BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Matos CO, Passos YM, do Amaral MJ, Macedo B, Tempone MH, Bezerra OCL, Moraes MO, Almeida MS, Weber G, Missailidis S, Silva JL, Uversky VN, Pinheiro AS, Cordeiro Y. Liquid-liquid phase separation and fibrillation of the prion protein modulated by a high-affinity DNA aptamer. FASEB J 2020;34:365-85. [PMID: 31914616 DOI: 10.1096/fj.201901897R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Agarwal A, Arora L, Rai SK, Avni A, Mukhopadhyay S. Spatiotemporal modulations in heterotypic condensates of prion and α-synuclein control phase transitions and amyloid conversion. Nat Commun 2022;13:1154. [PMID: 35241680 DOI: 10.1038/s41467-022-28797-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022;27:705. [PMID: 35163973 DOI: 10.3390/molecules27030705] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Daude N, Lau A, Vanni I, Kang SG, Castle AR, Wohlgemuth S, Dorosh L, Wille H, Stepanova M, Westaway D. Prion protein with a mutant N-terminal octarepeat region undergoes cobalamin-dependent assembly into high-molecular weight complexes. J Biol Chem 2022;:101770. [PMID: 35271850 DOI: 10.1016/j.jbc.2022.101770] [Reference Citation Analysis]
4 Sprunger ML, Jackrel ME. Prion-Like Proteins in Phase Separation and Their Link to Disease. Biomolecules 2021;11:1014. [PMID: 34356638 DOI: 10.3390/biom11071014] [Reference Citation Analysis]
5 Aguilar G, Pagano N, Manuelidis L. Reduced Expression of Prion Protein With Increased Interferon-β Fail to Limit Creutzfeldt-Jakob Disease Agent Replication in Differentiating Neuronal Cells. Front Physiol 2022;13:837662. [DOI: 10.3389/fphys.2022.837662] [Reference Citation Analysis]
6 Silva JL, Vieira TC, Cordeiro Y, de Oliveira GAP. Nucleic acid actions on abnormal protein aggregation, phase transitions and phase separation. Curr Opin Struct Biol 2022;73:102346. [PMID: 35247749 DOI: 10.1016/j.sbi.2022.102346] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Agarwal A, Mukhopadhyay S. Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation. J Mol Biol 2021;:167368. [PMID: 34808226 DOI: 10.1016/j.jmb.2021.167368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 P B Gomes M, de Lima EV, G Q Barros-Aragão F, Passos YM, Lemos FS, Zamberlan DC, Ribeiro G, Macedo B, C Ferreira N, Silva JL, Figueiredo CP, Clarke JR, Cordeiro Y. Prion protein complexed to a DNA aptamer induce behavioral and synapse dysfunction in mice. Behav Brain Res 2022;419:113680. [PMID: 34822947 DOI: 10.1016/j.bbr.2021.113680] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Petronilho EC, Pedrote MM, Marques MA, Passos YM, Mota MF, Jakobus B, de Sousa GDS, Pereira da Costa F, Felix AL, Ferretti GDS, Almeida FP, Cordeiro Y, Vieira TCRG, de Oliveira GAP, Silva JL. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem Sci 2021;12:7334-49. [PMID: 34163823 DOI: 10.1039/d1sc01739j] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Reference Citation Analysis]
11 Tange H, Ishibashi D, Nakagaki T, Taguchi Y, Kamatari YO, Ozawa H, Nishida N. Liquid-liquid phase separation of full-length prion protein initiates conformational conversion in vitro. J Biol Chem 2021;296:100367. [PMID: 33545172 DOI: 10.1016/j.jbc.2021.100367] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
12 Caruso IP, Dos Santos Almeida V, do Amaral MJ, de Andrade GC, de Araújo GR, de Araújo TS, de Azevedo JM, Barbosa GM, Bartkevihi L, Bezerra PR, Dos Santos Cabral KM, de Lourenço IO, Malizia-Motta CLF, de Luna Marques A, Mebus-Antunes NC, Neves-Martins TC, de Sá JM, Sanches K, Santana-Silva MC, Vasconcelos AA, da Silva Almeida M, de Amorim GC, Anobom CD, Da Poian AT, Gomes-Neto F, Pinheiro AS, Almeida FCL. Insights into the specificity for the interaction of the promiscuous SARS-CoV-2 nucleocapsid protein N-terminal domain with deoxyribonucleic acids. Int J Biol Macromol 2022;203:466-80. [PMID: 35077748 DOI: 10.1016/j.ijbiomac.2022.01.121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Angelli JN, Passos YM, Brito JMA, Silva JL, Cordeiro Y, Vieira TCRG. Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors. Front Neurosci 2021;15:689315. [PMID: 34220442 DOI: 10.3389/fnins.2021.689315] [Reference Citation Analysis]
14 Polido SA, Kamps J, Tatzelt J. Biological Functions of the Intrinsically Disordered N-Terminal Domain of the Prion Protein: A Possible Role of Liquid-Liquid Phase Separation. Biomolecules 2021;11:1201. [PMID: 34439867 DOI: 10.3390/biom11081201] [Reference Citation Analysis]