BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kurokawa YK, Yin RT, Shang MR, Shirure VS, Moya ML, George SC. Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Three-Dimensional Microphysiological Systems. Tissue Eng Part C Methods 2017;23:474-84. [PMID: 28622076 DOI: 10.1089/ten.TEC.2017.0133] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Nashimoto Y, Mukomoto R, Imaizumi T, Terai T, Shishido S, Ino K, Yokokawa R, Miura T, Onuma K, Inoue M, Shiku H. Electrochemical sensing of oxygen metabolism for a three-dimensional cultured model with biomimetic vascular flow. Biosensors and Bioelectronics 2023;219:114808. [DOI: 10.1016/j.bios.2022.114808] [Reference Citation Analysis]
2 Meijer EM, Koch SE, van Dijk CG, Maas RG, Chrifi I, Szymczyk W, Besseling PJ, Pomp L, Koomen VJ, Buikema JW, Bouten CV, Verhaar MC, Smits AI, Cheng C. 3D Human iPSC Blood Vessel Organoids as a Source of Flow‐Adaptive Vascular Cells for Creating a Human‐Relevant 3D‐Scaffold Based Macrovessel Model. Advanced Biology 2022. [DOI: 10.1002/adbi.202200137] [Reference Citation Analysis]
3 Ang LT, Nguyen AT, Liu KJ, Chen A, Xiong X, Curtis M, Martin RM, Raftry BC, Ng CY, Vogel U, Lander A, Lesch BJ, Fowler JL, Holman AR, Chai T, Vijayakumar S, Suchy FP, Nishimura T, Bhadury J, Porteus MH, Nakauchi H, Cheung C, George SC, Red-Horse K, Prescott JB, Loh KM. Generating human artery and vein cells from pluripotent stem cells highlights the arterial tropism of Nipah and Hendra viruses. Cell 2022;185:2523-2541.e30. [PMID: 35738284 DOI: 10.1016/j.cell.2022.05.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
4 Zhao N, Guo Z, Kulkarni S, Norman D, Zhang S, Chung TD, Nerenberg RF, Linville RM, Searson P. Engineering the Human Blood‐Brain Barrier at the Capillary Scale using a Double‐Templating Technique. Adv Funct Materials. [DOI: 10.1002/adfm.202110289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Nambiar J, Jana S, Nandi SK. Strategies for Enhancing Vascularization of Biomaterial-Based Scaffold in Bone Regeneration. Chem Rec 2022;:e202200008. [PMID: 35352873 DOI: 10.1002/tcr.202200008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Bender RHF, O’donnell BT, Shergill B, Pham BQ, Juat DJ, Hatch MS, Shirure VS, Wortham M, Nguyen-ngoc K, Jun Y, Gaetani R, Christman KL, Teyton L, George SC, Sander M, Hughes CC. A vascularized 3D model of the human pancreatic islet for ex vivo study of immune cell-islet interaction.. [DOI: 10.1101/2021.12.21.473744] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Lust ST, Shanahan CM, Shipley RJ, Lamata P, Gentleman E. Design considerations for engineering 3D models to study vascular pathologies in vitro. Acta Biomater 2021;132:114-28. [PMID: 33652164 DOI: 10.1016/j.actbio.2021.02.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Huang K, Castiaux A, Podicheti R, Rusch DB, Martin RS, Baker LA. A Hybrid Nanofiber/Paper Cell Culture Platform for Building a 3D Blood-brain Barrier Model. Small Methods 2021;5:2100592. [PMID: 34541301 DOI: 10.1002/smtd.202100592] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 Ewald ML, Chen YH, Lee AP, Hughes CCW. The vascular niche in next generation microphysiological systems. Lab Chip 2021;21:3244-62. [PMID: 34396383 DOI: 10.1039/d1lc00530h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
10 Chakraborty S, Depalma TJ, Skardal A. Increasing Accuracy of In Vitro Cancer Models: Engineering Stromal Complexity into Tumor Organoid Platforms. Adv NanoBio Res 2021;1:2100061. [DOI: 10.1002/anbr.202100061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Banerjee I. Strategies for Vascularizing Pancreatic Islets and Stem Cell–Derived Islet Organoids. Curr Transpl Rep 2021;8:220-7. [DOI: 10.1007/s40472-021-00334-1] [Reference Citation Analysis]
12 Malheiro A, Wieringa P, Moroni L. Peripheral neurovascular link: an overview of interactions and in vitro models. Trends Endocrinol Metab 2021;32:623-38. [PMID: 34127366 DOI: 10.1016/j.tem.2021.05.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Alsaigh T, Di Bartolo BA, Mulangala J, Figtree GA, Leeper NJ. Bench-to-Bedside in Vascular Medicine: Optimizing the Translational Pipeline for Patients With Peripheral Artery Disease. Circ Res 2021;128:1927-43. [PMID: 34110900 DOI: 10.1161/CIRCRESAHA.121.318265] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Schneider J, Pultar M, Oesterreicher J, Bobbili MR, Mühleder S, Priglinger E, Redl H, Spittler A, Grillari J, Holnthoner W. Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation. Int J Mol Sci 2021;22:4050. [PMID: 33919955 DOI: 10.3390/ijms22084050] [Reference Citation Analysis]
15 Lim J, Ching H, Yoon JK, Jeon NL, Kim Y. Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance. Nano Converg 2021;8:12. [PMID: 33846849 DOI: 10.1186/s40580-021-00261-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 20.0] [Reference Citation Analysis]
16 Browne S, Gill EL, Schultheiss P, Goswami I, Healy KE. Stem cell-based vascularization of microphysiological systems. Stem Cell Reports 2021:S2213-6711(21)00145-4. [PMID: 33836144 DOI: 10.1016/j.stemcr.2021.03.015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
17 Tu C, Cunningham NJ, Zhang M, Wu JC. Human Induced Pluripotent Stem Cells as a Screening Platform for Drug-Induced Vascular Toxicity. Front Pharmacol 2021;12:613837. [PMID: 33790786 DOI: 10.3389/fphar.2021.613837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Jang HR, Cho HJ, Zhou Y, Shao NY, Lee K, Le HHT, Jeon J, Lee JE, Huh W, Ong SG, Lee WH, Kim YG. Modeling Uremic Vasculopathy With Induced Pluripotent Stem Cell-Derived Endothelial Cells as a Drug Screening System. Front Cell Dev Biol 2020;8:618796. [PMID: 33511129 DOI: 10.3389/fcell.2020.618796] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Omorphos NP, Gao C, Tan SS, Sangha MS. Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues. Mol Biol Rep 2021;48:941-50. [PMID: 33393005 DOI: 10.1007/s11033-020-06108-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
20 Dunkenberger L, Karakikes I. Modeling the cardiovascular toxicities of anticancer therapies in the era of precision medicine. Recent Advances in iPSC Technology 2021. [DOI: 10.1016/b978-0-12-822231-7.00006-0] [Reference Citation Analysis]
21 Roux BM, Vaicik MK, Shrestha B, Montelongo S, Stojkova K, Yang F, Guda T, Cinar A, Brey EM. Induced Pluripotent Stem Cell-Derived Endothelial Networks Accelerate Vascularization But Not Bone Regeneration. Tissue Eng Part A 2021;27:940-61. [PMID: 32924856 DOI: 10.1089/ten.TEA.2020.0200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
22 Barrs RW, Jia J, Silver SE, Yost M, Mei Y. Biomaterials for Bioprinting Microvasculature. Chem Rev 2020;120:10887-949. [PMID: 32867470 DOI: 10.1021/acs.chemrev.0c00027] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
23 Sriram G, K Handral H, Uin Gan S, Islam I, Jalil Rufaihah A, Cao T. Fabrication of vascularized tissue constructs under chemically defined culture conditions. Biofabrication 2020;12:045015. [DOI: 10.1088/1758-5090/aba0c2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
24 Koduru SV, Leberfinger AN, Pasic D, Forghani A, Lince S, Hayes DJ, Ozbolat IT, Ravnic DJ. Cellular Based Strategies for Microvascular Engineering. Stem Cell Rev Rep 2019;15:218-40. [PMID: 30739276 DOI: 10.1007/s12015-019-09877-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
25 Ngo MT, Harley BAC. Angiogenic biomaterials to promote therapeutic regeneration and investigate disease progression. Biomaterials 2020;255:120207. [PMID: 32569868 DOI: 10.1016/j.biomaterials.2020.120207] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
26 Pinheiro EA, Fetterman KA, Burridge PW. hiPSCs in cardio-oncology: deciphering the genomics. Cardiovasc Res 2019;115:935-48. [PMID: 30689737 DOI: 10.1093/cvr/cvz018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
27 Pollet AMAO, den Toonder JMJ. Recapitulating the Vasculature Using Organ-On-Chip Technology. Bioengineering (Basel) 2020;7:E17. [PMID: 32085464 DOI: 10.3390/bioengineering7010017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
28 Henderson AR, Choi H, Lee E. Blood and Lymphatic Vasculatures On-Chip Platforms and Their Applications for Organ-Specific In Vitro Modeling. Micromachines (Basel) 2020;11:E147. [PMID: 32013154 DOI: 10.3390/mi11020147] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
29 Sacchi M, Bansal R, Rouwkema J. Bioengineered 3D Models to Recapitulate Tissue Fibrosis. Trends Biotechnol 2020;38:623-36. [PMID: 31952833 DOI: 10.1016/j.tibtech.2019.12.010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 17.0] [Reference Citation Analysis]
30 Weng KC, Kurokawa YK, Hajek BS, Paladin JA, Shirure VS, George SC. Human Induced Pluripotent Stem-Cardiac-Endothelial-Tumor-on-a-Chip to Assess Anticancer Efficacy and Cardiotoxicity. Tissue Eng Part C Methods 2020;26:44-55. [PMID: 31797733 DOI: 10.1089/ten.TEC.2019.0248] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
31 van Dijk CGM, Brandt MM, Poulis N, Anten J, van der Moolen M, Kramer L, Homburg EFGA, Louzao-martinez L, Pei J, Krebber MM, van Balkom BWM, de Graaf P, Duncker DJ, Verhaar MC, Luttge R, Cheng C. A new microfluidic model that allows monitoring of complex vascular structures and cell interactions in a 3D biological matrix. Lab Chip 2020;20:1827-44. [DOI: 10.1039/d0lc00059k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
32 Palladino A, Mavaro I, Pizzoleo C, De Felice E, Lucini C, de Girolamo P, Netti PA, Attanasio C. Induced Pluripotent Stem Cells as Vasculature Forming Entities. J Clin Med 2019;8:E1782. [PMID: 31731464 DOI: 10.3390/jcm8111782] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
33 Ng P, Belgur C, Barthakur S, van der Meer AD, Hamilton GA, Barrile R. Organs-on-Chips: a new paradigm for safety assessment of drug-induced thrombosis. Current Opinion in Toxicology 2019;17:1-8. [DOI: 10.1016/j.cotox.2019.08.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Zambuto SG, Clancy KBH, Harley BAC. A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion. Interface Focus 2019;9:20190016. [PMID: 31485309 DOI: 10.1098/rsfs.2019.0016] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 11.7] [Reference Citation Analysis]
35 Shang M, Soon RH, Lim CT, Khoo BL, Han J. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip 2019;19:369-86. [PMID: 30644496 DOI: 10.1039/c8lc00970h] [Cited by in Crossref: 119] [Cited by in F6Publishing: 123] [Article Influence: 39.7] [Reference Citation Analysis]
36 Puluca N, Lee S, Doppler S, Münsterer A, Dreßen M, Krane M, Wu SM. Bioprinting Approaches to Engineering Vascularized 3D Cardiac Tissues. Curr Cardiol Rep 2019;21:90. [PMID: 31352612 DOI: 10.1007/s11886-019-1179-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
37 Ronaldson-Bouchard K, Vunjak-Novakovic G. Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell. 2018;22:310-324. [PMID: 29499151 DOI: 10.1016/j.stem.2018.02.011] [Cited by in Crossref: 359] [Cited by in F6Publishing: 294] [Article Influence: 119.7] [Reference Citation Analysis]
38 Schneider J, Pultar M, Holnthoner W. Ex vivo engineering of blood and lymphatic microvascular networks. Vasc Biol 2019;1:H17-22. [PMID: 32923949 DOI: 10.1530/VB-19-0012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
39 Dhiman N, Kingshott P, Sumer H, Sharma CS, Rath SN. On-chip anticancer drug screening - Recent progress in microfluidic platforms to address challenges in chemotherapy. Biosens Bioelectron 2019;137:236-54. [PMID: 31121461 DOI: 10.1016/j.bios.2019.02.070] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 13.7] [Reference Citation Analysis]
40 Cochrane A, Albers HJ, Passier R, Mummery CL, van den Berg A, Orlova VV, van der Meer AD. Advanced in vitro models of vascular biology: Human induced pluripotent stem cells and organ-on-chip technology. Adv Drug Deliv Rev 2019;140:68-77. [PMID: 29944904 DOI: 10.1016/j.addr.2018.06.007] [Cited by in Crossref: 80] [Cited by in F6Publishing: 86] [Article Influence: 26.7] [Reference Citation Analysis]
41 Jang S, Collin de l'Hortet A, Soto-Gutierrez A. Induced Pluripotent Stem Cell-Derived Endothelial Cells: Overview, Current Advances, Applications, and Future Directions. Am J Pathol 2019;189:502-12. [PMID: 30653953 DOI: 10.1016/j.ajpath.2018.12.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
42 Hachey SJ, Hughes CCW. Applications of tumor chip technology. Lab Chip 2018;18:2893-912. [PMID: 30156248 DOI: 10.1039/c8lc00330k] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 20.0] [Reference Citation Analysis]
43 Ayuso JM, Truttschel R, Gong MM, Humayun M, Virumbrales-Munoz M, Vitek R, Felder M, Gillies SD, Sondel P, Wisinski KB, Patankar M, Beebe DJ, Skala MC. Evaluating natural killer cell cytotoxicity against solid tumors using a microfluidic model. Oncoimmunology 2019;8:1553477. [PMID: 30723584 DOI: 10.1080/2162402X.2018.1553477] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
44 Wijesekara P, Ng WH, Feng M, Ren X. Bioengineering the innate vasculature of complex organs: what have we learned so far. Current Opinion in Organ Transplantation 2018;23:657-63. [DOI: 10.1097/mot.0000000000000577] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
45 Natividad-Diaz SL, Browne S, Jha AK, Ma Z, Hossainy S, Kurokawa YK, George SC, Healy KE. A combined hiPSC-derived endothelial cell and in vitro microfluidic platform for assessing biomaterial-based angiogenesis. Biomaterials 2019;194:73-83. [PMID: 30583150 DOI: 10.1016/j.biomaterials.2018.11.032] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
46 Vilà-González M, Kelaini S, Magee C, Caines R, Campbell D, Eleftheriadou M, Cochrane A, Drehmer D, Tsifaki M, O'Neill K, Pedrini E, Yang C, Medina R, McDonald D, Simpson D, Zampetaki A, Zeng L, Grieve D, Lois N, Stitt AW, Margariti A. Enhanced Function of Induced Pluripotent Stem Cell-Derived Endothelial Cells Through ESM1 Signaling. Stem Cells 2019;37:226-39. [PMID: 30372556 DOI: 10.1002/stem.2936] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
47 Hajal C, Campisi M, Mattu C, Chiono V, Kamm RD. In vitro models of molecular and nano-particle transport across the blood-brain barrier. Biomicrofluidics 2018;12:042213. [PMID: 29887937 DOI: 10.1063/1.5027118] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 11.8] [Reference Citation Analysis]
48 Hu Z, Wu Y, Zhou M, Wang X, Pang J, Li Z, Feng M, Wang Y, Hu Q, Zhao J, Liu X, Wu L, Liang D. Generation of reporter hESCs by targeting EGFP at the CD144 locus to facilitate the endothelial differentiation. Dev Growth Differ 2018;60:205-15. [PMID: 29696633 DOI: 10.1111/dgd.12433] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
49 Kant RJ, Coulombe KLK. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomater 2018;69:42-62. [PMID: 29371132 DOI: 10.1016/j.actbio.2018.01.017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
50 Kurokawa YK, Shang MR, Yin RT, George SC. Modeling trastuzumab-related cardiotoxicity in vitro using human stem cell-derived cardiomyocytes. Toxicology Letters 2018;285:74-80. [DOI: 10.1016/j.toxlet.2018.01.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
51 Andrejecsk JW, Hughes CC. Engineering perfused microvascular networks into microphysiological systems platforms. Current Opinion in Biomedical Engineering 2018;5:74-81. [DOI: 10.1016/j.cobme.2018.02.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
52 Kutikhin AG, Sinitsky MY, Yuzhalin AE, Velikanova EA. Whole-Transcriptome Sequencing: a Powerful Tool for Vascular Tissue Engineering and Endothelial Mechanobiology. High Throughput 2018;7:E5. [PMID: 29485616 DOI: 10.3390/ht7010005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
53 Manikowski D, Andrée B, Samper E, Saint-Marc C, Olmer R, Vogt P, Strauß S, Haverich A, Hilfiker A. Human adipose tissue-derived stromal cells in combination with exogenous stimuli facilitate three-dimensional network formation of human endothelial cells derived from various sources. Vascul Pharmacol 2018;106:28-36. [PMID: 29452238 DOI: 10.1016/j.vph.2018.02.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
54 Morrissette-mcalmon J, Hawthorne RN, Snyder S, Grayson WL. Strategies for Tissue Engineering Vascularized Cardiac Patches to Treat Myocardial Infarctions. Biophysical Regulation of Vascular Differentiation and Assembly 2018. [DOI: 10.1007/978-3-319-99319-5_6] [Reference Citation Analysis]
55 Wang Y, Wang L, Guo Y, Zhu Y, Qin J. Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv 2018;8:1677-85. [DOI: 10.1039/c7ra11714k] [Cited by in Crossref: 89] [Cited by in F6Publishing: 92] [Article Influence: 22.3] [Reference Citation Analysis]
56 Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci. 2018;75:1411-1433. [PMID: 29243171 DOI: 10.1007/s00018-017-2730-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 8.4] [Reference Citation Analysis]
57 Wallet MA, Santostefano KE, Terada N, Brusko TM. Isogenic Cellular Systems Model the Impact of Genetic Risk Variants in the Pathogenesis of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017;8:276. [PMID: 29093700 DOI: 10.3389/fendo.2017.00276] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
58 [DOI: 10.1101/548024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]