BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, Hightower G, Mitchell TJ, Doran KS, Nizet V. The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med 2009;206:1845-52. [PMID: 19687228 DOI: 10.1084/jem.20090386] [Cited by in Crossref: 126] [Cited by in F6Publishing: 118] [Article Influence: 9.7] [Reference Citation Analysis]
Number Citing Articles
1 Wu T, Jia L, Lei S, Jiang H, Liu J, Li N, Langford PR, Liu H, Lei L. Host HSPD1 Translocation from Mitochondria to the Cytoplasm Induced by Streptococcus suis Serovar 2 Enolase Mediates Apoptosis and Loss of Blood–Brain Barrier Integrity. Cells 2022;11:2071. [DOI: 10.3390/cells11132071] [Reference Citation Analysis]
2 Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine 2022;77:103908. [PMID: 35255456 DOI: 10.1016/j.ebiom.2022.103908] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
3 Bárria C, Mil-homens D, Pinto SN, Fialho AM, Arraiano CM, Domingues S. RNase R, a New Virulence Determinant of Streptococcus pneumoniae. Microorganisms 2022;10:317. [DOI: 10.3390/microorganisms10020317] [Reference Citation Analysis]
4 Gingerich AD, Mousa JJ. Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies. Front Cell Infect Microbiol 2022;12:824788. [DOI: 10.3389/fcimb.2022.824788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhou M, Wang Z, Zhang L, Kudinha T, An H, Qian C, Jiang B, Wang Y, Xu Y, Liu Z, Zhang H, Zhang J. Serotype Distribution, Antimicrobial Susceptibility, Multilocus Sequencing Type and Virulence of Invasive Streptococcus pneumoniae in China: A Six-Year Multicenter Study. Front Microbiol 2022;12:798750. [DOI: 10.3389/fmicb.2021.798750] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Yamaguchi M, Kinjo Y, Nizet V. Editorial: Host-Pathogen Interactions During Pneumococcal Infection. Front Cell Infect Microbiol 2021;11:752959. [PMID: 34760720 DOI: 10.3389/fcimb.2021.752959] [Reference Citation Analysis]
7 Zheng K, He FB, Liu H, He Q. Genetic variations of toll-like receptors: Impact on susceptibility, severity and prognosis of bacterial meningitis. Infect Genet Evol 2021;93:104984. [PMID: 34214672 DOI: 10.1016/j.meegid.2021.104984] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 McKitrick TR, Bernard SM, Noll AJ, Collins BC, Goth CK, McQuillan AM, Heimburg-Molinaro J, Herrin BR, Wilson IA, Cooper MD, Cummings RD. Novel lamprey antibody recognizes terminal sulfated galactose epitopes on mammalian glycoproteins. Commun Biol 2021;4:674. [PMID: 34083726 DOI: 10.1038/s42003-021-02199-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
9 Morimura A, Hamaguchi S, Akeda Y, Tomono K. Mechanisms Underlying Pneumococcal Transmission and Factors Influencing Host-Pneumococcus Interaction: A Review. Front Cell Infect Microbiol 2021;11:639450. [PMID: 33996623 DOI: 10.3389/fcimb.2021.639450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Vieira AZ, Raittz RT, Faoro H. Origin and evolution of nonulosonic acid synthases and their relationship with bacterial pathogenicity revealed by a large-scale phylogenetic analysis. Microb Genom 2021;7. [PMID: 33848237 DOI: 10.1099/mgen.0.000563] [Reference Citation Analysis]
11 Jiménez-Munguía I, Tomečková Z, Mochnáčová E, Bhide K, Majerová P, Bhide M. Transcriptomic analysis of human brain microvascular endothelial cells exposed to laminin binding protein (adhesion lipoprotein) and Streptococcus pneumoniae. Sci Rep 2021;11:7970. [PMID: 33846455 DOI: 10.1038/s41598-021-87021-4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021. [PMID: 33772968 DOI: 10.1111/jam.15090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tseng YW, Chang CC, Chang YC. Novel Virulence Role of Pneumococcal NanA in Host Inflammation and Cell Death Through the Activation of Inflammasome and the Caspase Pathway. Front Cell Infect Microbiol 2021;11:613195. [PMID: 33777832 DOI: 10.3389/fcimb.2021.613195] [Reference Citation Analysis]
14 Yamaguchi M, Takemura M, Higashi K, Goto K, Hirose Y, Sumitomo T, Nakata M, Uzawa N, Kawabata S. Role of BgaA as a Pneumococcal Virulence Factor Elucidated by Molecular Evolutionary Analysis. Front Microbiol 2020;11:582437. [PMID: 33072054 DOI: 10.3389/fmicb.2020.582437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
15 Surve MV, Apte S, Bhutda S, Kamath KG, Kim KS, Banerjee A. Streptococcus pneumoniae utilizes a novel dynamin independent pathway for entry and persistence in brain endothelium. Curr Res Microb Sci 2020;1:62-8. [PMID: 34841302 DOI: 10.1016/j.crmicr.2020.08.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
16 Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel MI, Heidemann R, Braczynski AK, Ballhorn W, Günther S, Ogunshola OO, Mittelbronn M, Ködel U, Monoranu CM, Plate KH, Hammerschmidt S, Nau R, Devraj K, Kempf VAJ. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol 2020;140:183-208. [PMID: 32529267 DOI: 10.1007/s00401-020-02174-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
17 Liang J, Mantelos A, Toh ZQ, Tortorella SM, Ververis K, Vongsvivut J, Bambery KR, Licciardi PV, Hung A, Karagiannis TC. Investigation of potential anti-pneumococcal effects of l-sulforaphane and metabolites: Insights from synchrotron-FTIR microspectroscopy and molecular docking studies. J Mol Graph Model 2020;97:107568. [PMID: 32097886 DOI: 10.1016/j.jmgm.2020.107568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Campetella O, Buscaglia CA, Mucci J, Leguizamón MS. Parasite-host glycan interactions during Trypanosoma cruzi infection: trans-Sialidase rides the show. Biochim Biophys Acta Mol Basis Dis 2020;1866:165692. [PMID: 31972227 DOI: 10.1016/j.bbadis.2020.165692] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
19 Kim KS. Investigating Bacterial Penetration of the Blood-Brain Barrier for the Pathogenesis, Prevention, and Therapy of Bacterial Meningitis. ACS Infect Dis 2020;6:34-42. [PMID: 31805229 DOI: 10.1021/acsinfecdis.9b00319] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2020;22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
21 Herold R, Schroten H, Schwerk C. Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019;20:E5393. [PMID: 31671896 DOI: 10.3390/ijms20215393] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
22 Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018;16:355-67. [PMID: 29599457 DOI: 10.1038/s41579-018-0001-8] [Cited by in Crossref: 228] [Cited by in F6Publishing: 293] [Article Influence: 76.0] [Reference Citation Analysis]
23 Yang XY, Li N, Xu JY, Sun X, He QY. Lipoprotein SPD_1609 of Streptococcus pneumoniae Promotes Adherence and Invasion to Epithelial Cells Contributing to Bacterial Virulence. Front Microbiol 2019;10:1769. [PMID: 31417540 DOI: 10.3389/fmicb.2019.01769] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
24 Schmidt F, Kakar N, Meyer TC, Depke M, Masouris I, Burchhardt G, Gómez-Mejia A, Dhople V, Håvarstein LS, Sun Z, Moritz RL, Völker U, Koedel U, Hammerschmidt S. In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathog 2019;15:e1007987. [PMID: 31356624 DOI: 10.1371/journal.ppat.1007987] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
25 Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019;21:e13077. [PMID: 31251447 DOI: 10.1111/cmi.13077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
26 Kim BJ, Shusta EV, Doran KS. Past and Current Perspectives in Modeling Bacteria and Blood-Brain Barrier Interactions. Front Microbiol 2019;10:1336. [PMID: 31263460 DOI: 10.3389/fmicb.2019.01336] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
27 Loughran AJ, Orihuela CJ, Tuomanen EI. Streptococcus pneumoniae: Invasion and Inflammation. Microbiol Spectr 2019;7. [PMID: 30873934 DOI: 10.1128/microbiolspec.GPP3-0004-2018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 9.0] [Reference Citation Analysis]
28 Hirose Y, Yamaguchi M, Goto K, Sumitomo T, Nakata M, Kawabata S. Competence-induced protein Ccs4 facilitates pneumococcal invasion into brain tissue and virulence in meningitis. Virulence 2018;9:1576-87. [PMID: 30251911 DOI: 10.1080/21505594.2018.1526530] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
29 Janesch P, Rouha H, Badarau A, Stulik L, Mirkina I, Caccamo M, Havlicek K, Maierhofer B, Weber S, Groß K, Steinhäuser J, Zerbs M, Varga C, Dolezilkova I, Maier S, Zauner G, Nielson N, Power CA, Nagy E. Assessing the function of pneumococcal neuraminidases NanA, NanB and NanC in in vitro and in vivo lung infection models using monoclonal antibodies. Virulence 2018;9:1521-38. [PMID: 30289054 DOI: 10.1080/21505594.2018.1520545] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
30 Gres V, Kolter J, Erny D, Henneke P. The role of CNS macrophages in streptococcal meningoencephalitis. J Leukoc Biol 2019;106:209-18. [PMID: 30762892 DOI: 10.1002/JLB.4MR1118-419R] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
31 Li Y, Metcalf BJ, Chochua S, Li Z, Walker H, Tran T, Hawkins PA, Gierke R, Pilishvili T, McGee L, Beall BW. Genome-wide association analyses of invasive pneumococcal isolates identify a missense bacterial mutation associated with meningitis. Nat Commun 2019;10:178. [PMID: 30643125 DOI: 10.1038/s41467-018-07997-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
32 Brissonnet Y, Assailly C, Saumonneau A, Bouckaert J, Maillasson M, Petitot C, Roubinet B, Didak B, Landemarre L, Bridot C, Blossey R, Deniaud D, Yan X, Bernard J, Tellier C, Grandjean C, Daligault F, Gouin SG. Multivalent Thiosialosides and Their Synergistic Interaction with Pathogenic Sialidases. Chem Eur J 2019;25:2358-65. [DOI: 10.1002/chem.201805790] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
33 Yau B, Hunt NH, Mitchell AJ, Too LK. Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci 2018;19:E3555. [PMID: 30423890 DOI: 10.3390/ijms19113555] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
34 Reglinski M, Ercoli G, Plumptre C, Kay E, Petersen FC, Paton JC, Wren BW, Brown JS. A recombinant conjugated pneumococcal vaccine that protects against murine infections with a similar efficacy to Prevnar-13. NPJ Vaccines 2018;3:53. [PMID: 30393571 DOI: 10.1038/s41541-018-0090-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
35 Al-Obaidi MMJ, Desa MNM. Mechanisms of Blood Brain Barrier Disruption by Different Types of Bacteria, and Bacterial-Host Interactions Facilitate the Bacterial Pathogen Invading the Brain. Cell Mol Neurobiol 2018;38:1349-68. [PMID: 30117097 DOI: 10.1007/s10571-018-0609-2] [Cited by in Crossref: 46] [Cited by in F6Publishing: 59] [Article Influence: 11.5] [Reference Citation Analysis]
36 Nishiyama K, Nagai A, Uribayashi K, Yamamoto Y, Mukai T, Okada N. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve. Anaerobe 2018;52:22-8. [DOI: 10.1016/j.anaerobe.2018.05.007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
37 Rizvi SMD, Hussain T, Ahmed ABF, Alshammari TM, Moin A, Ahmed MQ, Barreto GE, Kamal MA, Ashraf GM. Gold nanoparticles: A plausible tool to combat neurological bacterial infections in humans. Biomed Pharmacother 2018;107:7-18. [PMID: 30075371 DOI: 10.1016/j.biopha.2018.07.130] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
38 Surve MV, Bhutda S, Datey A, Anil A, Rawat S, Pushpakaran A, Singh D, Kim KS, Chakravortty D, Banerjee A. Heterogeneity in pneumolysin expression governs the fate of Streptococcus pneumoniae during blood-brain barrier trafficking. PLoS Pathog 2018;14:e1007168. [PMID: 30011336 DOI: 10.1371/journal.ppat.1007168] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
39 Yamaguchi M. Synergistic findings from microbiological and evolutional analyses of virulence factors among pathogenic streptococcal species. Journal of Oral Biosciences 2018;60:36-40. [DOI: 10.1016/j.job.2018.02.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
40 Sharapova Y, Suplatov D, Švedas V. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker. FEBS J 2018;285:2428-45. [PMID: 29704878 DOI: 10.1111/febs.14486] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
41 Hobbs JK, Pluvinage B, Boraston AB. Glycan-metabolizing enzymes in microbe-host interactions: the Streptococcus pneumoniae paradigm. FEBS Lett 2018;592:3865-97. [PMID: 29608212 DOI: 10.1002/1873-3468.13045] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
42 Ercoli G, Fernandes VE, Chung WY, Wanford JJ, Thomson S, Bayliss CD, Straatman K, Crocker PR, Dennison A, Martinez-Pomares L, Andrew PW, Moxon ER, Oggioni MR. Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat Microbiol 2018;3:600-10. [PMID: 29662129 DOI: 10.1038/s41564-018-0147-1] [Cited by in Crossref: 48] [Cited by in F6Publishing: 57] [Article Influence: 12.0] [Reference Citation Analysis]
43 Jiménez-Munguía I, Pulzova L, Kanova E, Tomeckova Z, Majerova P, Bhide K, Comor L, Sirochmanova I, Kovac A, Bhide M. Proteomic and bioinformatic pipeline to screen the ligands of S. pneumoniae interacting with human brain microvascular endothelial cells. Sci Rep 2018;8:5231. [PMID: 29588455 DOI: 10.1038/s41598-018-23485-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
44 John J, Kasudhan KS, Kanungo R, Sharma S, Dohe V, Prashanth K. Distribution of different genes responsible for invasive characteristics, detection of point mutations in capsular gene wchA and biofilm production among the invasive and non-invasive isolates of Streptococcus pneumoniae. Indian J Med Microbiol 2017;35:511-7. [PMID: 29405142 DOI: 10.4103/ijmm.IJMM_17_183] [Reference Citation Analysis]
45 Lewis ML, Surewaard BGJ. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus. Cell Tissue Res 2018;371:489-503. [PMID: 29204747 DOI: 10.1007/s00441-017-2737-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
46 Kim BJ, Bee OB, McDonagh MA, Stebbins MJ, Palecek SP, Doran KS, Shusta EV. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells. mSphere 2017;2:e00398-17. [PMID: 29104935 DOI: 10.1128/mSphere.00398-17] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
47 Nishiyama K, Yamamoto Y, Sugiyama M, Takaki T, Urashima T, Fukiya S, Yokota A, Okada N, Mukai T. Bifidobacterium bifidum Extracellular Sialidase Enhances Adhesion to the Mucosal Surface and Supports Carbohydrate Assimilation. mBio 2017;8:e00928-17. [PMID: 28974612 DOI: 10.1128/mBio.00928-17] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 6.6] [Reference Citation Analysis]
48 Navarrete-Perea J, Isasa M, Paulo JA, Corral-Corral R, Flores-Bautista J, Hernández-Téllez B, Bobes RJ, Fragoso G, Sciutto E, Soberón X, Gygi SP, Laclette JP. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs. PLoS Negl Trop Dis 2017;11:e0005962. [PMID: 28945737 DOI: 10.1371/journal.pntd.0005962] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
49 Rosales RS, Puleio R, Loria GR, Catania S, Nicholas RAJ. Mycoplasmas: Brain invaders? Res Vet Sci 2017;113:56-61. [PMID: 28889017 DOI: 10.1016/j.rvsc.2017.09.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
50 Gratz N, Loh LN, Mann B, Gao G, Carter R, Rosch J, Tuomanen EI. Pneumococcal neuraminidase activates TGF-β signalling. Microbiology (Reading) 2017;163:1198-207. [PMID: 28749326 DOI: 10.1099/mic.0.000511] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
51 Rahman NA, Sharudin A, Diah S, Muharram SH. Serotyping of Brunei pneumococcal clinical strains and the investigation of their capability to adhere and invade a brain endothelium model. Microb Pathog 2017;110:352-8. [PMID: 28711510 DOI: 10.1016/j.micpath.2017.07.021] [Reference Citation Analysis]
52 Yamaguchi M, Nakata M, Sumioka R, Hirose Y, Wada S, Akeda Y, Sumitomo T, Kawabata S. Zinc metalloproteinase ZmpC suppresses experimental pneumococcal meningitis by inhibiting bacterial invasion of central nervous systems. Virulence 2017;8:1516-24. [PMID: 28489958 DOI: 10.1080/21505594.2017.1328333] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
53 Song M, Teng Z, Li M, Niu X, Wang J, Deng X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J Cell Mol Med 2017;21:2586-98. [PMID: 28402019 DOI: 10.1111/jcmm.13179] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 7.2] [Reference Citation Analysis]
54 Wren JT, Blevins LK, Pang B, Basu Roy A, Oliver MB, Reimche JL, Wozniak JE, Alexander-Miller MA, Swords WE. Pneumococcal Neuraminidase A (NanA) Promotes Biofilm Formation and Synergizes with Influenza A Virus in Nasal Colonization and Middle Ear Infection. Infect Immun 2017;85:e01044-16. [PMID: 28096183 DOI: 10.1128/IAI.01044-16] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
55 Hasegawa N, Sekizuka T, Sugi Y, Kawakami N, Ogasawara Y, Kato K, Yamashita A, Takeuchi F, Kuroda M. Characterization of the Pathogenicity of Streptococcus intermedius TYG1620 Isolated from a Human Brain Abscess Based on the Complete Genome Sequence with Transcriptome Analysis and Transposon Mutagenesis in a Murine Subcutaneous Abscess Model. Infect Immun 2017;85:e00886-16. [PMID: 27895128 DOI: 10.1128/IAI.00886-16] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
56 Coureuil M, Lécuyer H, Bourdoulous S, Nassif X. A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017;15:149-59. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Cited by in Crossref: 95] [Cited by in F6Publishing: 110] [Article Influence: 19.0] [Reference Citation Analysis]
57 Robb M, Hobbs JK, Woodiga SA, Shapiro-Ward S, Suits MD, McGregor N, Brumer H, Yesilkaya H, King SJ, Boraston AB. Molecular Characterization of N-glycan Degradation and Transport in Streptococcus pneumoniae and Its Contribution to Virulence. PLoS Pathog 2017;13:e1006090. [PMID: 28056108 DOI: 10.1371/journal.ppat.1006090] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 6.8] [Reference Citation Analysis]
58 van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primers 2016;2. [DOI: 10.1038/nrdp.2016.74] [Cited by in Crossref: 85] [Cited by in F6Publishing: 99] [Article Influence: 14.2] [Reference Citation Analysis]
59 Hentrich K, Löfling J, Pathak A, Nizet V, Varki A, Henriques-Normark B. Streptococcus pneumoniae Senses a Human-like Sialic Acid Profile via the Response Regulator CiaR. Cell Host Microbe 2016;20:307-17. [PMID: 27593514 DOI: 10.1016/j.chom.2016.07.019] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 4.5] [Reference Citation Analysis]
60 Hatcher BL, Hale JY, Briles DE. Free Sialic Acid Acts as a Signal That Promotes Streptococcus pneumoniae Invasion of Nasal Tissue and Nonhematogenous Invasion of the Central Nervous System. Infect Immun 2016;84:2607-15. [PMID: 27354445 DOI: 10.1128/IAI.01514-15] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
61 Yamaguchi M, Hirose Y, Nakata M, Uchiyama S, Yamaguchi Y, Goto K, Sumitomo T, Lewis AL, Kawabata S, Nizet V. Evolutionary inactivation of a sialidase in group B Streptococcus. Sci Rep 2016;6:28852. [PMID: 27352769 DOI: 10.1038/srep28852] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
62 Iovino F, Hammarlöf DL, Garriss G, Brovall S, Nannapaneni P, Henriques-Normark B. Pneumococcal meningitis is promoted by single cocci expressing pilus adhesin RrgA. J Clin Invest 2016;126:2821-6. [PMID: 27348589 DOI: 10.1172/JCI84705] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
63 McCombs JE, Kohler JJ. Pneumococcal Neuraminidase Substrates Identified through Comparative Proteomics Enabled by Chemoselective Labeling. Bioconjug Chem 2016;27:1013-22. [PMID: 26954852 DOI: 10.1021/acs.bioconjchem.6b00050] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
64 Amano A, Chen C, Honma K, Li C, Settem RP, Sharma A. Genetic characteristics and pathogenic mechanisms of periodontal pathogens. Adv Dent Res 2014;26:15-22. [PMID: 24736700 DOI: 10.1177/0022034514526237] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
65 Doran KS, Fulde M, Gratz N, Kim BJ, Nau R, Prasadarao N, Schubert-Unkmeir A, Tuomanen EI, Valentin-Weigand P. Host-pathogen interactions in bacterial meningitis. Acta Neuropathol 2016;131:185-209. [PMID: 26744349 DOI: 10.1007/s00401-015-1531-z] [Cited by in Crossref: 99] [Cited by in F6Publishing: 87] [Article Influence: 16.5] [Reference Citation Analysis]
66 Howland SW, Gun SY, Claser C, Poh CM, Rénia L. Measuring antigen presentation in mouse brain endothelial cells ex vivo and in vitro. Nat Protoc 2015;10:2016-26. [PMID: 26562622 DOI: 10.1038/nprot.2015.129] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
67 Robb M, Robb CS, Higgins MA, Hobbs JK, Paton JC, Boraston AB. A Second β-Hexosaminidase Encoded in the Streptococcus pneumoniae Genome Provides an Expanded Biochemical Ability to Degrade Host Glycans. J Biol Chem 2015;290:30888-900. [PMID: 26491009 DOI: 10.1074/jbc.M115.688630] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
68 Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL, Walsh MA. Streptococcus pneumoniae NanC: STRUCTURAL INSIGHTS INTO THE SPECIFICITY AND MECHANISM OF A SIALIDASE THAT PRODUCES A SIALIDASE INHIBITOR. J Biol Chem 2015;290:27736-48. [PMID: 26370075 DOI: 10.1074/jbc.M115.673632] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
69 Yang L, Connaris H, Potter JA, Taylor GL. Structural characterization of the carbohydrate-binding module of NanA sialidase, a pneumococcal virulence factor. BMC Struct Biol 2015;15:15. [PMID: 26289431 DOI: 10.1186/s12900-015-0042-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
70 Sjögren J, Collin M. Bacterial glycosidases in pathogenesis and glycoengineering. Future Microbiol 2014;9:1039-51. [PMID: 25340834 DOI: 10.2217/fmb.14.71] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
71 Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JA, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev. 2014;27:691-726. [PMID: 25278572 DOI: 10.1128/cmr.00118-13] [Cited by in Crossref: 174] [Cited by in F6Publishing: 193] [Article Influence: 24.9] [Reference Citation Analysis]
72 Hu DK, Liu Y, Li XY, Qu Y. In vitro expression of Streptococcus pneumoniae ply gene in human monocytes and pneumocytes. Eur J Med Res 2015;20:52. [PMID: 25943628 DOI: 10.1186/s40001-015-0142-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
73 Singh AK, Pluvinage B, Higgins MA, Dalia AB, Woodiga SA, Flynn M, Lloyd AR, Weiser JN, Stubbs KA, Boraston AB, King SJ. Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA. PLoS Pathog 2014;10:e1004364. [PMID: 25210925 DOI: 10.1371/journal.ppat.1004364] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 4.3] [Reference Citation Analysis]
74 Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng 2013;6:7. [PMID: 24009582 DOI: 10.3389/fneng.2013.00007] [Cited by in Crossref: 241] [Cited by in F6Publishing: 276] [Article Influence: 26.8] [Reference Citation Analysis]
75 Kurniyati K, Zhang W, Zhang K, Li C. A surface-exposed neuraminidase affects complement resistance and virulence of the oral spirochaete Treponema denticola. Mol Microbiol 2013;89:842-56. [PMID: 23808705 DOI: 10.1111/mmi.12311] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
76 Niu S, Luo M, Tang J, Zhou H, Zhang Y, Min X, Cai X, Zhang W, Xu W, Li D, Ding J, Hu Y, Wang D, Huang A, Yin Y, Wang D. Structural basis of the novel S. pneumoniae virulence factor, GHIP, a glycosyl hydrolase 25 participating in host-cell invasion. PLoS One 2013;8:e68647. [PMID: 23874703 DOI: 10.1371/journal.pone.0068647] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
77 Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med 2013;3:a010215. [PMID: 23818515 DOI: 10.1101/cshperspect.a010215] [Cited by in Crossref: 205] [Cited by in F6Publishing: 210] [Article Influence: 22.8] [Reference Citation Analysis]
78 Doran KS, Banerjee A, Disson O, Lecuit M. Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med 2013;3:a010090. [PMID: 23818514 DOI: 10.1101/cshperspect.a010090] [Cited by in Crossref: 78] [Cited by in F6Publishing: 51] [Article Influence: 8.7] [Reference Citation Analysis]
79 Gradstedt H, Iovino F, Bijlsma JJ. Streptococcus pneumoniae invades endothelial host cells via multiple pathways and is killed in a lysosome dependent manner. PLoS One 2013;8:e65626. [PMID: 23785439 DOI: 10.1371/journal.pone.0065626] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
80 Silva WM, Seyffert N, Ciprandi A, Santos AV, Castro TLP, Pacheco LGC, Barh D, Le Loir Y, Pimenta AMC, Miyoshi A, Silva A, Azevedo V. Differential Exoproteome Analysis of Two Corynebacterium pseudotuberculosis Biovar Ovis Strains Isolated from Goat (1002) and Sheep (C231). Curr Microbiol 2013;67:460-5. [DOI: 10.1007/s00284-013-0388-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
81 Hu DK, Wang DG, Liu Y, Liu CB, Yu LH, Qu Y, Luo XH, Yang JH, Yu J, Zhang J, Li XY. Roles of virulence genes (PsaA and CpsA) on the invasion of Streptococcus pneumoniae into blood system. Eur J Med Res 2013;18:14. [PMID: 23683724 DOI: 10.1186/2047-783X-18-14] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
82 Uchiyama S, Andreoni F, Zürcher C, Schilcher K, Ender M, Madon J, Matt U, Ghosh P, Nizet V, Schuepbach RA, Zinkernagel AS. Coiled-coil irregularities of the M1 protein structure promote M1-fibrinogen interaction and influence group A Streptococcus host cell interactions and virulence. J Mol Med (Berl) 2013;91:861-9. [PMID: 23443671 DOI: 10.1007/s00109-013-1012-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
83 Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP. Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infect Immun 2013;81:1341-53. [PMID: 23403556 DOI: 10.1128/IAI.01096-12] [Cited by in Crossref: 60] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
84 Brittan JL, Buckeridge TJ, Finn A, Kadioglu A, Jenkinson HF. Pneumococcal neuraminidase A: an essential upper airway colonization factor for Streptococcus pneumoniae. Mol Oral Microbiol 2012;27:270-83. [PMID: 22759312 DOI: 10.1111/j.2041-1014.2012.00658.x] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 5.2] [Reference Citation Analysis]
85 Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L, Trappetti C, Pozzi G, Docquier JD, Andrew P, Ricci S, Oggioni MR. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol 2012;12:200. [PMID: 22963456 DOI: 10.1186/1471-2180-12-200] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
86 Jin R, Hu Y, Sun B, Zhang X, Sun L. Edwardsiella tarda sialidase: Pathogenicity involvement and vaccine potential. Fish & Shellfish Immunology 2012;33:514-21. [DOI: 10.1016/j.fsi.2012.06.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
87 Yan W, Wang H, Xu W, Wu K, Yao R, Xu X, Dong J, Zhang Y, Zhong W, Zhang X. SP0454, a putative threonine dehydratase, is required for pneumococcal virulence in mice. J Microbiol 2012;50:511-7. [PMID: 22752916 DOI: 10.1007/s12275-012-2014-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
88 van Sorge NM, Doran KS. Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 2012;7:383-94. [PMID: 22393891 DOI: 10.2217/fmb.12.1] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 6.6] [Reference Citation Analysis]
89 Barber RM, Porter BF, Li Q, May M, Claiborne MK, Allison AB, Howerth EW, Butler A, Wei S, Levine JM, Levine GJ, Brown DR, Schatzberg SJ. Broadly reactive polymerase chain reaction for pathogen detection in canine granulomatous meningoencephalomyelitis and necrotizing meningoencephalitis. J Vet Intern Med 2012;26:962-8. [PMID: 22686439 DOI: 10.1111/j.1939-1676.2012.00954.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.0] [Reference Citation Analysis]
90 Mahdi LK, Wang H, Van der Hoek MB, Paton JC, Ogunniyi AD. Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice. J Clin Invest 2012;122:2208-20. [PMID: 22622042 DOI: 10.1172/JCI45850] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.9] [Reference Citation Analysis]
91 Sadaka A, Durand ML, Gilmore MS. Bacterial endophthalmitis in the age of outpatient intravitreal therapies and cataract surgeries: host-microbe interactions in intraocular infection. Prog Retin Eye Res 2012;31:316-31. [PMID: 22521570 DOI: 10.1016/j.preteyeres.2012.03.004] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 4.6] [Reference Citation Analysis]
92 Agarwal S, Agarwal S, Pancholi P, Pancholi V. Strain-specific regulatory role of eukaryote-like serine/threonine phosphatase in pneumococcal adherence. Infect Immun 2012;80:1361-72. [PMID: 22311926 DOI: 10.1128/IAI.06311-11] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
93 Wall EC, Gordon SB, Hussain S, Goonetilleke UR, Gritzfeld J, Scarborough M, Kadioglu A. Persistence of pneumolysin in the cerebrospinal fluid of patients with pneumococcal meningitis is associated with mortality. Clin Infect Dis 2012;54:701-5. [PMID: 22238165 DOI: 10.1093/cid/cir926] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
94 Chang YC, Uchiyama S, Varki A, Nizet V. Leukocyte inflammatory responses provoked by pneumococcal sialidase. mBio 2012;3:e00220-11. [PMID: 22215570 DOI: 10.1128/mBio.00220-11] [Cited by in Crossref: 41] [Cited by in F6Publishing: 46] [Article Influence: 4.1] [Reference Citation Analysis]
95 Stafford G, Roy S, Honma K, Sharma A. Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast! Mol Oral Microbiol 2012;27:11-22. [PMID: 22230462 DOI: 10.1111/j.2041-1014.2011.00630.x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
96 Li C, Kurniyati, Hu B, Bian J, Sun J, Zhang W, Liu J, Pan Y, Li C. Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis. Infect Immun 2012;80:3-13. [PMID: 22025518 DOI: 10.1128/IAI.05773-11] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.6] [Reference Citation Analysis]
97 Kouki A, Haataja S, Loimaranta V, Pulliainen AT, Nilsson UJ, Finne J. Identification of a novel streptococcal adhesin P (SadP) protein recognizing galactosyl-α1-4-galactose-containing glycoconjugates: convergent evolution of bacterial pathogens to binding of the same host receptor. J Biol Chem 2011;286:38854-64. [PMID: 21908601 DOI: 10.1074/jbc.M111.260992] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
98 Shelburne SA 3rd, Sahasrobhajane P, Suber B, Keith DB, Davenport MT, Horstmann N, Kumaraswami M, Olsen RJ, Brennan RG, Musser JM. Niche-specific contribution to streptococcal virulence of a MalR-regulated carbohydrate binding protein. Mol Microbiol 2011;81:500-14. [PMID: 21645132 DOI: 10.1111/j.1365-2958.2011.07708.x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
99 Gut H, Xu G, Taylor GL, Walsh MA. Structural Basis for Streptococcus pneumoniae NanA Inhibition by Influenza Antivirals Zanamivir and Oseltamivir Carboxylate. Journal of Molecular Biology 2011;409:496-503. [DOI: 10.1016/j.jmb.2011.04.016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 3.3] [Reference Citation Analysis]
100 Limoli DH, Sladek JA, Fuller LA, Singh AK, King SJ. BgaA acts as an adhesin to mediate attachment of some pneumococcal strains to human epithelial cells. Microbiology (Reading) 2011;157:2369-81. [PMID: 21602213 DOI: 10.1099/mic.0.045609-0] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
101 Kim S, Oh DB, Kang HA, Kwon O. Features and applications of bacterial sialidases. Appl Microbiol Biotechnol 2011;91:1-15. [PMID: 21544654 DOI: 10.1007/s00253-011-3307-2] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 4.4] [Reference Citation Analysis]
102 Sanders MS, van Well GTJ, Ouburg S, Morré SA, van Furth AM. Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis. Genes Immun 2011;12:321-34. [DOI: 10.1038/gene.2011.20] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]
103 Coats MT, Murphy T, Paton JC, Gray B, Briles DE. Exposure of Thomsen-Friedenreich antigen in Streptococcus pneumoniae infection is dependent on pneumococcal neuraminidase A. Microb Pathog 2011;50:343-9. [PMID: 21377521 DOI: 10.1016/j.micpath.2011.02.010] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
104 Xu G, Kiefel MJ, Wilson JC, Andrew PW, Oggioni MR, Taylor GL. Three Streptococcus pneumoniae sialidases: three different products. J Am Chem Soc 2011;133:1718-21. [PMID: 21244006 DOI: 10.1021/ja110733q] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 7.2] [Reference Citation Analysis]
105 Libbey JE, Fujinami RS. Role for antibodies in altering behavior and movement. Autism Res. 2010;3:147-152. [PMID: 20589715 DOI: 10.1002/aur.144] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
106 Marion C, Burnaugh AM, Woodiga SA, King SJ. Sialic acid transport contributes to pneumococcal colonization. Infect Immun 2011;79:1262-9. [PMID: 21189320 DOI: 10.1128/IAI.00832-10] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 4.6] [Reference Citation Analysis]
107 Löfling J, Vimberg V, Battig P, Henriques-Normark B. Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues. Cell Microbiol 2011;13:186-97. [PMID: 21199258 DOI: 10.1111/j.1462-5822.2010.01560.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
108 Norcross EW, Tullos NA, Taylor SD, Sanders ME, Marquart ME. Assessment of Streptococcus pneumoniae capsule in conjunctivitis and keratitis in vivo neuraminidase activity increases in nonencapsulated pneumococci following conjunctival infection. Curr Eye Res 2010;35:787-98. [PMID: 20795860 DOI: 10.3109/02713683.2010.492462] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
109 Shoma S, Verkaik NJ, de Vogel CP, Hermans PW, van Selm S, Mitchell TJ, van Roosmalen M, Hossain S, Rahman M, Endtz HP, van Wamel WJ, van Belkum A. Development of a multiplexed bead-based immunoassay for the simultaneous detection of antibodies to 17 pneumococcal proteins. Eur J Clin Microbiol Infect Dis 2011;30:521-6. [PMID: 21086008 DOI: 10.1007/s10096-010-1113-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
110 Honma K, Mishima E, Sharma A. Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect Immun 2011;79:393-401. [PMID: 21078857 DOI: 10.1128/IAI.00629-10] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 4.0] [Reference Citation Analysis]
111 Moschioni M, Emolo C, Biagini M, Maccari S, Pansegrau W, Donati C, Hilleringmann M, Ferlenghi I, Ruggiero P, Sinisi A, Pizza M, Norais N, Barocchi MA, Masignani V. The two variants of the Streptococcus pneumoniae pilus 1 RrgA adhesin retain the same function and elicit cross-protection in vivo. Infect Immun 2010;78:5033-42. [PMID: 20823200 DOI: 10.1128/IAI.00601-10] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 3.0] [Reference Citation Analysis]
112 Gerber J, Nau R. Mechanisms of injury in bacterial meningitis. Curr Opin Neurol 2010;23:312-8. [PMID: 20442574 DOI: 10.1097/WCO.0b013e32833950dd] [Cited by in Crossref: 93] [Cited by in F6Publishing: 85] [Article Influence: 7.8] [Reference Citation Analysis]
113 Banerjee A, Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell Microbiol 2010;12:1576-88. [PMID: 20557315 DOI: 10.1111/j.1462-5822.2010.01490.x] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 4.8] [Reference Citation Analysis]
114 Nguyen PH, Nguyen TNA, Kang KW, Ndinteh DT, Mbafor JT, Kim YR, Oh WK. Prenylated pterocarpans as bacterial neuraminidase inhibitors. Bioorganic & Medicinal Chemistry 2010;18:3335-44. [DOI: 10.1016/j.bmc.2010.03.005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
115 Sheen TR, Ebrahimi CM, Hiemstra IH, Barlow SB, Peschel A, Doran KS. Penetration of the blood-brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid. J Mol Med (Berl) 2010;88:633-9. [PMID: 20419283 DOI: 10.1007/s00109-010-0630-5] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 3.6] [Reference Citation Analysis]
116 Henriques-Normark B, Normark S. Commensal pathogens, with a focus on Streptococcus pneumoniae, and interactions with the human host. Exp Cell Res 2010;316:1408-14. [PMID: 20227406 DOI: 10.1016/j.yexcr.2010.03.003] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 3.6] [Reference Citation Analysis]
117 Dalia AB, Standish AJ, Weiser JN. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect Immun 2010;78:2108-16. [PMID: 20160017 DOI: 10.1128/IAI.01125-09] [Cited by in Crossref: 87] [Cited by in F6Publishing: 82] [Article Influence: 7.3] [Reference Citation Analysis]
118 King S. Pneumococcal modification of host sugars: a major contributor to colonization of the human airway? Molecular Oral Microbiology 2010;25:15-24. [DOI: 10.1111/j.2041-1014.2009.00564.x] [Cited by in Crossref: 91] [Cited by in F6Publishing: 90] [Article Influence: 7.6] [Reference Citation Analysis]