BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013;15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Cited by in Crossref: 98] [Cited by in F6Publishing: 90] [Article Influence: 10.9] [Reference Citation Analysis]
Number Citing Articles
1 Hentschker C, Maaß S, Junker S, Hecker M, Hammerschmidt S, Otto A, Becher D. Comprehensive Spectral Library from the Pathogenic Bacterium Streptococcus pneumoniae with Focus on Phosphoproteins. J Proteome Res 2020;19:1435-46. [DOI: 10.1021/acs.jproteome.9b00615] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Stamsås GA, Straume D, Ruud Winther A, Kjos M, Frantzen CA, Håvarstein LS. Identification of EloR (Spr1851) as a regulator of cell elongation in Streptococcus pneumoniae. Mol Microbiol 2017;105:954-67. [PMID: 28710862 DOI: 10.1111/mmi.13748] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
3 Hakenbeck R. Discovery of β-lactam-resistant variants in diverse pneumococcal populations. Genome Med 2014;6:72. [PMID: 25473434 DOI: 10.1186/s13073-014-0072-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
4 Sharan D, Carlson EE. Expanded profiling of β-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39. Biol Chem 2022. [PMID: 35218689 DOI: 10.1515/hsz-2021-0386] [Reference Citation Analysis]
5 Gola S, Munder T, Casonato S, Manganelli R, Vicente M. The essential role of SepF in mycobacterial division: Essential role of SepF in mycobacterial division. Molecular Microbiology 2015;97:560-76. [DOI: 10.1111/mmi.13050] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
6 Hathout RM, Abdelhamid SG, El-Housseiny GS, Metwally AA. Comparing cefotaxime and ceftriaxone in combating meningitis through nose-to-brain delivery using bio/chemoinformatics tools. Sci Rep 2020;10:21250. [PMID: 33277611 DOI: 10.1038/s41598-020-78327-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
7 Fisher JF, Mobashery S. The sentinel role of peptidoglycan recycling in the β-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa. Bioorg Chem 2014;56:41-8. [PMID: 24955547 DOI: 10.1016/j.bioorg.2014.05.011] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 6.1] [Reference Citation Analysis]
8 Tsui HC, Zheng JJ, Magallon AN, Ryan JD, Yunck R, Rued BE, Bernhardt TG, Winkler ME. Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in Streptococcus pneumoniae D39. Mol Microbiol 2016;100:1039-65. [PMID: 26933838 DOI: 10.1111/mmi.13366] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 8.5] [Reference Citation Analysis]
9 Holečková N, Doubravová L, Massidda O, Molle V, Buriánková K, Benada O, Kofroňová O, Ulrych A, Branny P. LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. mBio 2014;6:e01700-14. [PMID: 25550321 DOI: 10.1128/mBio.01700-14] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 5.1] [Reference Citation Analysis]
10 Trouve J, Zapun A, Arthaud C, Durmort C, Di Guilmi AM, Söderström B, Pelletier A, Grangeasse C, Bourgeois D, Wong YS, Morlot C. Nanoscale dynamics of peptidoglycan assembly during the cell cycle of Streptococcus pneumoniae. Curr Biol 2021;31:2844-2856.e6. [PMID: 33989523 DOI: 10.1016/j.cub.2021.04.041] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Perez AJ, Boersma MJ, Bruce KE, Lamanna MM, Shaw SL, Tsui HT, Taguchi A, Carlson EE, VanNieuwenhze MS, Winkler ME. Organization of peptidoglycan synthesis in nodes and separate rings at different stages of cell division of Streptococcus pneumoniae. Mol Microbiol 2021;115:1152-69. [PMID: 33269494 DOI: 10.1111/mmi.14659] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Sugimoto A, Maeda A, Itto K, Arimoto H. Deciphering the mode of action of cell wall-inhibiting antibiotics using metabolic labeling of growing peptidoglycan in Streptococcus pyogenes. Sci Rep 2017;7:1129. [PMID: 28442740 DOI: 10.1038/s41598-017-01267-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
13 Garcia PS, Simorre JP, Brochier-Armanet C, Grangeasse C. Cell division of Streptococcus pneumoniae: think positive! Curr Opin Microbiol 2016;34:18-23. [PMID: 27497051 DOI: 10.1016/j.mib.2016.07.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
14 Salvarelli E, Krupka M, Rivas G, Mingorance J, Gómez-Puertas P, Alfonso C, Rico AI. The Cell Division Protein FtsZ from Streptococcus pneumoniae Exhibits a GTPase Activity Delay. J Biol Chem 2015;290:25081-9. [PMID: 26330552 DOI: 10.1074/jbc.M115.650077] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
15 Sánchez-Gorostiaga A, Palacios P, Martínez-Arteaga R, Sánchez M, Casanova M, Vicente M. Life without Division: Physiology of Escherichia coli FtsZ-Deprived Filaments. mBio 2016;7:e01620-16. [PMID: 27729511 DOI: 10.1128/mBio.01620-16] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
16 Peters K, Pipo J, Schweizer I, Hakenbeck R, Denapaite D. Promoter Identification and Transcription Analysis of Penicillin-Binding Protein Genes in Streptococcus pneumoniae R6. Microb Drug Resist 2016;22:487-98. [PMID: 27409661 DOI: 10.1089/mdr.2016.0084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
17 Rued BE, Covington BC, Bushin LB, Szewczyk G, Laczkovich I, Seyedsayamdost MR, Federle MJ. Quorum Sensing in Streptococcus mutans Regulates Production of Tryglysin, a Novel RaS-RiPP Antimicrobial Compound. mBio 2021;12:e02688-20. [PMID: 33727351 DOI: 10.1128/mBio.02688-20] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Martin JE, Lisher JP, Winkler ME, Giedroc DP. Perturbation of manganese metabolism disrupts cell division in Streptococcus pneumoniae. Mol Microbiol 2017;104:334-48. [PMID: 28127804 DOI: 10.1111/mmi.13630] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 6.6] [Reference Citation Analysis]
19 Jacq M, Arthaud C, Manuse S, Mercy C, Bellard L, Peters K, Gallet B, Galindo J, Doan T, Vollmer W, Brun YV, VanNieuwenhze MS, Di Guilmi AM, Vernet T, Grangeasse C, Morlot C. The cell wall hydrolase Pmp23 is important for assembly and stability of the division ring in Streptococcus pneumoniae. Sci Rep 2018;8:7591. [PMID: 29765094 DOI: 10.1038/s41598-018-25882-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Bergé MJ, Mercy C, Mortier-Barrière I, VanNieuwenhze MS, Brun YV, Grangeasse C, Polard P, Campo N. A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae. Nat Commun 2017;8:1621. [PMID: 29158515 DOI: 10.1038/s41467-017-01716-9] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
21 Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev 2017;41:854-79. [PMID: 29029129 DOI: 10.1093/femsre/fux037] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
22 Shields RC, Zeng L, Culp DJ, Burne RA. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. mSphere 2018;3:e00031-18. [PMID: 29435491 DOI: 10.1128/mSphere.00031-18] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
23 Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, García P, Menéndez M. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Sci Rep 2015;5:16198. [PMID: 26537571 DOI: 10.1038/srep16198] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
24 Vollmer W, Massidda O, Tomasz A. The Cell Wall of Streptococcus pneumoniae. Microbiol Spectr 2019;7. [PMID: 31172911 DOI: 10.1128/microbiolspec.GPP3-0018-2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
25 Sham LT, Zheng S, Yakhnina AA, Kruse AC, Bernhardt TG. Loss of specificity variants of WzxC suggest that substrate recognition is coupled with transporter opening in MOP-family flippases. Mol Microbiol 2018;109:633-41. [PMID: 29907971 DOI: 10.1111/mmi.14002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
26 Jutras BL, Scott M, Parry B, Biboy J, Gray J, Vollmer W, Jacobs-Wagner C. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells. Proc Natl Acad Sci U S A 2016;113:9162-70. [PMID: 27506799 DOI: 10.1073/pnas.1610805113] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
27 Synefiaridou D, Veening JW. Harnessing CRISPR-Cas9 for Genome Editing in Streptococcus pneumoniae D39V. Appl Environ Microbiol 2021;87:e02762-20. [PMID: 33397704 DOI: 10.1128/AEM.02762-20] [Reference Citation Analysis]
28 Shields RC, Walker AR, Maricic N, Chakraborty B, Underhill SAM, Burne RA. Repurposing the Streptococcus mutans CRISPR-Cas9 System to Understand Essential Gene Function. PLoS Pathog 2020;16:e1008344. [PMID: 32150575 DOI: 10.1371/journal.ppat.1008344] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
29 Straume D, Piechowiak KW, Olsen S, Stamsås GA, Berg KH, Kjos M, Heggenhougen MV, Alcorlo M, Hermoso JA, Håvarstein LS. Class A PBPs have a distinct and unique role in the construction of the pneumococcal cell wall. Proc Natl Acad Sci U S A 2020;117:6129-38. [PMID: 32123104 DOI: 10.1073/pnas.1917820117] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
30 Henry C, Haller L, Blein-Nicolas M, Zivy M, Canette A, Verbrugghe M, Mézange C, Boulay M, Gardan R, Samson S, Martin V, André-Leroux G, Monnet V. Identification of Hanks-Type Kinase PknB-Specific Targets in the Streptococcus thermophilus Phosphoproteome. Front Microbiol 2019;10:1329. [PMID: 31275266 DOI: 10.3389/fmicb.2019.01329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
31 Egan AJF, Errington J, Vollmer W. Regulation of peptidoglycan synthesis and remodelling. Nat Rev Microbiol 2020;18:446-60. [DOI: 10.1038/s41579-020-0366-3] [Cited by in Crossref: 95] [Cited by in F6Publishing: 70] [Article Influence: 47.5] [Reference Citation Analysis]
32 Zheng JJ, Perez AJ, Tsui HT, Massidda O, Winkler ME. Absence of the KhpA and KhpB (JAG/EloR) RNA-binding proteins suppresses the requirement for PBP2b by overproduction of FtsA in Streptococcus pneumoniae D39. Mol Microbiol 2017;106:793-814. [PMID: 28941257 DOI: 10.1111/mmi.13847] [Cited by in Crossref: 36] [Cited by in F6Publishing: 26] [Article Influence: 7.2] [Reference Citation Analysis]
33 Taguchi A, Page JE, Tsui HT, Winkler ME, Walker S. Biochemical reconstitution defines new functions for membrane-bound glycosidases in assembly of the bacterial cell wall. Proc Natl Acad Sci U S A 2021;118:e2103740118. [PMID: 34475211 DOI: 10.1073/pnas.2103740118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Dover RS, Bitler A, Shimoni E, Trieu-Cuot P, Shai Y. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nat Commun 2015;6:7193. [PMID: 26018339 DOI: 10.1038/ncomms8193] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 5.1] [Reference Citation Analysis]
35 Dramsi S, Bierne H. Spatial Organization of Cell Wall-Anchored Proteins at the Surface of Gram-Positive Bacteria. In: Bagnoli F, Rappuoli R, editors. Protein and Sugar Export and Assembly in Gram-positive Bacteria. Cham: Springer International Publishing; 2017. pp. 177-201. [DOI: 10.1007/82_2016_4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
36 Egan AJF, Cleverley RM, Peters K, Lewis RJ, Vollmer W. Regulation of bacterial cell wall growth. FEBS J 2017;284:851-67. [DOI: 10.1111/febs.13959] [Cited by in Crossref: 98] [Cited by in F6Publishing: 77] [Article Influence: 16.3] [Reference Citation Analysis]
37 Hirschfeld C, Gómez-Mejia A, Bartel J, Hentschker C, Rohde M, Maaß S, Hammerschmidt S, Becher D. Proteomic Investigation Uncovers Potential Targets and Target Sites of Pneumococcal Serine-Threonine Kinase StkP and Phosphatase PhpP. Front Microbiol 2019;10:3101. [PMID: 32117081 DOI: 10.3389/fmicb.2019.03101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
38 Cleverley RM, Rismondo J, Lockhart-Cairns MP, Van Bentum PT, Egan AJ, Vollmer W, Halbedel S, Baldock C, Breukink E, Lewis RJ. Subunit Arrangement in GpsB, a Regulator of Cell Wall Biosynthesis. Microb Drug Resist 2016;22:446-60. [PMID: 27257764 DOI: 10.1089/mdr.2016.0050] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
39 Gallotta M, Gancitano G, Pietrocola G, Mora M, Pezzicoli A, Tuscano G, Chiarot E, Nardi-Dei V, Taddei AR, Rindi S, Speziale P, Soriani M, Grandi G, Margarit I, Bensi G. SpyAD, a moonlighting protein of group A Streptococcus contributing to bacterial division and host cell adhesion. Infect Immun 2014;82:2890-901. [PMID: 24778116 DOI: 10.1128/IAI.00064-14] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
40 Reichmann NT, Tavares AC, Saraiva BM, Jousselin A, Reed P, Pereira AR, Monteiro JM, Sobral RG, VanNieuwenhze MS, Fernandes F, Pinho MG. SEDS-bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus. Nat Microbiol 2019;4:1368-77. [PMID: 31086309 DOI: 10.1038/s41564-019-0437-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
41 Monahan LG, Liew AT, Bottomley AL, Harry EJ. Division site positioning in bacteria: one size does not fit all. Front Microbiol 2014;5:19. [PMID: 24550892 DOI: 10.3389/fmicb.2014.00019] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 6.8] [Reference Citation Analysis]
42 Briggs NS, Bruce KE, Naskar S, Winkler ME, Roper DI. The Pneumococcal Divisome: Dynamic Control of Streptococcus pneumoniae Cell Division. Front Microbiol 2021;12:737396. [PMID: 34737730 DOI: 10.3389/fmicb.2021.737396] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Tan MF, Hu Q, Hu Z, Zhang CY, Liu WQ, Gao T, Zhang LS, Yao L, Li HQ, Zeng YB, Zhou R. Streptococcus suis MsmK: Novel Cell Division Protein Interacting with FtsZ and Maintaining Cell Shape. mSphere 2021;6:e00119-21. [PMID: 33731468 DOI: 10.1128/mSphere.00119-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Rued BE, Alcorlo M, Edmonds KA, Martínez-Caballero S, Straume D, Fu Y, Bruce KE, Wu H, Håvarstein LS, Hermoso JA, Winkler ME, Giedroc DP. Structure of the Large Extracellular Loop of FtsX and Its Interaction with the Essential Peptidoglycan Hydrolase PcsB in Streptococcus pneumoniae. mBio 2019;10:e02622-18. [PMID: 30696736 DOI: 10.1128/mBio.02622-18] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
45 Wen ZT, Bitoun JP, Liao S. PBP1a-deficiency causes major defects in cell division, growth and biofilm formation by Streptococcus mutans. PLoS One 2015;10:e0124319. [PMID: 25880908 DOI: 10.1371/journal.pone.0124319] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
46 Gao T, Yuan F, Liu Z, Liu W, Zhou D, Yang K, Guo R, Liang W, Zou G, Zhou R, Tian Y. Proteomic and Metabolomic Analyses Provide Insights into the Mechanism on Arginine Metabolism Regulated by tRNA Modification Enzymes GidA and MnmE of Streptococcus suis. Front Cell Infect Microbiol 2020;10:597408. [PMID: 33425782 DOI: 10.3389/fcimb.2020.597408] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Boersma MJ, Kuru E, Rittichier JT, VanNieuwenhze MS, Brun YV, Winkler ME. Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in Host-Relevant Biofilms. J Bacteriol 2015;197:3472-85. [PMID: 26303829 DOI: 10.1128/JB.00541-15] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 5.9] [Reference Citation Analysis]
48 Pathak A, Bergstrand J, Sender V, Spelmink L, Aschtgen MS, Muschiol S, Widengren J, Henriques-Normark B. Factor H binding proteins protect division septa on encapsulated Streptococcus pneumoniae against complement C3b deposition and amplification. Nat Commun 2018;9:3398. [PMID: 30139996 DOI: 10.1038/s41467-018-05494-w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
49 Kuipers K, Gallay C, Martínek V, Rohde M, Martínková M, van der Beek SL, Jong WS, Venselaar H, Zomer A, Bootsma H, Veening JW, de Jonge MI. Highly conserved nucleotide phosphatase essential for membrane lipid homeostasis in Streptococcus pneumoniae. Mol Microbiol 2016;101:12-26. [PMID: 26691161 DOI: 10.1111/mmi.13312] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
50 Kocaoglu O, Tsui HC, Winkler ME, Carlson EE. Profiling of β-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39. Antimicrob Agents Chemother 2015;59:3548-55. [PMID: 25845878 DOI: 10.1128/AAC.05142-14] [Cited by in Crossref: 57] [Cited by in F6Publishing: 35] [Article Influence: 8.1] [Reference Citation Analysis]
51 Battaje RR, Panda D. Lessons from bacterial homolog of tubulin, FtsZ for microtubule dynamics. Endocr Relat Cancer 2017;24:T1-T21. [PMID: 28634179 DOI: 10.1530/ERC-17-0118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
52 Calvez P, Jouhet J, Vié V, Durmort C, Zapun A. Lipid Phases and Cell Geometry During the Cell Cycle of Streptococcus pneumoniae. Front Microbiol 2019;10:351. [PMID: 30936851 DOI: 10.3389/fmicb.2019.00351] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
53 Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017;52:503-42. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 12.2] [Reference Citation Analysis]
54 Perez AJ, Cesbron Y, Shaw SL, Bazan Villicana J, Tsui HT, Boersma MJ, Ye ZA, Tovpeko Y, Dekker C, Holden S, Winkler ME. Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2019;116:3211-20. [PMID: 30718427 DOI: 10.1073/pnas.1816018116] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 19.3] [Reference Citation Analysis]
55 Jacq M, Adam V, Bourgeois D, Moriscot C, Di Guilmi AM, Vernet T, Morlot C. Remodeling of the Z-Ring Nanostructure during the Streptococcus pneumoniae Cell Cycle Revealed by Photoactivated Localization Microscopy. mBio 2015;6:e01108-15. [PMID: 26286692 DOI: 10.1128/mBio.01108-15] [Cited by in Crossref: 54] [Cited by in F6Publishing: 26] [Article Influence: 7.7] [Reference Citation Analysis]
56 Gisch N, Peters K, Zähringer U, Vollmer W. The Pneumococcal Cell Wall. Streptococcus Pneumoniae. Elsevier; 2015. pp. 145-67. [DOI: 10.1016/b978-0-12-410530-0.00008-9] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
57 Fisher JF, Mobashery S. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2016;6:a025221. [PMID: 27091943 DOI: 10.1101/cshperspect.a025221] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
58 Philippe J, Gallet B, Morlot C, Denapaite D, Hakenbeck R, Chen Y, Vernet T, Zapun A. Mechanism of β-lactam action in Streptococcus pneumoniae: the piperacillin paradox. Antimicrob Agents Chemother 2015;59:609-21. [PMID: 25385114 DOI: 10.1128/AAC.04283-14] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
59 Lamm-schmidt V, Fuchs M, Sulzer J, Gerovac M, Hör J, Dersch P, Vogel J, Faber F. Grad-seq identifies KhpB as a global RNA-binding protein in Clostridioides difficile that regulates toxin production. microLife 2021;2:uqab004. [DOI: 10.1093/femsml/uqab004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
60 Liu X, Gallay C, Kjos M, Domenech A, Slager J, van Kessel SP, Knoops K, Sorg RA, Zhang JR, Veening JW. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol Syst Biol 2017;13:931. [PMID: 28490437 DOI: 10.15252/msb.20167449] [Cited by in Crossref: 137] [Cited by in F6Publishing: 105] [Article Influence: 27.4] [Reference Citation Analysis]
61 Perez AJ, Villicana JB, Tsui HT, Danforth ML, Benedet M, Massidda O, Winkler ME. FtsZ-Ring Regulation and Cell Division Are Mediated by Essential EzrA and Accessory Proteins ZapA and ZapJ in Streptococcus pneumoniae. Front Microbiol 2021;12:780864. [PMID: 34938281 DOI: 10.3389/fmicb.2021.780864] [Reference Citation Analysis]
62 Philippe J, Vernet T, Zapun A. The elongation of ovococci. Microb Drug Resist 2014;20:215-21. [PMID: 24773288 DOI: 10.1089/mdr.2014.0032] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
63 Zamakhaeva S, Chaton CT, Rush JS, Ajay Castro S, Kenner CW, Yarawsky AE, Herr AB, van Sorge NM, Dorfmueller HC, Frolenkov GI, Korotkov KV, Korotkova N. Modification of cell wall polysaccharide guides cell division in Streptococcus mutans. Nat Chem Biol 2021;17:878-87. [PMID: 34045745 DOI: 10.1038/s41589-021-00803-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
64 Grangeasse C. Rewiring the Pneumococcal Cell Cycle with Serine/Threonine- and Tyrosine-kinases. Trends in Microbiology 2016;24:713-24. [DOI: 10.1016/j.tim.2016.04.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
65 Fenton AK, Manuse S, Flores-Kim J, Garcia PS, Mercy C, Grangeasse C, Bernhardt TG, Rudner DZ. Phosphorylation-dependent activation of the cell wall synthase PBP2a in Streptococcus pneumoniae by MacP. Proc Natl Acad Sci U S A 2018;115:2812-7. [PMID: 29487215 DOI: 10.1073/pnas.1715218115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
66 Land AD, Tsui HC, Kocaoglu O, Vella SA, Shaw SL, Keen SK, Sham LT, Carlson EE, Winkler ME. Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol Microbiol 2013;90:939-55. [PMID: 24118410 DOI: 10.1111/mmi.12408] [Cited by in Crossref: 76] [Cited by in F6Publishing: 67] [Article Influence: 8.4] [Reference Citation Analysis]
67 Bonnet J, Durmort C, Jacq M, Mortier-Barrière I, Campo N, VanNieuwenhze MS, Brun YV, Arthaud C, Gallet B, Moriscot C, Morlot C, Vernet T, Di Guilmi AM. Peptidoglycan O-acetylation is functionally related to cell wall biosynthesis and cell division in Streptococcus pneumoniae. Mol Microbiol 2017;106:832-46. [PMID: 28960579 DOI: 10.1111/mmi.13849] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
68 Garcia PS, Duchemin W, Flandrois JP, Gribaldo S, Grangeasse C, Brochier-Armanet C. A Comprehensive Evolutionary Scenario of Cell Division and Associated Processes in the Firmicutes. Mol Biol Evol 2021;38:2396-412. [PMID: 33533884 DOI: 10.1093/molbev/msab034] [Reference Citation Analysis]
69 Ortiz C, Natale P, Cueto L, Vicente M. The keepers of the ring: regulators of FtsZ assembly. FEMS Microbiol Rev 2016;40:57-67. [PMID: 26377318 DOI: 10.1093/femsre/fuv040] [Cited by in Crossref: 85] [Cited by in F6Publishing: 76] [Article Influence: 12.1] [Reference Citation Analysis]
70 Trespidi G, Scoffone VC, Barbieri G, Riccardi G, De Rossi E, Buroni S. Molecular Characterization of the Burkholderia cenocepacia dcw Operon and FtsZ Interactors as New Targets for Novel Antimicrobial Design. Antibiotics (Basel) 2020;9:E841. [PMID: 33255486 DOI: 10.3390/antibiotics9120841] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
71 Schweizer I, Peters K, Stahlmann C, Hakenbeck R, Denapaite D. Penicillin-binding protein 2x of Streptococcus pneumoniae: the mutation Ala707Asp within the C-terminal PASTA2 domain leads to destabilization. Microb Drug Resist 2014;20:250-7. [PMID: 24841912 DOI: 10.1089/mdr.2014.0082] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
72 Straume D, Stamsås GA, Berg KH, Salehian Z, Håvarstein LS. Identification of pneumococcal proteins that are functionally linked to penicillin-binding protein 2b (PBP2b): Identification of PBP2b accessory proteins. Molecular Microbiology 2017;103:99-116. [DOI: 10.1111/mmi.13543] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
73 Velázquez-Suárez C, Luque I, Herrero A. The Inorganic Nutrient Regime and the mre Genes Regulate Cell and Filament Size and Morphology in the Phototrophic Multicellular Bacterium Anabaena. mSphere 2020;5:e00747-20. [PMID: 33115834 DOI: 10.1128/mSphere.00747-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
74 David B, Duchêne MC, Haustenne GL, Pérez-Núñez D, Chapot-Chartier MP, De Bolle X, Guédon E, Hols P, Hallet B. PBP2b plays a key role in both peripheral growth and septum positioning in Lactococcus lactis. PLoS One 2018;13:e0198014. [PMID: 29791496 DOI: 10.1371/journal.pone.0198014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
75 Bajaj R, Bruce KE, Davidson AL, Rued BE, Stauffacher CV, Winkler ME. Biochemical characterization of essential cell division proteins FtsX and FtsE that mediate peptidoglycan hydrolysis by PcsB in Streptococcus pneumoniae. Microbiologyopen 2016;5:738-52. [PMID: 27167971 DOI: 10.1002/mbo3.366] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
76 Peters K, Schweizer I, Beilharz K, Stahlmann C, Veening J, Hakenbeck R, Denapaite D. Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance: Localization of Streptococcus pneumoniae PBP2x. Molecular Microbiology 2014;92:733-55. [DOI: 10.1111/mmi.12588] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
77 Hammond LR, White ML, Eswara PJ. ¡vIVA la DivIVA! J Bacteriol 2019;201:e00245-19. [PMID: 31405912 DOI: 10.1128/JB.00245-19] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
78 Rued BE, Zheng JJ, Mura A, Tsui HT, Boersma MJ, Mazny JL, Corona F, Perez AJ, Fadda D, Doubravová L, Buriánková K, Branny P, Massidda O, Winkler ME. Suppression and synthetic-lethal genetic relationships of ΔgpsB mutations indicate that GpsB mediates protein phosphorylation and penicillin-binding protein interactions in Streptococcus pneumoniae D39. Mol Microbiol 2017;103:931-57. [PMID: 28010038 DOI: 10.1111/mmi.13613] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 8.4] [Reference Citation Analysis]
79 Tsui HT, Boersma MJ, Vella SA, Kocaoglu O, Kuru E, Peceny JK, Carlson EE, VanNieuwenhze MS, Brun YV, Shaw SL, Winkler ME. Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39. Mol Microbiol 2014;94:21-40. [PMID: 25099088 DOI: 10.1111/mmi.12745] [Cited by in Crossref: 68] [Cited by in F6Publishing: 63] [Article Influence: 8.5] [Reference Citation Analysis]
80 Berg KH, Straume D, Håvarstein LS. The function of the transmembrane and cytoplasmic domains of pneumococcal penicillin-binding proteins 2x and 2b extends beyond that of simple anchoring devices. Microbiology 2014;160:1585-98. [DOI: 10.1099/mic.0.078535-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
81 Zeng XF, Ma Y, Yang L, Zhou L, Xin Y, Chang L, Zhang JR, Hao X. A C-terminal truncated mutation of licC attenuates the virulence of Streptococcus pneumoniae. Res Microbiol 2014;165:630-8. [PMID: 25283725 DOI: 10.1016/j.resmic.2014.09.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
82 Lewis RJ. The GpsB files: the truth is out there. Mol Microbiol 2017;103:913-8. [PMID: 28010044 DOI: 10.1111/mmi.13612] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
83 Noirclerc-Savoye M, Lantez V, Signor L, Philippe J, Vernet T, Zapun A. Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly. PLoS One 2013;8:e75522. [PMID: 24147156 DOI: 10.1371/journal.pone.0075522] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
84 Alcorlo M, Straume D, Lutkenhaus J, Håvarstein LS, Hermoso JA. Structural Characterization of the Essential Cell Division Protein FtsE and Its Interaction with FtsX in Streptococcus pneumoniae. mBio 2020;11:e01488-20. [PMID: 32873757 DOI: 10.1128/mBio.01488-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
85 Ulrych A, Holečková N, Goldová J, Doubravová L, Benada O, Kofroňová O, Halada P, Branny P. Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag. BMC Microbiol 2016;16:247. [PMID: 27776484 DOI: 10.1186/s12866-016-0865-6] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
86 Zhang J, Yang YH, Jiang YL, Zhou CZ, Chen Y. Structural and biochemical analyses of the Streptococcus pneumonia L,D-carboxypeptidase DacB. Acta Crystallogr D Biol Crystallogr 2015;71:283-92. [PMID: 25664738 DOI: 10.1107/S1399004714025371] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
87 van der Linden M, Otten J, Bergmann C, Latorre C, Liñares J, Hakenbeck R. Insight into the Diversity of Penicillin-Binding Protein 2x Alleles and Mutations in Viridans Streptococci. Antimicrob Agents Chemother 2017;61:e02646-16. [PMID: 28193649 DOI: 10.1128/AAC.02646-16] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
88 Krupka M, Cabré EJ, Jiménez M, Rivas G, Rico AI, Vicente M. Role of the FtsA C terminus as a switch for polymerization and membrane association. mBio 2014;5:e02221. [PMID: 25425238 DOI: 10.1128/mBio.02221-14] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
89 Xiang Z, Li Z, Ren Z, Zeng J, Peng X, Li Y, Li J. EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Mol Oral Microbiol 2019;34:194-208. [PMID: 31287946 DOI: 10.1111/omi.12264] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
90 Mura A, Fadda D, Perez AJ, Danforth ML, Musu D, Rico AI, Krupka M, Denapaite D, Tsui HT, Winkler ME, Branny P, Vicente M, Margolin W, Massidda O. Roles of the Essential Protein FtsA in Cell Growth and Division in Streptococcus pneumoniae. J Bacteriol 2017;199:e00608-16. [PMID: 27872183 DOI: 10.1128/JB.00608-16] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
91 Wang Y, Wang Y, Li J, Gong S, Sun L, Grenier D, Li Y. Pdh is involved in the cell division and Normal septation of Streptococcus suis. Microbiol Res 2019;228:126304. [PMID: 31422235 DOI: 10.1016/j.micres.2019.126304] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
92 Jiang C, Caccamo PD, Brun YV. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights. Bioessays 2015;37:413-25. [PMID: 25664446 DOI: 10.1002/bies.201400098] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
93 Maurya GK, Modi K, Banerjee M, Chaudhary R, Rajpurohit YS, Misra HS. Phosphorylation of FtsZ and FtsA by a DNA Damage-Responsive Ser/Thr Protein Kinase Affects Their Functional Interactions in Deinococcus radiodurans. mSphere 2018;3:e00325-18. [PMID: 30021877 DOI: 10.1128/mSphere.00325-18] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]