:27-35. [DOI: 10.1016/s1773-035x(08)80098-6] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
2 Rangaraju V, Malla BA, Milton AAP, Madesh A, Madhukar KB, Kadwalia A, Vinodhkumar OR, Kumar MS, Dubal ZB. Occurrence, antimicrobial resistance and virulence properties of thermophilic Campylobacter coli originating from two different poultry settings. Gene Reports 2022;27:101618. [DOI: 10.1016/j.genrep.2022.101618] [Reference Citation Analysis]
3 Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Front Microbiol 2018;9:2990. [PMID: 30619113 DOI: 10.3389/fmicb.2018.02990] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 13.0] [Reference Citation Analysis]
4 Huang L, Ahmed S, Gu Y, Huang J, An B, Wu C, Zhou Y, Cheng G. The Effects of Natural Products and Environmental Conditions on Antimicrobial Resistance. Molecules 2021;26:4277. [PMID: 34299552 DOI: 10.3390/molecules26144277] [Reference Citation Analysis]
5 Voronina OL, Kunda MS, Ryzhova NN, Aksenova EI, Sharapova NE, Semenov AN, Amelina EL, Chuchalin AG, Gintsburg AL. On Burkholderiales order microorganisms and cystic fibrosis in Russia. BMC Genomics 2018;19:74. [PMID: 29504898 DOI: 10.1186/s12864-018-4472-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
6 Newell PD, Chaston JM, Wang Y, Winans NJ, Sannino DR, Wong AC, Dobson AJ, Kagle J, Douglas AE. In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Front Microbiol 2014;5:576. [PMID: 25408687 DOI: 10.3389/fmicb.2014.00576] [Cited by in Crossref: 52] [Cited by in F6Publishing: 42] [Article Influence: 6.5] [Reference Citation Analysis]
7 Smith K, Zeng X, Lin J. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system. PLoS One 2014;9:e85344. [PMID: 24454844 DOI: 10.1371/journal.pone.0085344] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
8 Kreuder AJ, Schleining JA, Yaeger M, Zhang Q, Plummer PJ. RNAseq Reveals Complex Response of Campylobacter jejuni to Ovine Bile and In vivo Gallbladder Environment. Front Microbiol 2017;8:940. [PMID: 28611744 DOI: 10.3389/fmicb.2017.00940] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
9 Su CC, Radhakrishnan A, Kumar N, Long F, Bolla JR, Lei HT, Delmar JA, Do SV, Chou TH, Rajashankar KR, Zhang Q, Yu EW. Crystal structure of the Campylobacter jejuni CmeC outer membrane channel. Protein Sci 2014;23:954-61. [PMID: 24753291 DOI: 10.1002/pro.2478] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
10 Xia J, Pang J, Tang Y, Wu Z, Dai L, Singh K, Xu C, Ruddell B, Kreuder A, Xia L, Ma X, Brooks KS, Ocal MM, Sahin O, Plummer PJ, Griffith RW, Zhang Q. High Prevalence of Fluoroquinolone-Resistant Campylobacter Bacteria in Sheep and Increased Campylobacter Counts in the Bile and Gallbladders of Sheep Medicated with Tetracycline in Feed. Appl Environ Microbiol 2019;85:e00008-19. [PMID: 30926726 DOI: 10.1128/AEM.00008-19] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
11 Gangaiah D, Liu Z, Arcos J, Kassem II, Sanad Y, Torrelles JB, Rajashekara G. Polyphosphate kinase 2: a novel determinant of stress responses and pathogenesis in Campylobacter jejuni. PLoS One. 2010;5:e12142. [PMID: 20808906 DOI: 10.1371/journal.pone.0012142] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
12 Pumbwe L, Randall LP, Woodward MJ, Piddock LJ. Evidence for multiple-antibiotic resistance in Campylobacter jejuni not mediated by CmeB or CmeF. Antimicrob Agents Chemother 2005;49:1289-93. [PMID: 15793099 DOI: 10.1128/AAC.49.4.1289-1293.2005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
13 Pumtang-On P, Mahony TJ, Hill RA, Vanniasinkam T. A Systematic Review of Campylobacter jejuni Vaccine Candidates for Chickens. Microorganisms 2021;9:397. [PMID: 33671947 DOI: 10.3390/microorganisms9020397] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Hao H, Yuan Z, Shen Z, Han J, Sahin O, Liu P, Zhang Q. Mutational and transcriptomic changes involved in the development of macrolide resistance in Campylobacter jejuni. Antimicrob Agents Chemother. 2013;57:1369-1378. [PMID: 23274667 DOI: 10.1128/aac.01927-12] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
15 Silverman JM, Imperiali B. Bacterial N-Glycosylation Efficiency Is Dependent on the Structural Context of Target Sequons. J Biol Chem 2016;291:22001-10. [PMID: 27573243 DOI: 10.1074/jbc.M116.747121] [Cited by in Crossref: 24] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
16 Cameron A, Frirdich E, Huynh S, Parker CT, Gaynor EC. Hyperosmotic stress response of Campylobacter jejuni. J Bacteriol 2012;194:6116-30. [PMID: 22961853 DOI: 10.1128/JB.01409-12] [Cited by in Crossref: 53] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
17 Klančnik A, Možina SS, Zhang Q. Anti-Campylobacter activities and resistance mechanisms of natural phenolic compounds in Campylobacter. PLoS One 2012;7:e51800. [PMID: 23284770 DOI: 10.1371/journal.pone.0051800] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
18 Wieczorek K, Osek J. Antimicrobial resistance mechanisms among Campylobacter. Biomed Res Int 2013;2013:340605. [PMID: 23865047 DOI: 10.1155/2013/340605] [Cited by in Crossref: 113] [Cited by in F6Publishing: 110] [Article Influence: 12.6] [Reference Citation Analysis]
19 Han J, Sahin O, Barton YW, Zhang Q. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni. PLoS Pathog 2008;4:e1000083. [PMID: 18535657 DOI: 10.1371/journal.ppat.1000083] [Cited by in Crossref: 67] [Cited by in F6Publishing: 65] [Article Influence: 4.8] [Reference Citation Analysis]
20 Luc D, Jean Michel B, Vanina L, Alain M, Liliane B, Jean Michel B. Antibacterial Mode of Action of the Daucus carota Essential Oil Active Compounds against Campylobacter jejuni and Efflux-Mediated Drug Resistance in Gram-Negative Bacteria. Molecules 2020;25:E5448. [PMID: 33233754 DOI: 10.3390/molecules25225448] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wang L, Jeon B, Sahin O, Zhang Q. Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni. Appl Environ Microbiol 2009;75:5064-73. [PMID: 19502436 DOI: 10.1128/AEM.00149-09] [Cited by in Crossref: 44] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
22 Iovine NM. Resistance mechanisms in Campylobacter jejuni. Virulence 2013;4:230-40. [PMID: 23406779 DOI: 10.4161/viru.23753] [Cited by in Crossref: 139] [Cited by in F6Publishing: 107] [Article Influence: 15.4] [Reference Citation Analysis]
23 Stintzi A, Marlow D, Palyada K, Naikare H, Panciera R, Whitworth L, Clarke C. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun 2005;73:1797-810. [PMID: 15731081 DOI: 10.1128/IAI.73.3.1797-1810.2005] [Cited by in Crossref: 103] [Cited by in F6Publishing: 60] [Article Influence: 6.1] [Reference Citation Analysis]
24 Liang Z, Huang L, He F, Zhou X, Shi Z, Zhou J, Chen Y, Lv M, Chen Y, Zhang LH. A Substrate-Activated Efflux Pump, DesABC, Confers Zeamine Resistance to Dickeya zeae. mBio 2019;10:e00713-19. [PMID: 31138747 DOI: 10.1128/mBio.00713-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Mateus C, Nunes AR, Oleastro M, Domingues F, Ferreira S. RND Efflux Systems Contribute to Resistance and Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2021;10:823. [PMID: 34356744 DOI: 10.3390/antibiotics10070823] [Reference Citation Analysis]
26 Hoang KV, Stern NJ, Saxton AM, Xu F, Zeng X, Lin J. Prevalence, development, and molecular mechanisms of bacteriocin resistance in Campylobacter. Appl Environ Microbiol 2011;77:2309-16. [PMID: 21278269 DOI: 10.1128/AEM.02094-10] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 2.2] [Reference Citation Analysis]
27 Mu Y, Shen Z, Jeon B, Dai L, Zhang Q. Synergistic effects of anti-CmeA and anti-CmeB peptide nucleic acids on sensitizing Campylobacter jejuni to antibiotics. Antimicrob Agents Chemother 2013;57:4575-7. [PMID: 23817373 DOI: 10.1128/AAC.00605-13] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
28 Dai L, Xia J, Sahin O, Zhang Q. Identification of a nth-Like Gene Encoding an Endonuclease III in Campylobacter jejuni. Front Microbiol 2019;10:698. [PMID: 31024487 DOI: 10.3389/fmicb.2019.00698] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
29 Šimunović K, Bucar F, Klančnik A, Pompei F, Paparella A, Smole Možina S. In Vitro Effect of the Common Culinary Herb Winter Savory (Satureja montana) against the Infamous Food Pathogen Campylobacter jejuni. Foods 2020;9:E537. [PMID: 32344626 DOI: 10.3390/foods9040537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
30 Malik-Kale P, Parker CT, Konkel ME. Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J Bacteriol 2008;190:2286-97. [PMID: 18223090 DOI: 10.1128/JB.01736-07] [Cited by in Crossref: 80] [Cited by in F6Publishing: 54] [Article Influence: 5.7] [Reference Citation Analysis]
31 Drozd M, Gangaiah D, Liu Z, Rajashekara G. Contribution of TAT system translocated PhoX to Campylobacter jejuni phosphate metabolism and resilience to environmental stresses. PLoS One. 2011;6:e26336. [PMID: 22028859 DOI: 10.1371/journal.pone.0026336] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
32 Cerda-Maira FA, Ringelberg CS, Taylor RK. The bile response repressor BreR regulates expression of the Vibrio cholerae breAB efflux system operon. J Bacteriol 2008;190:7441-52. [PMID: 18776020 DOI: 10.1128/JB.00584-08] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
33 Okamura M, Kaneko M, Ojima S, Sano H, Shindo J, Shirafuji H, Yamamoto S, Tanabe T, Yoshikawa Y, Hu DL. Differential Distribution of Salmonella Serovars and Campylobacter spp. Isolates in Free-Living Crows and Broiler Chickens in Aomori, Japan. Microbes Environ 2018;33:77-82. [PMID: 29491247 DOI: 10.1264/jsme2.ME17183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
34 Jeon B, Wang Y, Hao H, Barton YW, Zhang Q. Contribution of CmeG to antibiotic and oxidative stress resistance in Campylobacter jejuni. J Antimicrob Chemother 2011;66:79-85. [PMID: 21081547 DOI: 10.1093/jac/dkq418] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 4.3] [Reference Citation Analysis]
35 Shoaf-Sweeney KD, Larson CL, Tang X, Konkel ME. Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl Environ Microbiol 2008;74:6867-75. [PMID: 18805999 DOI: 10.1128/AEM.01097-08] [Cited by in Crossref: 50] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
36 Novik V, Hofreuter D, Galán JE. Identification of Campylobacter jejuni genes involved in its interaction with epithelial cells. Infect Immun 2010;78:3540-53. [PMID: 20515930 DOI: 10.1128/IAI.00109-10] [Cited by in Crossref: 76] [Cited by in F6Publishing: 55] [Article Influence: 6.3] [Reference Citation Analysis]
37 Naito M, Frirdich E, Fields JA, Pryjma M, Li J, Cameron A, Gilbert M, Thompson SA, Gaynor EC. Effects of sequential Campylobacter jejuni 81-176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. J Bacteriol 2010;192:2182-92. [PMID: 20139192 DOI: 10.1128/JB.01222-09] [Cited by in Crossref: 74] [Cited by in F6Publishing: 51] [Article Influence: 6.2] [Reference Citation Analysis]
38 Guerry P, Ewing CP, Schoenhofen IC, Logan SM. Protein glycosylation in Campylobacter jejuni: partial suppression of pglF by mutation of pseC. J Bacteriol 2007;189:6731-3. [PMID: 17631632 DOI: 10.1128/JB.00642-07] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
39 Weis AM, Storey DB, Taff CC, Townsend AK, Huang BC, Kong NT, Clothier KA, Spinner A, Byrne BA, Weimer BC. Genomic Comparison of Campylobacter spp. and Their Potential for Zoonotic Transmission between Birds, Primates, and Livestock. Appl Environ Microbiol 2016;82:7165-75. [PMID: 27736787 DOI: 10.1128/AEM.01746-16] [Cited by in Crossref: 44] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
40 Feucherolles M, Nennig M, Becker SL, Martiny D, Losch S, Penny C, Cauchie H, Ragimbeau C. Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp. Front Microbiol 2022;12:804484. [DOI: 10.3389/fmicb.2021.804484] [Reference Citation Analysis]
41 Vegge CS, Brøndsted L, Ligowska-Marzęta M, Ingmer H. Natural transformation of Campylobacter jejuni occurs beyond limits of growth. PLoS One 2012;7:e45467. [PMID: 23049803 DOI: 10.1371/journal.pone.0045467] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
42 Klančnik A, Šimunović K, Kovac J, Sahin O, Wu Z, Vučković D, Abram M, Zhang Q, Možina SS. The Anti-Campylobacter Activity and Mechanisms of Pinocembrin Action. Microorganisms 2019;7:E675. [PMID: 31835624 DOI: 10.3390/microorganisms7120675] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Grinnage-Pulley T, Zhang Q. Genetic Basis and Functional Consequences of Differential Expression of the CmeABC Efflux Pump in Campylobacter jejuni Isolates. PLoS One 2015;10:e0131534. [PMID: 26132196 DOI: 10.1371/journal.pone.0131534] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
44 Iwata T, Chiku K, Amano K, Kusumoto M, Ohnishi-Kameyama M, Ono H, Akiba M. Effects of lipooligosaccharide inner core truncation on bile resistance and chick colonization by Campylobacter jejuni. PLoS One 2013;8:e56900. [PMID: 23437265 DOI: 10.1371/journal.pone.0056900] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
45 Crofts AA, Poly FM, Ewing CP, Kuroiwa JM, Rimmer JE, Harro C, Sack D, Talaat KR, Porter CK, Gutierrez RL, DeNearing B, Brubaker J, Laird RM, Maue AC, Jaep K, Alcala A, Tribble DR, Riddle MS, Ramakrishnan A, McCoy AJ, Davies BW, Guerry P, Trent MS. Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat Microbiol 2018;3:494-502. [PMID: 29588538 DOI: 10.1038/s41564-018-0133-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
46 Fakhr MK, Logue CM. Sequence variation in the outer membrane protein-encoding gene cmeC, conferring multidrug resistance among Campylobacter jejuni and Campylobacter coli strains isolated from different hosts. J Clin Microbiol 2007;45:3381-3. [PMID: 17652470 DOI: 10.1128/JCM.01208-07] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
47 AlMatar M, Albarri O, Makky EA, Köksal F. Efflux pump inhibitors: new updates. Pharmacol Rep 2021;73:1-16. [PMID: 32946075 DOI: 10.1007/s43440-020-00160-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
48 Kutschke A, de Jonge BL. Compound efflux in Helicobacter pylori. Antimicrob Agents Chemother. 2005;49:3009-3010. [PMID: 15980386 DOI: 10.1128/aac.49.7.3009-3010.2005] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
49 Jeon B, Zhang Q. Sensitization of Campylobacter jejuni to fluoroquinolone and macrolide antibiotics by antisense inhibition of the CmeABC multidrug efflux transporter. J Antimicrob Chemother. 2009;63:946-948. [PMID: 19279049 DOI: 10.1093/jac/dkp067] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.2] [Reference Citation Analysis]
50 Zhao W, Luo S, Wu H, Jiang X, He T, Hu X. A multi-label learning framework for predicting antibiotic resistance genes via dual-view modeling. Brief Bioinform 2022:bbac052. [PMID: 35272349 DOI: 10.1093/bib/bbac052] [Reference Citation Analysis]
51 Routh MD, Su CC, Zhang Q, Yu EW. Structures of AcrR and CmeR: insight into the mechanisms of transcriptional repression and multi-drug recognition in the TetR family of regulators. Biochim Biophys Acta 2009;1794:844-51. [PMID: 19130905 DOI: 10.1016/j.bbapap.2008.12.001] [Cited by in Crossref: 45] [Cited by in F6Publishing: 38] [Article Influence: 3.2] [Reference Citation Analysis]
52 Oh E, Jeon B. Contribution of surface polysaccharides to the resistance of Campylobacter jejuni to antimicrobial phenolic compounds. J Antibiot (Tokyo) 2015;68:591-3. [PMID: 25757605 DOI: 10.1038/ja.2015.26] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
53 Klenotic PA, Moseng MA, Morgan CE, Yu EW. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Chem Rev 2021;121:5378-416. [PMID: 33211490 DOI: 10.1021/acs.chemrev.0c00621] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
54 Fernández L, Hancock RE. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 2012;25:661-81. [PMID: 23034325 DOI: 10.1128/CMR.00043-12] [Cited by in Crossref: 393] [Cited by in F6Publishing: 200] [Article Influence: 43.7] [Reference Citation Analysis]
55 Gibreel A, Wetsch NM, Taylor DE. Contribution of the CmeABC efflux pump to macrolide and tetracycline resistance in Campylobacter jejuni. Antimicrob Agents Chemother 2007;51:3212-6. [PMID: 17606685 DOI: 10.1128/AAC.01592-06] [Cited by in Crossref: 52] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
56 Mouftah SF, Cobo-Díaz JF, Álvarez-Ordóñez A, Elserafy M, Saif NA, Sadat A, El-Shibiny A, Elhadidy M. High-throughput sequencing reveals genetic determinants associated with antibiotic resistance in Campylobacter spp. from farm-to-fork. PLoS One 2021;16:e0253797. [PMID: 34166472 DOI: 10.1371/journal.pone.0253797] [Reference Citation Analysis]
57 Cheng Y, Zhang W, Lu Q, Wen G, Luo Q, Shao H, Zhang T. Draft Genome Sequences of Multidrug-Resistant Campylobacter jejuni Strains Isolated from Chickens in Central China. Microbiol Resour Announc 2020;9:e01303-19. [PMID: 31896643 DOI: 10.1128/MRA.01303-19] [Reference Citation Analysis]
58 Lin J, Akiba M, Sahin O, Zhang Q. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob Agents Chemother 2005;49:1067-75. [PMID: 15728904 DOI: 10.1128/AAC.49.3.1067-1075.2005] [Cited by in Crossref: 129] [Cited by in F6Publishing: 76] [Article Influence: 7.6] [Reference Citation Analysis]
59 Schreyer ME, Olivero CR, Rossler E, Soto LP, Frizzo LS, Zimmermann JA, Signorini ML, Virginia ZM. Prevalence and antimicrobial resistance of Campylobacter jejuni and C. coli identified in a slaughterhouse in Argentina. Current Research in Food Science 2022;5:590-7. [DOI: 10.1016/j.crfs.2022.03.005] [Reference Citation Analysis]
60 Tokajian S, Eisen JA, Jospin G, Farra A, Coil DA. Whole genome sequencing of extended-spectrum β-lactamase producing Klebsiella pneumoniae isolated from a patient in Lebanon. Front Cell Infect Microbiol 2015;5:32. [PMID: 25905047 DOI: 10.3389/fcimb.2015.00032] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
61 Pérez-Varela M, Corral J, Aranda J, Barbé J. Roles of Efflux Pumps from Different Superfamilies in the Surface-Associated Motility and Virulence of Acinetobacter baumannii ATCC 17978. Antimicrob Agents Chemother 2019;63:e02190-18. [PMID: 30642939 DOI: 10.1128/AAC.02190-18] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
62 Nag A, Mehra S. Involvement of the SCO3366 efflux pump from S. coelicolor in rifampicin resistance and its regulation by a TetR regulator. Appl Microbiol Biotechnol 2022. [PMID: 35194656 DOI: 10.1007/s00253-022-11837-x] [Reference Citation Analysis]
63 Griggs DJ, Johnson MM, Frost JA, Humphrey T, Jørgensen F, Piddock LJ. Incidence and mechanism of ciprofloxacin resistance in Campylobacter spp. isolated from commercial poultry flocks in the United Kingdom before, during, and after fluoroquinolone treatment. Antimicrob Agents Chemother 2005;49:699-707. [PMID: 15673754 DOI: 10.1128/AAC.49.2.699-707.2005] [Cited by in Crossref: 71] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
64 Wang Z, Zeng X, Mo Y, Smith K, Guo Y, Lin J. Identification and characterization of a bile salt hydrolase from Lactobacillus salivarius for development of novel alternatives to antibiotic growth promoters. Appl Environ Microbiol 2012;78:8795-802. [PMID: 23064348 DOI: 10.1128/AEM.02519-12] [Cited by in Crossref: 49] [Cited by in F6Publishing: 28] [Article Influence: 4.9] [Reference Citation Analysis]
65 Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F, Pasmans F. Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res 2011;42:82. [PMID: 21714866 DOI: 10.1186/1297-9716-42-82] [Cited by in Crossref: 135] [Cited by in F6Publishing: 119] [Article Influence: 12.3] [Reference Citation Analysis]
66 Ferreira S, Silva AL, Tomás J, Mateus C, Domingues F, Oleastro M. Characterization of AreABC, an RND-Type Efflux System Involved in Antimicrobial Resistance of Aliarcobacter butzleri. Antimicrob Agents Chemother 2021;65:e0072921. [PMID: 34152822 DOI: 10.1128/AAC.00729-21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Lei HT, Shen Z, Surana P, Routh MD, Su CC, Zhang Q, Yu EW. Crystal structures of CmeR-bile acid complexes from Campylobacter jejuni. Protein Sci 2011;20:712-23. [PMID: 21328631 DOI: 10.1002/pro.602] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
68 Zeng X, Mo Y, Xu F, Lin J. Identification and characterization of a periplasmic trilactone esterase, Cee, revealed unique features of ferric enterobactin acquisition in Campylobacter. Mol Microbiol 2013;87:594-608. [PMID: 23278903 DOI: 10.1111/mmi.12118] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 2.9] [Reference Citation Analysis]
69 Sarkar A, Anderson KC, Kellogg GE. Computational analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics. Eur J Med Chem 2012;52:98-110. [PMID: 22483632 DOI: 10.1016/j.ejmech.2012.03.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
70 Jeon B, Muraoka WT, Zhang Q. Advances in Campylobacter biology and implications for biotechnological applications. Microb Biotechnol 2010;3:242-58. [PMID: 21255325 DOI: 10.1111/j.1751-7915.2009.00118.x] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
71 Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009;2:40-61. [PMID: 21261881 DOI: 10.1111/j.1751-7915.2008.00063.x] [Cited by in Crossref: 196] [Cited by in F6Publishing: 166] [Article Influence: 14.0] [Reference Citation Analysis]
72 Zhao S, Tyson GH, Chen Y, Li C, Mukherjee S, Young S, Lam C, Folster JP, Whichard JM, McDermott PF. Whole-Genome Sequencing Analysis Accurately Predicts Antimicrobial Resistance Phenotypes in Campylobacter spp. Appl Environ Microbiol 2016;82:459-66. [PMID: 26519386 DOI: 10.1128/AEM.02873-15] [Cited by in Crossref: 154] [Cited by in F6Publishing: 86] [Article Influence: 22.0] [Reference Citation Analysis]
73 Chen S, Cui S, McDermott PF, Zhao S, White DG, Paulsen I, Meng J. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother 2007;51:535-42. [PMID: 17043131 DOI: 10.1128/AAC.00600-06] [Cited by in Crossref: 93] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
74 Chan XY, Chua KO, How KY, Yin WF, Chan KG. Global genome comparative analysis reveals insights of resistome and life-style adaptation of Pseudomonas putida strain T2-2 in oral cavity. ScientificWorldJournal 2014;2014:930727. [PMID: 25436236 DOI: 10.1155/2014/930727] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
75 Rovetto F, Carlier A, Van den Abeele AM, Illeghems K, Van Nieuwerburgh F, Cocolin L, Houf K. Characterization of the emerging zoonotic pathogen Arcobacter thereius by whole genome sequencing and comparative genomics. PLoS One 2017;12:e0180493. [PMID: 28671965 DOI: 10.1371/journal.pone.0180493] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
76 Morita Y, Tomida J, Kawamura Y. Multidrug Efflux Systems in Helicobacter cinaedi. Antibiotics (Basel) 2012;1:29-43. [PMID: 27029418 DOI: 10.3390/antibiotics1010029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
77 Mima T, Joshi S, Gomez-Escalada M, Schweizer HP. Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 2007;189:7600-9. [PMID: 17720796 DOI: 10.1128/JB.00850-07] [Cited by in Crossref: 88] [Cited by in F6Publishing: 54] [Article Influence: 5.9] [Reference Citation Analysis]
78 Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms 2016;4:E14. [PMID: 27681908 DOI: 10.3390/microorganisms4010014] [Cited by in Crossref: 254] [Cited by in F6Publishing: 190] [Article Influence: 42.3] [Reference Citation Analysis]
79 Black EM, Just CL. The Genomic Potentials of NOB and Comammox Nitrospira in River Sediment Are Impacted by Native Freshwater Mussels. Front Microbiol 2018;9:2061. [PMID: 30233538 DOI: 10.3389/fmicb.2018.02061] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
80 Tang M, Zhou Q, Zhang X, Zhou S, Zhang J, Tang X, Lu J, Gao Y. Antibiotic Resistance Profiles and Molecular Mechanisms of Campylobacter From Chicken and Pig in China. Front Microbiol 2020;11:592496. [PMID: 33193261 DOI: 10.3389/fmicb.2020.592496] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
81 Yao H, Shen Z, Wang Y, Deng F, Liu D, Naren G, Dai L, Su CC, Wang B, Wang S, Wu C, Yu EW, Zhang Q, Shen J. Emergence of a Potent Multidrug Efflux Pump Variant That Enhances Campylobacter Resistance to Multiple Antibiotics. mBio 2016;7:e01543-16. [PMID: 27651364 DOI: 10.1128/mBio.01543-16] [Cited by in Crossref: 54] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
82 Delmar JA, Su CC, Yu EW. Bacterial multidrug efflux transporters. Annu Rev Biophys 2014;43:93-117. [PMID: 24702006 DOI: 10.1146/annurev-biophys-051013-022855] [Cited by in Crossref: 99] [Cited by in F6Publishing: 85] [Article Influence: 12.4] [Reference Citation Analysis]
83 Grinnage-Pulley T, Mu Y, Dai L, Zhang Q. Dual Repression of the Multidrug Efflux Pump CmeABC by CosR and CmeR in Campylobacter jejuni. Front Microbiol 2016;7:1097. [PMID: 27468281 DOI: 10.3389/fmicb.2016.01097] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
84 Tareen AM, Lüder CG, Zautner AE, Groβ U, Heimesaat MM, Bereswill S, Lugert R. The Campylobacter jejuni Cj0268c protein is required for adhesion and invasion in vitro. PLoS One 2013;8:e81069. [PMID: 24303031 DOI: 10.1371/journal.pone.0081069] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
85 Davin-Regli A, Pages JM, Ferrand A. Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2021;10:1117. [PMID: 34572699 DOI: 10.3390/antibiotics10091117] [Reference Citation Analysis]
86 Su CC, Shi F, Gu R, Li M, McDermott G, Yu EW, Zhang Q. Preliminary structural studies of the transcriptional regulator CmeR from Campylobacter jejuni. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007;63:34-6. [PMID: 17183170 DOI: 10.1107/S1744309106053127] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
87 Duma J, Nothaft H, Weaver D, Fodor C, Beadle B, Linton D, Benoit SL, Scott NE, Maier RJ, Szymanski CM. Influence of Protein Glycosylation on Campylobacter fetus Physiology. Front Microbiol 2020;11:1191. [PMID: 32625174 DOI: 10.3389/fmicb.2020.01191] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
88 Malik-Kale P, Raphael BH, Parker CT, Joens LA, Klena JD, Quiñones B, Keech AM, Konkel ME. Characterization of genetically matched isolates of Campylobacter jejuni reveals that mutations in genes involved in flagellar biosynthesis alter the organism's virulence potential. Appl Environ Microbiol 2007;73:3123-36. [PMID: 17369342 DOI: 10.1128/AEM.01399-06] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 2.9] [Reference Citation Analysis]
89 Oh E, Zhang Q, Jeon B. Target optimization for peptide nucleic acid (PNA)-mediated antisense inhibition of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Antimicrob Chemother 2014;69:375-80. [PMID: 24084637 DOI: 10.1093/jac/dkt381] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
90 Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, Zhang Q. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci U S A 2005;102:541-6. [PMID: 15634738 DOI: 10.1073/pnas.0408966102] [Cited by in Crossref: 265] [Cited by in F6Publishing: 227] [Article Influence: 15.6] [Reference Citation Analysis]
91 Man L, Dale AL, Klare WP, Cain JA, Sumer-Bayraktar Z, Niewold P, Solis N, Cordwell SJ. Proteomics of Campylobacter jejuni Growth in Deoxycholate Reveals Cj0025c as a Cystine Transport Protein Required for Wild-type Human Infection Phenotypes. Mol Cell Proteomics 2020;19:1263-80. [PMID: 32376616 DOI: 10.1074/mcp.RA120.002029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
92 Spinler JK, Zajdowicz SL, Haller JC, Oram DM, Gill RE, Holmes RK. Development and use of a selectable, broad-host-range reporter transposon for identifying environmentally regulated promoters in bacteria. FEMS Microbiol Lett 2009;291:143-50. [PMID: 19146571 DOI: 10.1111/j.1574-6968.2008.01430.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
93 Johnson WL, Ramachandran A, Torres NJ, Nicholson AC, Whitney AM, Bell M, Villarma A, Humrighouse BW, Sheth M, Dowd SE, McQuiston JR, Gustafson JE. The draft genomes of Elizabethkingia anophelis of equine origin are genetically similar to three isolates from human clinical specimens. PLoS One 2018;13:e0200731. [PMID: 30024943 DOI: 10.1371/journal.pone.0200731] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
94 Lin J. Novel approaches for Campylobacter control in poultry. Foodborne Pathog Dis 2009;6:755-65. [PMID: 19425824 DOI: 10.1089/fpd.2008.0247] [Cited by in Crossref: 132] [Cited by in F6Publishing: 111] [Article Influence: 10.2] [Reference Citation Analysis]
95 Lim SK, Moon DC, Chae MH, Kim HJ, Nam HM, Kim SR, Jang GC, Lee K, Jung SC, Lee HS. Macrolide resistance mechanisms and virulence factors in erythromycin-resistant Campylobacter species isolated from chicken and swine feces and carcasses. J Vet Med Sci 2017;78:1791-5. [PMID: 27593510 DOI: 10.1292/jvms.16-0307] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
96 Stopnisek N, Zühlke D, Carlier A, Barberán A, Fierer N, Becher D, Riedel K, Eberl L, Weisskopf L. Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J 2016;10:253-64. [PMID: 25989372 DOI: 10.1038/ismej.2015.73] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 10.4] [Reference Citation Analysis]
97 Masanta WO, Zautner AE, Lugert R, Bohne W, Gross U, Leha A, Dakna M, Lenz C. Proteome Profiling by Label-Free Mass Spectrometry Reveals Differentiated Response of Campylobacter jejuni 81-176 to Sublethal Concentrations of Bile Acids. Proteomics Clin Appl 2019;13:e1800083. [PMID: 30246935 DOI: 10.1002/prca.201800083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
98 Dai L, Muraoka WT, Wu Z, Sahin O, Zhang Q. A single nucleotide change in mutY increases the emergence of antibiotic-resistant Campylobacter jejuni mutants. J Antimicrob Chemother 2015;70:2739-48. [PMID: 26169557 DOI: 10.1093/jac/dkv190] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
99 Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19:382-402. [PMID: 16614254 DOI: 10.1128/CMR.19.2.382-402.2006] [Cited by in Crossref: 628] [Cited by in F6Publishing: 303] [Article Influence: 39.3] [Reference Citation Analysis]
100 Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials-A Review. Plants (Basel) 2017;6:E16. [PMID: 28394295 DOI: 10.3390/plants6020016] [Cited by in Crossref: 99] [Cited by in F6Publishing: 68] [Article Influence: 19.8] [Reference Citation Analysis]
101 Hoang KV, Stern NJ, Lin J. Development and stability of bacteriocin resistance in Campylobacter spp. J Appl Microbiol 2011;111:1544-50. [PMID: 21973216 DOI: 10.1111/j.1365-2672.2011.05163.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
102 Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020;104:10409-36. [PMID: 33185702 DOI: 10.1007/s00253-020-10974-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
103 Kovač J, Šimunović K, Wu Z, Klančnik A, Bucar F, Zhang Q, Možina SS. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS One 2015;10:e0122871. [PMID: 25830640 DOI: 10.1371/journal.pone.0122871] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 6.7] [Reference Citation Analysis]
104 Wu T, Zhang Z, Liu B, Hou D, Liang Y, Zhang J, Shi P. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics. 2013;14:669. [PMID: 24083370 DOI: 10.1186/1471-2164-14-669] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 9.6] [Reference Citation Analysis]
105 Lin J, Yan M, Sahin O, Pereira S, Chang YJ, Zhang Q. Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob Agents Chemother 2007;51:1678-86. [PMID: 17353243 DOI: 10.1128/AAC.01411-06] [Cited by in Crossref: 76] [Cited by in F6Publishing: 28] [Article Influence: 5.1] [Reference Citation Analysis]
106 Guo B, Lin J, Reynolds DL, Zhang Q. Contribution of the multidrug efflux transporter CmeABC to antibiotic resistance in different Campylobacter species. Foodborne Pathog Dis 2010;7:77-83. [PMID: 19785541 DOI: 10.1089/fpd.2009.0354] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
107 Hwang S, Zhang Q, Ryu S, Jeon B. Transcriptional regulation of the CmeABC multidrug efflux pump and the KatA catalase by CosR in Campylobacter jejuni. J Bacteriol 2012;194:6883-91. [PMID: 23065977 DOI: 10.1128/JB.01636-12] [Cited by in Crossref: 41] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
108 Taheri N, Mahmud AKMF, Sandblad L, Fällman M, Wai SN, Fahlgren A. Campylobacter jejuni bile exposure influences outer membrane vesicles protein content and bacterial interaction with epithelial cells. Sci Rep 2018;8:16996. [PMID: 30451931 DOI: 10.1038/s41598-018-35409-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
109 Hooper DC, Jacoby GA. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb Perspect Med 2016;6:a025320. [PMID: 27449972 DOI: 10.1101/cshperspect.a025320] [Cited by in Crossref: 126] [Cited by in F6Publishing: 111] [Article Influence: 21.0] [Reference Citation Analysis]
110 Jeon B, Muraoka W, Scupham A, Zhang Q. Roles of lipooligosaccharide and capsular polysaccharide in antimicrobial resistance and natural transformation of Campylobacter jejuni. J Antimicrob Chemother 2009;63:462-8. [PMID: 19147521 DOI: 10.1093/jac/dkn529] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 2.0] [Reference Citation Analysis]
111 Ge B, McDermott PF, White DG, Meng J. Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 2005;49:3347-54. [PMID: 16048946 DOI: 10.1128/AAC.49.8.3347-3354.2005] [Cited by in Crossref: 103] [Cited by in F6Publishing: 40] [Article Influence: 6.1] [Reference Citation Analysis]
112 Zhang J, Halkilahti J, Hänninen ML, Rossi M. Refinement of whole-genome multilocus sequence typing analysis by addressing gene paralogy. J Clin Microbiol 2015;53:1765-7. [PMID: 25788543 DOI: 10.1128/JCM.00051-15] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
113 Gulbronson CJ, Ribardo DA, Balaban M, Knauer C, Bange G, Hendrixson DR. FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni. Mol Microbiol 2016;99:291-306. [PMID: 26411371 DOI: 10.1111/mmi.13231] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
114 Dai L, Wu Z, Xu C, Sahin O, Yaeger M, Plummer PJ, Zhang Q. The Rho-Independent Transcription Terminator for the porA Gene Enhances Expression of the Major Outer Membrane Protein and Campylobacter jejuni Virulence in Abortion Induction. Infect Immun 2019;87:e00687-19. [PMID: 31570559 DOI: 10.1128/IAI.00687-19] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
115 Patry RT, Stahl M, Perez-Munoz ME, Nothaft H, Wenzel CQ, Sacher JC, Coros C, Walter J, Vallance BA, Szymanski CM. Bacterial AB5 toxins inhibit the growth of gut bacteria by targeting ganglioside-like glycoconjugates. Nat Commun 2019;10:1390. [PMID: 30918252 DOI: 10.1038/s41467-019-09362-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
116 Oh E, Jeon B. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front Microbiol 2015;6:1129. [PMID: 26528273 DOI: 10.3389/fmicb.2015.01129] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
117 Luangtongkum T, Jeon B, Han J, Plummer P, Logue CM, Zhang Q. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol 2009;4:189-200. [PMID: 19257846 DOI: 10.2217/17460913.4.2.189] [Cited by in Crossref: 312] [Cited by in F6Publishing: 267] [Article Influence: 24.0] [Reference Citation Analysis]
118 Hatfaludi T, Al-Hasani K, Dunstone M, Boyce J, Adler B. Characterization of TolC efflux pump proteins from Pasteurella multocida. Antimicrob Agents Chemother 2008;52:4166-71. [PMID: 18725450 DOI: 10.1128/AAC.00245-08] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
119 Vieira A, Ramesh A, Seddon AM, Karlyshev AV. CmeABC Multidrug Efflux Pump Contributes to Antibiotic Resistance and Promotes Campylobacter jejuni Survival and Multiplication in Acanthamoeba polyphaga. Appl Environ Microbiol 2017;83:e01600-17. [PMID: 28916560 DOI: 10.1128/AEM.01600-17] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 3.6] [Reference Citation Analysis]
120 Papadopoulos D, Petridou E, Papageorgiou K, Giantsis IA, Delis G, Economou V, Frydas I, Papadopoulos G, Hatzistylianou M, Kritas SK. Phenotypic and Molecular Patterns of Resistance among Campylobacter coli and Campylobacter jejuni Isolates, from Pig Farms. Animals (Basel) 2021;11:2394. [PMID: 34438851 DOI: 10.3390/ani11082394] [Reference Citation Analysis]
121 Martin FA, Posadas DM, Carrica MC, Cravero SL, O'Callaghan D, Zorreguieta A. Interplay between two RND systems mediating antimicrobial resistance in Brucella suis. J Bacteriol 2009;191:2530-40. [PMID: 19201794 DOI: 10.1128/JB.01198-08] [Cited by in Crossref: 19] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
122 Silva MF, Pereira AL, Fraqueza MJ, Pereira G, Mateus L, Lopes-da-Costa L, Silva E. Genomic and Phenotypic Characterization of Campylobacter fetus subsp. venerealis Strains. Microorganisms 2021;9:340. [PMID: 33572216 DOI: 10.3390/microorganisms9020340] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Ge B, White DG, McDermott PF, Girard W, Zhao S, Hubert S, Meng J. Antimicrobial-resistant Campylobacter species from retail raw meats. Appl Environ Microbiol 2003;69:3005-7. [PMID: 12732579 DOI: 10.1128/AEM.69.5.3005-3007.2003] [Cited by in Crossref: 110] [Cited by in F6Publishing: 33] [Article Influence: 5.8] [Reference Citation Analysis]
124 Fernando DM, Kumar A. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence. Antibiotics (Basel) 2013;2:163-81. [PMID: 27029297 DOI: 10.3390/antibiotics2010163] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
125 Aksomaitiene J, Ramonaite S, Novoslavskij A, Malakauskas M, Kudirkiene E. Draft Genome Sequence of Ciprofloxacin and Ceftriaxone Resistant Campylobacter jejuni MM26-781 Assigned to Novel ST Isolated From Common Pigeon in Lithuania. Evol Bioinform Online 2019;15:1176934319868469. [PMID: 31523125 DOI: 10.1177/1176934319868469] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
126 Gangaiah D, Kassem II, Liu Z, Rajashekara G. Importance of polyphosphate kinase 1 for Campylobacter jejuni viable-but-nonculturable cell formation, natural transformation, and antimicrobial resistance. Appl Environ Microbiol. 2009;75:7838-7849. [PMID: 19837830 DOI: 10.1128/aem.01603-09] [Cited by in Crossref: 44] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
127 Whelan MVX, Ardill L, Koide K, Nakajima C, Suzuki Y, Simpson JC, Ó Cróinín T. Acquisition of fluoroquinolone resistance leads to increased biofilm formation and pathogenicity in Campylobacter jejuni. Sci Rep 2019;9:18216. [PMID: 31796849 DOI: 10.1038/s41598-019-54620-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
128 Shen Z, Han J, Wang Y, Sahin O, Zhang Q. The contribution of ArsB to arsenic resistance in Campylobacter jejuni. PLoS One 2013;8:e58894. [PMID: 23554953 DOI: 10.1371/journal.pone.0058894] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
129 Talukdar PK, Turner KL, Crockett TM, Lu X, Morris CF, Konkel ME. Inhibitory Effect of Puroindoline Peptides on Campylobacter jejuni Growth and Biofilm Formation. Front Microbiol 2021;12:702762. [PMID: 34276635 DOI: 10.3389/fmicb.2021.702762] [Reference Citation Analysis]
130 Gu R, Su CC, Shi F, Li M, McDermott G, Zhang Q, Yu EW. Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni. J Mol Biol 2007;372:583-93. [PMID: 17686491 DOI: 10.1016/j.jmb.2007.06.072] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 2.8] [Reference Citation Analysis]
131 Zhong C, Nelson M, Cao G, Sadowsky MJ, Yan T. Complete Genome Sequence of the Triclosan- and Multidrug-Resistant Pseudomonas aeruginosa Strain B10W Isolated from Municipal Wastewater. Genome Announc 2017;5:e01489-16. [PMID: 28104659 DOI: 10.1128/genomeA.01489-16] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
132 Novik V, Hofreuter D, Galán JE. Characterization of a Campylobacter jejuni VirK protein homolog as a novel virulence determinant. Infect Immun 2009;77:5428-36. [PMID: 19797067 DOI: 10.1128/IAI.00528-09] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
133 Shome S, Sankar K, Jernigan RL. Simulated Drug Efflux for the AbgT Family of Membrane Transporters. J Chem Inf Model 2021;61:5673-81. [PMID: 34714659 DOI: 10.1021/acs.jcim.1c00516] [Reference Citation Analysis]
134 Lin J, Sahin O, Michel LO, Zhang Q. Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun 2003;71:4250-9. [PMID: 12874300 DOI: 10.1128/IAI.71.8.4250-4259.2003] [Cited by in Crossref: 208] [Cited by in F6Publishing: 111] [Article Influence: 10.9] [Reference Citation Analysis]
135 Luo N, Sahin O, Lin J, Michel LO, Zhang Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob Agents Chemother 2003;47:390-4. [PMID: 12499221 DOI: 10.1128/AAC.47.1.390-394.2003] [Cited by in Crossref: 166] [Cited by in F6Publishing: 57] [Article Influence: 8.7] [Reference Citation Analysis]
136 Otigbu AC, Clarke AM, Fri J, Akanbi EO, Njom HA. Antibiotic Sensitivity Profiling and Virulence Potential of Campylobacter jejuni Isolates from Estuarine Water in the Eastern Cape Province, South Africa. Int J Environ Res Public Health 2018;15:E925. [PMID: 29734778 DOI: 10.3390/ijerph15050925] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
137 Aleksić E, Miljković-Selimović B, Tambur Z, Aleksić N, Biočanin V, Avramov S. Resistance to Antibiotics in Thermophilic Campylobacters. Front Med (Lausanne) 2021;8:763434. [PMID: 34859016 DOI: 10.3389/fmed.2021.763434] [Reference Citation Analysis]
138 Koziel M, Lucid A, Bullman S, Corcoran GD, Lucey B, Sleator RD. Draft Genome Sequence of Campylobacter corcagiensis Strain CIT045T, a Representative of a Novel Campylobacter Species Isolated from Lion-Tailed Macaques (Macaca silenus). Genome Announc 2014;2:e00248-14. [PMID: 24744327 DOI: 10.1128/genomeA.00248-14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
139 Abouelhadid S, North SJ, Hitchen P, Vohra P, Chintoan-Uta C, Stevens M, Dell A, Cuccui J, Wren BW. Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen. mBio 2019;10:e00297-19. [PMID: 31015322 DOI: 10.1128/mBio.00297-19] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
140 Zeng X, Gillespie B, Lin J. Important Role of a Putative Lytic Transglycosylase Cj0843c in β-Lactam Resistance in Campylobacter jejuni. Front Microbiol 2015;6:1292. [PMID: 26635760 DOI: 10.3389/fmicb.2015.01292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
141 Dai L, Sahin O, Tang Y, Zhang Q. A Mutator Phenotype Promoting the Emergence of Spontaneous Oxidative Stress-Resistant Mutants in Campylobacter jejuni. Appl Environ Microbiol 2017;83:e01685-17. [PMID: 29030436 DOI: 10.1128/AEM.01685-17] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
142 Jeon B, Zhang Q. Cj0011c, a periplasmic single- and double-stranded DNA-binding protein, contributes to natural transformation in Campylobacter jejuni. J Bacteriol 2007;189:7399-407. [PMID: 17693521 DOI: 10.1128/JB.01012-07] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
143 Lin J, Cagliero C, Guo B, Barton YW, Maurel MC, Payot S, Zhang Q. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J Bacteriol 2005;187:7417-24. [PMID: 16237025 DOI: 10.1128/JB.187.21.7417-7424.2005] [Cited by in Crossref: 126] [Cited by in F6Publishing: 65] [Article Influence: 7.4] [Reference Citation Analysis]
144 Jakobsen TH, Hansen MA, Jensen PØ, Hansen L, Riber L, Cockburn A, Kolpen M, Rønne Hansen C, Ridderberg W, Eickhardt S. Complete genome sequence of the cystic fibrosis pathogen Achromobacter xylosoxidans NH44784-1996 complies with important pathogenic phenotypes. PLoS One. 2013;8:e68484. [PMID: 23894309 DOI: 10.1371/journal.pone.0068484] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 6.4] [Reference Citation Analysis]
145 Palyada K, Sun YQ, Flint A, Butcher J, Naikare H, Stintzi A. Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics 2009;10:481. [PMID: 19835633 DOI: 10.1186/1471-2164-10-481] [Cited by in Crossref: 107] [Cited by in F6Publishing: 96] [Article Influence: 8.2] [Reference Citation Analysis]
146 Schiaffino F, Colston JM, Paredes-Olortegui M, François R, Pisanic N, Burga R, Peñataro-Yori P, Kosek MN. Antibiotic Resistance of Campylobacter Species in a Pediatric Cohort Study. Antimicrob Agents Chemother 2019;63:e01911-18. [PMID: 30420482 DOI: 10.1128/AAC.01911-18] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
147 Hao H, Li F, Han J, Foley SL, Dai M, Wang X, Wang Y, Huang L, Sun Y, Liu Z, Yuan Z. Cj1199 Affect the Development of Erythromycin Resistance in Campylobacter jejuni through Regulation of Leucine Biosynthesis. Front Microbiol 2017;8:16. [PMID: 28144238 DOI: 10.3389/fmicb.2017.00016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
148 Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 2015;1354:12-31. [PMID: 26190223 DOI: 10.1111/nyas.12830] [Cited by in Crossref: 235] [Cited by in F6Publishing: 197] [Article Influence: 33.6] [Reference Citation Analysis]
149 Andrade BG, Marin MF, Cambuy DD, Fonseca EL, Souza NF, Vicente AC. Complete genome sequence of a clinical Bordetella pertussis isolate from Brazil. Mem Inst Oswaldo Cruz 2014;109:972-4. [PMID: 25411007 DOI: 10.1590/0074-0276140288] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
150 Abouelhadid S, Raynes J, Bui T, Cuccui J, Wren BW. Characterization of Posttranslationally Modified Multidrug Efflux Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial Resistance. mBio 2020;11:e02604-20. [PMID: 33203757 DOI: 10.1128/mBio.02604-20] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
151 Su CC, Yin L, Kumar N, Dai L, Radhakrishnan A, Bolla JR, Lei HT, Chou TH, Delmar JA, Rajashankar KR, Zhang Q, Shin YK, Yu EW. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Nat Commun 2017;8:171. [PMID: 28761097 DOI: 10.1038/s41467-017-00217-z] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
152 Dai L, Sahin O, Grover M, Zhang Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl Res 2020;223:76-88. [PMID: 32438073 DOI: 10.1016/j.trsl.2020.04.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
153 Oakland M, Jeon B, Sahin O, Shen Z, Zhang Q. Functional characterization of a lipoprotein-encoding operon in Campylobacter jejuni. PLoS One 2011;6:e20084. [PMID: 21625391 DOI: 10.1371/journal.pone.0020084] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
154 Xia Q, Muraoka WT, Shen Z, Sahin O, Wang H, Wu Z, Liu P, Zhang Q. Adaptive mechanisms of Campylobacter jejuni to erythromycin treatment. BMC Microbiol 2013;13:133. [PMID: 23767761 DOI: 10.1186/1471-2180-13-133] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
155 Routh MD, Zalucki Y, Su CC, Zhang Q, Shafer WM, Yu EW. Efflux pumps of the resistance-nodulation-division family: a perspective of their structure, function, and regulation in gram-negative bacteria. Adv Enzymol Relat Areas Mol Biol 2011;77:109-46. [PMID: 21692368 DOI: 10.1002/9780470920541.ch3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
156 Rivera-Mendoza D, Martínez-Flores I, Santamaría RI, Lozano L, Bustamante VH, Pérez-Morales D. Genomic Analysis Reveals the Genetic Determinants Associated With Antibiotic Resistance in the Zoonotic Pathogen Campylobacter spp. Distributed Globally. Front Microbiol 2020;11:513070. [PMID: 33042043 DOI: 10.3389/fmicb.2020.513070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
157 Zeng X, Xu F, Lin J. Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in Campylobacter jejuni. Infect Immun 2009;77:5437-48. [PMID: 19737895 DOI: 10.1128/IAI.00666-09] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
158 Ma L, Chen L, Chou KC, Lu X. Campylobacter jejuni Antimicrobial Resistance Profiles and Mechanisms Determined Using a Raman Spectroscopy-Based Metabolomic Approach. Appl Environ Microbiol 2021;87:e0038821. [PMID: 33837016 DOI: 10.1128/AEM.00388-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Redondo N, Carroll A, McNamara E. Molecular characterization of Campylobacter causing human clinical infection using whole-genome sequencing: Virulence, antimicrobial resistance and phylogeny in Ireland. PLoS One 2019;14:e0219088. [PMID: 31291319 DOI: 10.1371/journal.pone.0219088] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
160 Guérin A, Sulaeman S, Coquet L, Ménard A, Barloy-Hubler F, Dé E, Tresse O. Membrane Proteocomplexome of Campylobacter jejuni Using 2-D Blue Native/SDS-PAGE Combined to Bioinformatics Analysis. Front Microbiol 2020;11:530906. [PMID: 33329413 DOI: 10.3389/fmicb.2020.530906] [Reference Citation Analysis]
161 Nothaft H, Davis B, Lock YY, Perez-Munoz ME, Vinogradov E, Walter J, Coros C, Szymanski CM. Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine. Sci Rep 2016;6:26511. [PMID: 27221144 DOI: 10.1038/srep26511] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 7.2] [Reference Citation Analysis]
162 Terán W, Felipe A, Segura A, Rojas A, Ramos JL, Gallegos MT. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrob Agents Chemother 2003;47:3067-72. [PMID: 14506010 DOI: 10.1128/AAC.47.10.3067-3072.2003] [Cited by in Crossref: 104] [Cited by in F6Publishing: 50] [Article Influence: 5.8] [Reference Citation Analysis]
163 Xu F, Hinenoya A, Zeng X, Li XP, Guan Z, Lin J. Critical Role of 3'-Downstream Region of pmrB in Polymyxin Resistance in Escherichia coli BL21(DE3). Microorganisms 2021;9:655. [PMID: 33809968 DOI: 10.3390/microorganisms9030655] [Reference Citation Analysis]
164 Dufour V, Alazzam B, Ermel G, Thepaut M, Rossero A, Tresse O, Baysse C. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front Cell Infect Microbiol 2012;2:53. [PMID: 22919644 DOI: 10.3389/fcimb.2012.00053] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.5] [Reference Citation Analysis]
165 Jang KS, Sweredoski MJ, Graham RL, Hess S, Clemons WM Jr. Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni. J Proteomics 2014;98:90-8. [PMID: 24382552 DOI: 10.1016/j.jprot.2013.12.014] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
166 Cornelius AJ, Gilpin B, Carter P, Nicol C, On SL. Comparison of PCR binary typing (P-BIT), a new approach to epidemiological subtyping of Campylobacter jejuni, with serotyping, pulsed-field gel electrophoresis, and multilocus sequence typing methods. Appl Environ Microbiol 2010;76:1533-44. [PMID: 20023103 DOI: 10.1128/AEM.02215-09] [Cited by in Crossref: 35] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
167 Xue R, Feng J, Ma L, Liu C, Xian M, Konkel ME, Wang S, Lu X. Whole Transcriptome Sequencing Analysis of the Synergistic Antimicrobial Effect of Metal Oxide Nanoparticles and Ajoene on Campylobacter jejuni. Front Microbiol 2018;9:2074. [PMID: 30233546 DOI: 10.3389/fmicb.2018.02074] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
168 Pasca MR, Guglierame P, Arcesi F, Bellinzoni M, De Rossi E, Riccardi G. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004;48:3175-8. [PMID: 15273144 DOI: 10.1128/AAC.48.8.3175-3178.2004] [Cited by in Crossref: 114] [Cited by in F6Publishing: 56] [Article Influence: 6.3] [Reference Citation Analysis]
169 Raphael BH, Pereira S, Flom GA, Zhang Q, Ketley JM, Konkel ME. The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J Bacteriol 2005;187:3662-70. [PMID: 15901688 DOI: 10.1128/JB.187.11.3662-3670.2005] [Cited by in Crossref: 66] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
170 Sacher JC, Flint A, Butcher J, Blasdel B, Reynolds HM, Lavigne R, Stintzi A, Szymanski CM. Transcriptomic Analysis of the Campylobacter jejuni Response to T4-Like Phage NCTC 12673 Infection. Viruses 2018;10:E332. [PMID: 29914170 DOI: 10.3390/v10060332] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
171 Cheng Y, Zhang W, Lu Q, Wen G, Zhao Z, Luo Q, Shao H, Zhang T. Point Deletion or Insertion in CmeR-Box, A2075G Substitution in 23S rRNA, and Presence of erm(B) Are Key Factors of Erythromycin Resistance in Campylobacter jejuni and Campylobacter coli Isolated From Central China. Front Microbiol 2020;11:203. [PMID: 32194516 DOI: 10.3389/fmicb.2020.00203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
172 Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M, Plummer PJ. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol 2014;5:782. [PMID: 25642218 DOI: 10.3389/fmicb.2014.00782] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
173 Silva MF, Pereira G, Carneiro C, Hemphill A, Mateus L, Lopes-da-Costa L, Silva E. Campylobacter portucalensis sp. nov., a new species of Campylobacter isolated from the preputial mucosa of bulls. PLoS One 2020;15:e0227500. [PMID: 31923228 DOI: 10.1371/journal.pone.0227500] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
174 Bazzi W, Abou Fayad AG, Nasser A, Haraoui LP, Dewachi O, Abou-Sitta G, Nguyen VK, Abara A, Karah N, Landecker H, Knapp C, McEvoy MM, Zaman MH, Higgins PG, Matar GM. Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Front Microbiol 2020;11:68. [PMID: 32117111 DOI: 10.3389/fmicb.2020.00068] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
175 Guo B, Wang Y, Shi F, Barton YW, Plummer P, Reynolds DL, Nettleton D, Grinnage-Pulley T, Lin J, Zhang Q. CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuni in vivo. J Bacteriol 2008;190:1879-90. [PMID: 18178742 DOI: 10.1128/JB.01796-07] [Cited by in Crossref: 50] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
176 Jin CZ, Zhuo Y, Wu X, Ko SR, Li T, Jin FJ, Ahn CY, Oh HM, Lee HG, Jin L. Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. Microorganisms 2020;8:E262. [PMID: 32075304 DOI: 10.3390/microorganisms8020262] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
177 Yao H, Jiao D, Zhao W, Li A, Li R, Du XD. Emergence of a Novel tet(L) Variant in Campylobacter spp. of Chicken Origin in China. Antimicrob Agents Chemother 2020;65:e01622-20. [PMID: 33046498 DOI: 10.1128/AAC.01622-20] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
178 Zeng X, Xu F, Lin J. Development and Evaluation of CmeC Subunit Vaccine against Campylobacter jejuni. J Vaccines Vaccin 2010;1:112. [PMID: 22140651 DOI: 10.4172/2157-7560.1000112] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 0.6] [Reference Citation Analysis]
179 Downing BP, Rutenberg AD, Touhami A, Jericho M. Subcellular Min oscillations as a single-cell reporter of the action of polycations, protamine, and gentamicin on Escherichia coli. PLoS One 2009;4:e7285. [PMID: 19789705 DOI: 10.1371/journal.pone.0007285] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
180 Adiguzel MC, Goulart DB, Wu Z, Pang J, Cengiz S, Zhang Q, Sahin O. Distribution of CRISPR Types in Fluoroquinolone-Resistant Campylobacter jejuni Isolates. Pathogens 2021;10:345. [PMID: 33809410 DOI: 10.3390/pathogens10030345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
181 Shen Z, Pu XY, Zhang Q. Salicylate functions as an efflux pump inducer and promotes the emergence of fluoroquinolone-resistant Campylobacter jejuni mutants. Appl Environ Microbiol 2011;77:7128-33. [PMID: 21821741 DOI: 10.1128/AEM.00763-11] [Cited by in Crossref: 39] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
182 Johnson TJ, Shank JM, Johnson JG. Current and Potential Treatments for Reducing Campylobacter Colonization in Animal Hosts and Disease in Humans. Front Microbiol 2017;8:487. [PMID: 28386253 DOI: 10.3389/fmicb.2017.00487] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 8.6] [Reference Citation Analysis]
183 Sharifi S, Bakhshi B, Najar-Peerayeh S. Significant contribution of the CmeABC Efflux pump in high-level resistance to ciprofloxacin and tetracycline in Campylobacter jejuni and Campylobacter coli clinical isolates. Ann Clin Microbiol Antimicrob 2021;20:36. [PMID: 34016127 DOI: 10.1186/s12941-021-00439-6] [Reference Citation Analysis]
184 Zhou W, Wang Y, Lin J. Functional cloning and characterization of antibiotic resistance genes from the chicken gut microbiome. Appl Environ Microbiol 2012;78:3028-32. [PMID: 22286984 DOI: 10.1128/AEM.06920-11] [Cited by in Crossref: 30] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
185 Wu B, Xia C, Du X, Cao X, Shen J. Influence of anti-FloR antibody on florfenicol accumulation in florfenicol-resistant Escherichia coli and enzyme-linked immunosorbent assay for detection of florfenicol-resistant E. coli isolates. J Clin Microbiol 2006;44:378-82. [PMID: 16455887 DOI: 10.1128/JCM.44.2.378-382.2006] [Cited by in Crossref: 4] [Article Influence: 0.3] [Reference Citation Analysis]
186 Gupta S, Ray S, Khan A, China A, Das D, Mallick AI. The cost of bacterial predation via type VI secretion system leads to predator extinction under environmental stress. iScience 2021;24:103507. [PMID: 34934926 DOI: 10.1016/j.isci.2021.103507] [Reference Citation Analysis]
187 Rathbun KM, Thompson SA. Mutation of PEB4 alters the outer membrane protein profile of Campylobacter jejuni. FEMS Microbiol Lett 2009;300:188-94. [PMID: 19824902 DOI: 10.1111/j.1574-6968.2009.01795.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]