BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sarinont T, Amano T, Kitazaki S, Koga K, Uchida G, Shiratani M, Hayashi N. Growth enhancement effects of radish sprouts: atmospheric pressure plasma irradiation vs. heat shock. J Phys : Conf Ser 2014;518:012017. [DOI: 10.1088/1742-6596/518/1/012017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Mildaziene V, Ivankov A, Sera B, Baniulis D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants 2022;11:856. [DOI: 10.3390/plants11070856] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
2 Ahmad A, Sripong K, Uthairatanakij A, Photchanachai S, Pankasemsuk T, Jitareerat P. Decontamination of seed borne disease in pepper (Capsicum annuum L.) seed and the enhancement of seed quality by the emulated plasma technology. Scientia Horticulturae 2022;291:110568. [DOI: 10.1016/j.scienta.2021.110568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zaguła G, Saletnik B, Bajcar M, Saletnik A, Puchalski C. Preliminary Research on the Influence of a Pulsed Magnetic Field on the Cationic Profile of Sunflower, Cress, and Radish Sprouts and on Their Germination Rate. Applied Sciences 2021;11:9678. [DOI: 10.3390/app11209678] [Reference Citation Analysis]
4 Attri P, Koga K, Okumura T, Shiratani M. Impact of atmospheric pressure plasma treated seeds on germination, morphology, gene expression and biochemical responses. Jpn J Appl Phys 2021;60:040502. [DOI: 10.35848/1347-4065/abe47d] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
5 Luang-In V, Saengha W, Karirat T, Buranrat B, Matra K, Deeseenthum S, Katisart T. Effect of cold plasma and elicitors on bioactive contents, antioxidant activity and cytotoxicity of Thai rat-tailed radish microgreens. J Sci Food Agric 2021;101:1685-98. [PMID: 33275790 DOI: 10.1002/jsfa.10985] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
6 Yoshimura S, Otsubo Y, Yamashita A, Ishikawa K. Insights into normothermic treatment with direct irradiation of atmospheric pressure plasma for biological applications. Jpn J Appl Phys 2021;60:010502. [DOI: 10.35848/1347-4065/abcbd2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Attri P, Ishikawa K, Okumura T, Koga K, Shiratani M. Plasma Agriculture from Laboratory to Farm: A Review. Processes 2020;8:1002. [DOI: 10.3390/pr8081002] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 31.5] [Reference Citation Analysis]
8 Subaedah S, Uematsu H, Hayashi N. Activation of EL-4 T-cells by irradiation with atmospheric oxygen plasma. Jpn J Appl Phys 2020;59:SJJF03. [DOI: 10.35848/1347-4065/ab83db] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zukiene R, Nauciene Z, Januskaitiene I, Pauzaite G, Mildaziene V, Koga K, Shiratani M. Dielectric barrier discharge plasma treatment-induced changes in sunflower seed germination, phytohormone balance, and seedling growth. Appl Phys Express 2019;12:126003. [DOI: 10.7567/1882-0786/ab5491] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
10 Yoshimura S, Aramaki M, Otsubo Y, Yamashita A, Koga K. Controlling feeding gas temperature of plasma jet with Peltier device for experiments with fission yeast. Jpn J Appl Phys 2019;58:SEEG03. [DOI: 10.7567/1347-4065/ab1473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhang J, Kwon T, Kim S, Jeong D. Plasma Farming: Non-Thermal Dielectric Barrier Discharge Plasma Technology for Improving the Growth of Soybean Sprouts and Chickens. Plasma 2018;1:285-96. [DOI: 10.3390/plasma1020025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
12 Šerá B, Šerý M. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Sci Technol 2018;20:044012. [DOI: 10.1088/2058-6272/aaacc6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 11.5] [Reference Citation Analysis]
13 Matra K. Atmospheric non-thermal argon–oxygen plasma for sunflower seedling growth improvement. Jpn J Appl Phys 2018;57:01AG03. [DOI: 10.7567/jjap.57.01ag03] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
14 Štěpánová V, Slavíček P, Kelar J, Prášil J, Smékal M, Stupavská M, Jurmanová J, Černák M. Atmospheric pressure plasma treatment of agricultural seeds of cucumber ( Cucumis sativus L .) and pepper ( Capsicum annuum L .) with effect on reduction of diseases and germination improvement. Plasma Process Polym 2018;15:1700076. [DOI: 10.1002/ppap.201700076] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 12.2] [Reference Citation Analysis]
15 Chang C, Sasaki M, Kumagai S, Wang G. Design of microplasma electrodes for plasma-on-chip devices. J Phys D: Appl Phys 2016;49:155203. [DOI: 10.1088/0022-3727/49/15/155203] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
16 Ohta T. Plasma in Agriculture. Cold Plasma in Food and Agriculture 2016. [DOI: 10.1016/b978-0-12-801365-6.00008-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]