BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Banerji CRS, Henderson D, Tawil RN, Zammit PS. Skeletal muscle regeneration in facioscapulohumeral muscular dystrophy is correlated with pathological severity. Hum Mol Genet 2020;29:2746-60. [PMID: 32744322 DOI: 10.1093/hmg/ddaa164] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Claus C, Slavin M, Ansseau E, Lancelot C, Bah K, Lassche S, Fiévet M, Greco A, Tomaiuolo S, Tassin A, Dudome V, Kusters B, Declèves AE, Laoudj-Chenivesse D, van Engelen BGM, Nonclercq D, Belayew A, Kalisman N, Coppée F. The double homeodomain protein DUX4c is associated with regenerating muscle fibers and RNA-binding proteins. Skelet Muscle 2023;13:5. [PMID: 36882853 DOI: 10.1186/s13395-022-00310-y] [Reference Citation Analysis]
2 Ganassi M, Figeac N, Reynaud M, Ortuste Quiroga HP, Zammit PS. Antagonism Between DUX4 and DUX4c Highlights a Pathomechanism Operating Through β-Catenin in Facioscapulohumeral Muscular Dystrophy. Front Cell Dev Biol 2022;10:802573. [DOI: 10.3389/fcell.2022.802573] [Reference Citation Analysis]
3 Banerji CRS, Greco A, Joosten LAB, van Engelen B, Zammit PS. A circulating biomarker of facioscapulohumeral muscular dystrophy clinical severity, valid in skeletal muscle and blood.. [DOI: 10.1101/2022.08.31.506017] [Reference Citation Analysis]
4 Mariot V, Dumonceaux J. Gene Editing to Tackle Facioscapulohumeral Muscular Dystrophy. Front Genome Ed 2022;4. [DOI: 10.3389/fgeed.2022.937879] [Reference Citation Analysis]
5 Lu-nguyen N, Dickson G, Malerba A, Popplewell L. Long-Term Systemic Treatment of a Mouse Model Displaying Chronic FSHD-like Pathology with Antisense Therapeutics That Inhibit DUX4 Expression. Biomedicines 2022;10:1623. [DOI: 10.3390/biomedicines10071623] [Reference Citation Analysis]
6 Kakouri AC, Koutalianos D, Koutsoulidou A, Oulas A, Tomazou M, Nikolenko N, Turner C, Roos A, Lusakowska A, Janiszewska K, Papadimas GK, Papadopoulos C, Kararizou E, Papanicolaou EZ, Gorman G, Lochmüller H, Spyrou GM, Phylactou LA. Circulating small RNA signatures differentiate accurately the subtypes of muscular dystrophies: small-RNA next-generation sequencing analytics and functional insights. RNA Biol 2022;19:507-18. [PMID: 35388741 DOI: 10.1080/15476286.2022.2058817] [Reference Citation Analysis]
7 Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022;411:112906. [PMID: 34740639 DOI: 10.1016/j.yexcr.2021.112906] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
8 van den Heuvel A, Lassche S, Mul K, Greco A, San León Granado D, Heerschap A, Küsters B, Tapscott SJ, Voermans NC, van Engelen BGM, van der Maarel SM. Facioscapulohumeral dystrophy transcriptome signatures correlate with different stages of disease and are marked by different MRI biomarkers. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-04817-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Selva-O'Callaghan A, Trallero-Araguás E, Milisenda JC, Grau-Junyent JM. Differential diagnosis of necrotizing myopathy. Curr Opin Rheumatol 2021;33:544-53. [PMID: 34482348 DOI: 10.1097/BOR.0000000000000836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
10 Nunes AM, Ramirez M, Jones TI, Jones PL. Identification of candidate miRNA biomarkers for facioscapulohumeral muscular dystrophy using DUX4-based mouse models. Dis Model Mech 2021;14:dmm049016. [PMID: 34338285 DOI: 10.1242/dmm.049016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
11 Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021;22:7220. [PMID: 34281273 DOI: 10.3390/ijms22137220] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
12 Brennan CM, Emerson CP Jr, Owens J, Christoforou N. p38 MAPKs - roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI Insight 2021;6:149915. [PMID: 34156029 DOI: 10.1172/jci.insight.149915] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
13 Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021;13:e13695. [PMID: 34151531 DOI: 10.15252/emmm.202013695] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
14 Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021;31. [PMID: 33733717 DOI: 10.4081/ejtm.2021.9743] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Lu-nguyen N, Malerba A, Dickson G, Popplewell L. Systemic antisense therapeutics inhibiting DUX4 expression improves muscle function in an FSHD mouse model.. [DOI: 10.1101/2021.01.14.426659] [Cited by in F6Publishing: 1] [Reference Citation Analysis]