BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Srivastava S, Brychkova G, Yarmolinsky D, Soltabayeva A, Samani T, Sagi M. Aldehyde Oxidase 4 Plays a Critical Role in Delaying Silique Senescence by Catalyzing Aldehyde Detoxification. Plant Physiol 2017;173:1977-97. [PMID: 28188272 DOI: 10.1104/pp.16.01939] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Wu Q, Gao H, Zhang Z, Li T, Qu H, Jiang Y, Yun Z. Deciphering the Metabolic Pathways of Pitaya Peel after Postharvest Red Light Irradiation. Metabolites 2020;10:E108. [PMID: 32183356 DOI: 10.3390/metabo10030108] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Di Berardino J, Marmagne A, Berger A, Yoshimoto K, Cueff G, Chardon F, Masclaux-Daubresse C, Reisdorf-Cren M. Autophagy controls resource allocation and protein storage accumulation in Arabidopsis seeds. J Exp Bot 2018;69:1403-14. [PMID: 29378007 DOI: 10.1093/jxb/ery012] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
3 Kaufholdt D, Baillie CK, Meinen R, Mendel RR, Hänsch R. The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex. Front Plant Sci 2017;8:1946. [PMID: 29184564 DOI: 10.3389/fpls.2017.01946] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
4 Soltabayeva A, Ongaltay A, Omondi JO, Srivastava S. Morphological, Physiological and Molecular Markers for Salt-Stressed Plants. Plants (Basel) 2021;10:243. [PMID: 33513682 DOI: 10.3390/plants10020243] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
5 Nurbekova Z, Srivastava S, Standing D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Oshanova D, Turečková V, Strand M, Biswas MS, Mano J, Sagi M. Arabidopsis aldehyde oxidase 3, known to oxidize abscisic aldehyde to abscisic acid, protects leaves from aldehyde toxicity. Plant J 2021;108:1439-55. [PMID: 34587326 DOI: 10.1111/tpj.15521] [Reference Citation Analysis]
6 Biswas MS, Fukaki H, Mori IC, Nakahara K, Mano J. Reactive oxygen species and reactive carbonyl species constitute a feed-forward loop in auxin signaling for lateral root formation. Plant J 2019;100:536-48. [PMID: 31306517 DOI: 10.1111/tpj.14456] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
7 D'Alessandro S, Beaugelin I, Havaux M. Tanned or Sunburned: How Excessive Light Triggers Plant Cell Death. Mol Plant 2020;13:1545-55. [PMID: 32992028 DOI: 10.1016/j.molp.2020.09.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Bekturova A, Oshanova D, Tiwari P, Nurbekova Z, Kurmanbayeva A, Soltabayeva A, Yarmolinsky D, Srivastava S, Turecková V, Strnad M, Sagi M. Adenosine 5' phosphosulfate reductase and sulfite oxidase regulate sulfite-induced water loss in Arabidopsis. J Exp Bot 2021;72:6447-66. [PMID: 34107028 DOI: 10.1093/jxb/erab249] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Janků M, Tichá T, Luhová L, Petřivalský M. Compartmentalization of Reactive Oxygen Species and Nitric Oxide Production in Plant Cells. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M, editors. Reactive Oxygen, Nitrogen and Sulfur Species in Plants. Wiley; 2019. pp. 923-45. [DOI: 10.1002/9781119468677.ch40] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
10 Silva AT, Gao B, Fisher KM, Mishler BD, Ekwealor JTB, Stark LR, Li X, Zhang D, Bowker MA, Brinda JC, Coe KK, Oliver MJ. To dry perchance to live: Insights from the genome of the desiccation-tolerant biocrust moss Syntrichia caninervis. Plant J 2021;105:1339-56. [PMID: 33277766 DOI: 10.1111/tpj.15116] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Mano J, Biswas MS, Sugimoto K. Reactive Carbonyl Species: A Missing Link in ROS Signaling. Plants (Basel) 2019;8:E391. [PMID: 31575078 DOI: 10.3390/plants8100391] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 9.7] [Reference Citation Analysis]
12 Biswas MS, Mano J. Lipid Peroxide-Derived Reactive Carbonyl Species as Mediators of Oxidative Stress and Signaling. Front Plant Sci 2021;12:720867. [PMID: 34777410 DOI: 10.3389/fpls.2021.720867] [Reference Citation Analysis]
13 Soltabayeva A, Bekturova A, Kurmanbayeva A, Oshanova D, Nurbekova Z, Srivastava S, Standing D, Sagi M. Ureides are similarly accumulated in response to UV-C irradiation and wound but differently remobilized during recovery in Arabidopsis leaves. J Exp Bot 2021:erab441. [PMID: 34606608 DOI: 10.1093/jxb/erab441] [Reference Citation Analysis]
14 Wu J, Kamanga BM, Zhang W, Xu Y, Xu L. Research progress of aldehyde oxidases in plants. PeerJ 2022;10:e13119. [DOI: 10.7717/peerj.13119] [Reference Citation Analysis]
15 Horn PJ. Where do the electrons go? How numerous redox processes drive phytochemical diversity: Redox processes in phytochemistry. Phytochem Rev 2021;20:367-407. [DOI: 10.1007/s11101-020-09738-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
16 Müller TM, Böttcher C, Glawischnig E. Dissection of the network of indolic defence compounds in Arabidopsis thaliana by multiple mutant analysis. Phytochemistry 2019;161:11-20. [DOI: 10.1016/j.phytochem.2019.01.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
17 Biswas MS, Terada R, Mano J. Inactivation of Carbonyl-Detoxifying Enzymes by H2O2 Is a Trigger to Increase Carbonyl Load for Initiating Programmed Cell Death in Plants. Antioxidants (Basel) 2020;9:E141. [PMID: 32041258 DOI: 10.3390/antiox9020141] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
18 Zhanassova K, Kurmanbayeva A, Gadilgereyeva B, Yermukhambetova R, Iksat N, Amanbayeva U, Bekturova A, Tleukulova Z, Omarov R, Masalimov Z. ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiol Plant 2021;43. [DOI: 10.1007/s11738-021-03281-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
19 Batyrshina Z, Yergaliyev TM, Nurbekova Z, Moldakimova NA, Masalimov ZK, Sagi M, Omarov RT. Differential influence of molybdenum and tungsten on the growth of barley seedlings and the activity of aldehyde oxidase under salinity. Journal of Plant Physiology 2018;228:189-96. [DOI: 10.1016/j.jplph.2018.06.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Tomar M, S S, Singh B, Bhardwaj V, Sood S, Singh B, Salaria N, Thakur K, Kumar A, Sharma N, Goutam U. Validation of molecular response of tuberization in response to elevated temperature by using a transient Virus Induced Gene Silencing (VIGS) in potato. Funct Integr Genomics 2021;21:215-29. [PMID: 33611637 DOI: 10.1007/s10142-021-00771-2] [Reference Citation Analysis]
21 Watanabe S, Sato M, Sawada Y, Tanaka M, Matsui A, Kanno Y, Hirai MY, Seki M, Sakamoto A, Seo M. Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways. Sci Rep 2018;8:16592. [PMID: 30413758 DOI: 10.1038/s41598-018-34862-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
22 Zarei A, Brikis CJ, Bajwa VS, Chiu GZ, Simpson JP, DeEll JR, Bozzo GG, Shelp BJ. Plant Glyoxylate/Succinic Semialdehyde Reductases: Comparative Biochemical Properties, Function during Chilling Stress, and Subcellular Localization. Front Plant Sci 2017;8:1399. [PMID: 28855911 DOI: 10.3389/fpls.2017.01399] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
23 Foti A, Dorendorf F, Leimkühler S. A single nucleotide polymorphism causes enhanced radical oxygen species production by human aldehyde oxidase. PLoS One 2017;12:e0182061. [PMID: 28750088 DOI: 10.1371/journal.pone.0182061] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
24 Janků M, Luhová L, Petřivalský M. On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants (Basel) 2019;8:E105. [PMID: 30999668 DOI: 10.3390/antiox8040105] [Cited by in Crossref: 63] [Cited by in F6Publishing: 49] [Article Influence: 21.0] [Reference Citation Analysis]
25 Soltabayeva A, Srivastava S, Kurmanbayeva A, Bekturova A, Fluhr R, Sagi M. Early Senescence in Older Leaves of Low Nitrate-Grown Atxdh1 Uncovers a Role for Purine Catabolism in N Supply. Plant Physiol 2018;178:1027-44. [PMID: 30190419 DOI: 10.1104/pp.18.00795] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
26 Oshanova D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Nurbekova Z, Standing D, Dubey AK, Sagi M. Level of Sulfite Oxidase Activity Affects Sulfur and Carbon Metabolism in Arabidopsis. Front Plant Sci 2021;12:690830. [PMID: 34249061 DOI: 10.3389/fpls.2021.690830] [Reference Citation Analysis]
27 González-gordo S, Palma JM, Corpas FJ. Peroxisomal Proteome Mining of Sweet Pepper (Capsicum annuum L.) Fruit Ripening Through Whole Isobaric Tags for Relative and Absolute Quantitation Analysis. Front Plant Sci 2022;13:893376. [DOI: 10.3389/fpls.2022.893376] [Reference Citation Analysis]
28 Mano J, Biswas MS. Analysis of Reactive Carbonyl Species Generated Under Oxidative Stress. In: De Gara L, Locato V, editors. Plant Programmed Cell Death. New York: Springer; 2018. pp. 117-24. [DOI: 10.1007/978-1-4939-7668-3_11] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]