BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mori I, Nishiyama Y, Yokochi T, Kimura Y. Olfactory transmission of neurotropic viruses. J Neurovirol 2005;11:129-37. [PMID: 16036791 DOI: 10.1080/13550280590922793] [Cited by in Crossref: 114] [Cited by in F6Publishing: 112] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Ganz T, Fainstein N, Ben-hur T. When the infectious environment meets the AD brain. Mol Neurodegeneration 2022;17. [DOI: 10.1186/s13024-022-00559-3] [Reference Citation Analysis]
2 Liang J, Li T, Zhao J, Wang C, Sun H. Current understanding of the human microbiome in glioma. Front Oncol 2022;12:781741. [DOI: 10.3389/fonc.2022.781741] [Reference Citation Analysis]
3 Zhao J, Ren Y. Multiple Receptors Involved in Invasion and Neuropathogenicity of Canine Distemper Virus: A Review. Viruses 2022;14:1520. [DOI: 10.3390/v14071520] [Reference Citation Analysis]
4 Cohen-Rengifo M, Danion M, Gonzalez AA, Bégout ML, Cormier A, Noël C, Cabon J, Vitré T, Mark FC, Mazurais D. The extensive transgenerational transcriptomic effects of ocean acidification on the olfactory epithelium of a marine fish are associated with a better viral resistance. BMC Genomics 2022;23:448. [PMID: 35710351 DOI: 10.1186/s12864-022-08647-w] [Reference Citation Analysis]
5 Kitchen LC, Berman M, Halper J, Chazot P. Rationale for 1068 nm Photobiomodulation Therapy (PBMT) as a Novel, Non-Invasive Treatment for COVID-19 and Other Coronaviruses: Roles of NO and Hsp70. IJMS 2022;23:5221. [DOI: 10.3390/ijms23095221] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Moslemi M, Ardalan M, Haramshahi M, Mirzaei H, Sani SK, Dastgir R, Dastgir N. Herpes simplex encephalitis following ChAdOx1 nCoV-19 vaccination: a case report and review of the literature. BMC Infect Dis 2022;22:217. [PMID: 35241013 DOI: 10.1186/s12879-022-07186-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Xie J, Tian S, Liu J, Cao R, Yue P, Cai X, Shang Q, Yang M, Han L, Zhang D. Dual role of the nasal microbiota in neurological diseases—An unignorable risk factor or a potential therapy carrier. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106189] [Reference Citation Analysis]
8 Javed A. Neurological Associations of SARS-CoV-2 Infection: A Systematic Review. CNS Neurol Disord Drug Targets 2022;21:246-58. [PMID: 33593267 DOI: 10.2174/1871527320666210216121211] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
9 Linard M, Ravier A, Mougué L, Grgurina I, Boutillier AL, Foubert-Samier A, Blanc F, Helmer C. Infectious Agents as Potential Drivers of α-Synucleinopathies. Mov Disord 2022. [PMID: 35040520 DOI: 10.1002/mds.28925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Ku MW, Authié P, Bourgine M, Anna F, Noirat A, Moncoq F, Vesin B, Nevo F, Lopez J, Souque P, Blanc C, Fert I, Chardenoux S, Lafosse L, Cussigh D, Hardy D, Nemirov K, Guinet F, Langa Vives F, Majlessi L, Charneau P. Brain cross-protection against SARS-CoV-2 variants by a lentiviral vaccine in new transgenic mice. EMBO Mol Med 2021;13:e14459. [PMID: 34647691 DOI: 10.15252/emmm.202114459] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
11 Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021;609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
12 Kincaid AE. The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses 2021;13:2287. [PMID: 34835094 DOI: 10.3390/v13112287] [Reference Citation Analysis]
13 Liang F, Wang Y. COVID-19 Anosmia: High Prevalence, Plural Neuropathogenic Mechanisms, and Scarce Neurotropism of SARS-CoV-2? Viruses 2021;13:2225. [PMID: 34835030 DOI: 10.3390/v13112225] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
14 Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, Kalinke U. Toll-like Receptors in Viral Encephalitis. Viruses 2021;13:2065. [PMID: 34696494 DOI: 10.3390/v13102065] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
15 Polansky H, Goral B. How an increase in the copy number of HSV-1 during latency can cause Alzheimer's disease: the viral and cellular dynamics according to the microcompetition model. J Neurovirol 2021. [PMID: 34635992 DOI: 10.1007/s13365-021-01012-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Tizenberg BN, Brenner LA, Lowry CA, Okusaga OO, Benavides DR, Hoisington AJ, Benros ME, Stiller JW, Kessler RC, Postolache TT. Biological and Psychological Factors Determining Neuropsychiatric Outcomes in COVID-19. Curr Psychiatry Rep 2021;23:68. [PMID: 34648081 DOI: 10.1007/s11920-021-01275-3] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
17 Yong SJ, Yong MH, Teoh SL, Soga T, Parhar I, Chew J, Lim WL. The Hippocampal Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer's Disease and Memory Impairment. Front Cell Neurosci 2021;15:695738. [PMID: 34483839 DOI: 10.3389/fncel.2021.695738] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Boyles DA, Schwarz MM, Albe JR, McMillen CM, O'Malley KJ, Reed DS, Hartman AL. Development of Rift valley fever encephalitis in rats is mediated by early infection of olfactory epithelium and neuroinvasion across the cribriform plate. J Gen Virol 2021;102. [PMID: 33231535 DOI: 10.1099/jgv.0.001522] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Damiano RF, Guedes BF, de Rocca CC, de Pádua Serafim A, Castro LHM, Munhoz CD, Nitrini R, Filho GB, Miguel EC, Lucchetti G, Forlenza O. Cognitive decline following acute viral infections: literature review and projections for post-COVID-19. Eur Arch Psychiatry Clin Neurosci 2021. [PMID: 34173049 DOI: 10.1007/s00406-021-01286-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
20 Gholami M, Safari S, Ulloa L, Motaghinejad M. Neuropathies and neurological dysfunction induced by coronaviruses. J Neurovirol 2021;27:380-96. [PMID: 33983506 DOI: 10.1007/s13365-021-00977-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
21 Murphy MJ, Fani L, Ikram MK, Ghanbari M, Ikram MA. Herpes simplex virus 1 and the risk of dementia: a population-based study. Sci Rep 2021;11:8691. [PMID: 33888766 DOI: 10.1038/s41598-021-87963-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
22 Bohmwald K, Andrade CA, Kalergis AM. Contribution of Pro-Inflammatory Molecules Induced by Respiratory Virus Infections to Neurological Disorders. Pharmaceuticals (Basel) 2021;14:340. [PMID: 33917837 DOI: 10.3390/ph14040340] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
23 Al-Harthi L, Campbell E, Schneider JA, Bennett DA. What HIV in the Brain Can Teach Us About SARS-CoV-2 Neurological Complications? AIDS Res Hum Retroviruses 2021;37:255-65. [PMID: 32683890 DOI: 10.1089/AID.2020.0161] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
24 Mussa BM, Srivastava A, Verberne AJM. COVID-19 and Neurological Impairment: Hypothalamic Circuits and Beyond. Viruses 2021;13:498. [PMID: 33802995 DOI: 10.3390/v13030498] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
25 Ni J, Wu Z. Inflammation Spreading: Negative Spiral Linking Systemic Inflammatory Disorders and Alzheimer's Disease. Front Cell Neurosci 2021;15:638686. [PMID: 33716675 DOI: 10.3389/fncel.2021.638686] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Moseman EA, Blanchard AC, Nayak D, McGavern DB. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci Immunol 2020;5:eabb1817. [PMID: 32503876 DOI: 10.1126/sciimmunol.abb1817] [Cited by in Crossref: 22] [Cited by in F6Publishing: 37] [Article Influence: 22.0] [Reference Citation Analysis]
27 Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021;13:170. [PMID: 33498715 DOI: 10.3390/v13020170] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
28 Abdullahi A, Candan SA, Soysal Tomruk M, Elibol N, Dada O, Truijen S, Saeys W. Is Guillain-Barré Syndrome Associated With COVID-19 Infection? A Systemic Review of the Evidence. Front Neurol 2020;11:566308. [PMID: 33519663 DOI: 10.3389/fneur.2020.566308] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
29 Hu J, Jolkkonen J, Zhao C. Neurotropism of SARS-CoV-2 and its neuropathological alterations: Similarities with other coronaviruses. Neurosci Biobehav Rev 2020;119:184-93. [PMID: 33091416 DOI: 10.1016/j.neubiorev.2020.10.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
30 Yazdanpanah N, Saghazadeh A, Rezaei N. Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19). Rev Neurosci 2020;31:691-701. [PMID: 32776905 DOI: 10.1515/revneuro-2020-0039] [Cited by in Crossref: 35] [Cited by in F6Publishing: 27] [Article Influence: 17.5] [Reference Citation Analysis]
31 Jakhmola S, Indari O, Chatterjee S, Jha HC. SARS-CoV-2, an Underestimated Pathogen of the Nervous System. SN Compr Clin Med 2020;:1-10. [PMID: 33015550 DOI: 10.1007/s42399-020-00522-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 31] [Article Influence: 6.0] [Reference Citation Analysis]
32 Gori A, Leone F, Loffredo L, Cinicola BL, Brindisi G, De Castro G, Spalice A, Duse M, Zicari AM. COVID-19-Related Anosmia: The Olfactory Pathway Hypothesis and Early Intervention. Front Neurol 2020;11:956. [PMID: 33013637 DOI: 10.3389/fneur.2020.00956] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
33 Mishra R, Banerjea AC. Neurological Damage by Coronaviruses: A Catastrophe in the Queue! Front Immunol 2020;11:565521. [PMID: 33013930 DOI: 10.3389/fimmu.2020.565521] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
34 Vofo G, Brodie R, Gross M. Nasal lavage containing Angiotensin-Converting Enzyme-2 agonist can prevent and reduce viral load in COVID-19. Med Hypotheses 2020;144:110207. [PMID: 33254514 DOI: 10.1016/j.mehy.2020.110207] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhang LN, Li MJ, Shang YH, Zhao FF, Huang HC, Lao FX. Independent and Correlated Role of Apolipoprotein E ɛ4 Genotype and Herpes Simplex Virus Type 1 in Alzheimer's Disease. J Alzheimers Dis 2020;77:15-31. [PMID: 32804091 DOI: 10.3233/JAD-200607] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Bonaz B, Sinniger V, Pellissier S. Targeting the cholinergic anti-inflammatory pathway with vagus nerve stimulation in patients with Covid-19? Bioelectron Med 2020;6:15. [PMID: 32743022 DOI: 10.1186/s42234-020-00051-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 30] [Article Influence: 10.5] [Reference Citation Analysis]
37 Armocida D, Palmieri M, Frati A, Santoro A, Pesce A. How SARS-Cov-2 can involve the central nervous system. A systematic analysis of literature of the department of human neurosciences of Sapienza University, Italy. J Clin Neurosci 2020;79:231-6. [PMID: 33070902 DOI: 10.1016/j.jocn.2020.07.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
38 Baig AM, Sanders EC. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of neurological deficit seen in coronavirus disease-2019 (COVID-19). J Med Virol 2020;92:1845-57. [PMID: 32492193 DOI: 10.1002/jmv.26105] [Cited by in Crossref: 45] [Cited by in F6Publishing: 60] [Article Influence: 22.5] [Reference Citation Analysis]
39 Briguglio M, Bona A, Porta M, Dell'Osso B, Pregliasco FE, Banfi G. Disentangling the Hypothesis of Host Dysosmia and SARS-CoV-2: The Bait Symptom That Hides Neglected Neurophysiological Routes. Front Physiol 2020;11:671. [PMID: 32581854 DOI: 10.3389/fphys.2020.00671] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
40 Le Bon SD, Horoi M. Is anosmia the price to pay in an immune-induced scorched-earth policy against COVID-19? Med Hypotheses 2020;143:109881. [PMID: 32474381 DOI: 10.1016/j.mehy.2020.109881] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
41 Epstein AL. [Alzheimer's disease, neuro-inflammation, and herpes viruses, a path that traces its way]. Med Sci (Paris) 2020;36:479-86. [PMID: 32452370 DOI: 10.1051/medsci/2020090] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Iroegbu JD, Ifenatuoha CW, Ijomone OM. Potential neurological impact of coronaviruses: implications for the novel SARS-CoV-2. Neurol Sci 2020;41:1329-37. [PMID: 32424503 DOI: 10.1007/s10072-020-04469-4] [Cited by in Crossref: 40] [Cited by in F6Publishing: 44] [Article Influence: 20.0] [Reference Citation Analysis]
43 Sehl J, Hölper JE, Klupp BG, Baumbach C, Teifke JP, Mettenleiter TC. An improved animal model for herpesvirus encephalitis in humans. PLoS Pathog 2020;16:e1008445. [PMID: 32226043 DOI: 10.1371/journal.ppat.1008445] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
44 von Hoven G, Qin Q, Neukirch C, Husmann M, Hellmann N. Staphylococcus aureus α-toxin: small pore, large consequences. Biol Chem 2019;400:1261-76. [PMID: 30951494 DOI: 10.1515/hsz-2018-0472] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
45 Devanand DP, Andrews H, Kreisl WC, Razlighi Q, Gershon A, Stern Y, Mintz A, Wisniewski T, Acosta E, Pollina J, Katsikoumbas M, Bell KL, Pelton GH, Deliyannides D, Prasad KM, Huey ED. Antiviral therapy: Valacyclovir Treatment of Alzheimer's Disease (VALAD) Trial: protocol for a randomised, double-blind,placebo-controlled, treatment trial. BMJ Open 2020;10:e032112. [PMID: 32034019 DOI: 10.1136/bmjopen-2019-032112] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
46 Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, Talbot PJ. Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019;12:E14. [PMID: 31861926 DOI: 10.3390/v12010014] [Cited by in Crossref: 411] [Cited by in F6Publishing: 482] [Article Influence: 137.0] [Reference Citation Analysis]
47 Bathini P, Brai E, Auber LA. Olfactory dysfunction in the pathophysiological continuum of dementia. Ageing Res Rev 2019;55:100956. [PMID: 31479764 DOI: 10.1016/j.arr.2019.100956] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
48 Sepahi A, Kraus A, Casadei E, Johnston CA, Galindo-Villegas J, Kelly C, García-Moreno D, Muñoz P, Mulero V, Huertas M, Salinas I. Olfactory sensory neurons mediate ultrarapid antiviral immune responses in a TrkA-dependent manner. Proc Natl Acad Sci U S A 2019;116:12428-36. [PMID: 31160464 DOI: 10.1073/pnas.1900083116] [Cited by in Crossref: 35] [Cited by in F6Publishing: 44] [Article Influence: 11.7] [Reference Citation Analysis]
49 E X, Meraner P, Lu P, Perreira JM, Aker AM, McDougall WM, Zhuge R, Chan GC, Gerstein RM, Caposio P, Yurochko AD, Brass AL, Kowalik TF. OR14I1 is a receptor for the human cytomegalovirus pentameric complex and defines viral epithelial cell tropism. Proc Natl Acad Sci U S A 2019;116:7043-52. [PMID: 30894498 DOI: 10.1073/pnas.1814850116] [Cited by in Crossref: 56] [Cited by in F6Publishing: 60] [Article Influence: 18.7] [Reference Citation Analysis]
50 Kupke A, Becker S, Wewetzer K, Ahlemeyer B, Eickmann M, Herden C. Intranasal Borna Disease Virus (BoDV-1) Infection: Insights into Initial Steps and Potential Contagiosity. Int J Mol Sci 2019;20:E1318. [PMID: 30875911 DOI: 10.3390/ijms20061318] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
51 Devanand DP. Viral Hypothesis and Antiviral Treatment in Alzheimer's Disease. Curr Neurol Neurosci Rep 2018;18:55. [PMID: 30008124 DOI: 10.1007/s11910-018-0863-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
52 Harris SA, Harris EA. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer's Disease. Front Aging Neurosci 2018;10:48. [PMID: 29559905 DOI: 10.3389/fnagi.2018.00048] [Cited by in Crossref: 67] [Cited by in F6Publishing: 78] [Article Influence: 16.8] [Reference Citation Analysis]
53 Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regen Res 2018;13:211-21. [PMID: 29557362 DOI: 10.4103/1673-5374.226380] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
54 Wheeler DL, Athmer J, Meyerholz DK, Perlman S. Murine Olfactory Bulb Interneurons Survive Infection with a Neurotropic Coronavirus. J Virol 2017;91:e01099-17. [PMID: 28835503 DOI: 10.1128/JVI.01099-17] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
55 Sepahi A, Tacchi L, Casadei E, Takizawa F, LaPatra SE, Salinas I. CK12a, a CCL19-like Chemokine That Orchestrates both Nasal and Systemic Antiviral Immune Responses in Rainbow Trout. J Immunol 2017;199:3900-13. [PMID: 29061765 DOI: 10.4049/jimmunol.1700757] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
56 Bradshaw MJ, Venkatesan A. Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management. Neurotherapeutics 2016;13:493-508. [PMID: 27106239 DOI: 10.1007/s13311-016-0433-7] [Cited by in Crossref: 140] [Cited by in F6Publishing: 154] [Article Influence: 28.0] [Reference Citation Analysis]
57 Oliveira BRSM, Vieira FV, de S Vieira D, da Silva SEL, Gameiro R, Flores EF, Cardoso TC. Expression of miR-155 associated with Toll-like receptors 3, 7, and 9 transcription in the olfactory bulbs of cattle naturally infected with BHV5. J Neurovirol 2017;23:772-8. [PMID: 28831740 DOI: 10.1007/s13365-017-0564-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
58 Menendez CM, Carr DJJ. Herpes simplex virus-1 infects the olfactory bulb shortly following ocular infection and exhibits a long-term inflammatory profile in the form of effector and HSV-1-specific T cells. J Neuroinflammation 2017;14:124. [PMID: 28645309 DOI: 10.1186/s12974-017-0903-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
59 Mesquita LP, Arévalo AF, Zanatto DA, Miyashiro SI, Cunha EMS, de Souza MDCC, Villalobos EMC, Mori CMC, Maiorka PC, Mori E. Equine herpesvirus type 1 induces both neurological and respiratory disease in Syrian hamsters. Veterinary Microbiology 2017;203:117-24. [DOI: 10.1016/j.vetmic.2017.03.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
60 Skuja S, Zieda A, Ravina K, Chapenko S, Roga S, Teteris O, Groma V, Murovska M. Structural and Ultrastructural Alterations in Human Olfactory Pathways and Possible Associations with Herpesvirus 6 Infection. PLoS One 2017;12:e0170071. [PMID: 28072884 DOI: 10.1371/journal.pone.0170071] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
61 Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, Bullido MJ, Carter C, Clerici M, Cosby SL, Del Tredici K, Field H, Fulop T, Grassi C, Griffin WS, Haas J, Hudson AP, Kamer AR, Kell DB, Licastro F, Letenneur L, Lövheim H, Mancuso R, Miklossy J, Otth C, Palamara AT, Perry G, Preston C, Pretorius E, Strandberg T, Tabet N, Taylor-Robinson SD, Whittum-Hudson JA. Microbes and Alzheimer's Disease. J Alzheimers Dis 2016;51:979-84. [PMID: 26967229 DOI: 10.3233/JAD-160152] [Cited by in Crossref: 281] [Cited by in F6Publishing: 285] [Article Influence: 46.8] [Reference Citation Analysis]
62 Lathe R, Haas JG. Distribution of cellular HSV-1 receptor expression in human brain. J Neurovirol 2017;23:376-84. [PMID: 27981441 DOI: 10.1007/s13365-016-0504-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
63 Mesquita L, Bruhn F, Maiorka P, Howerth E. Expression Kinetics of RANTES and MCP-1 in the Brain of Deer Mice ( Peromyscus maniculatus ) Infected with Vesicular Stomatitis New Jersey Virus. Journal of Comparative Pathology 2016;155:326-38. [DOI: 10.1016/j.jcpa.2016.09.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
64 Kupke A, Wenisch S, Failing K, Herden C. Intranasal Location and Immunohistochemical Characterization of the Equine Olfactory Epithelium. Front Neuroanat 2016;10:97. [PMID: 27790096 DOI: 10.3389/fnana.2016.00097] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
65 Dahm T, Rudolph H, Schwerk C, Schroten H, Tenenbaum T. Neuroinvasion and Inflammation in Viral Central Nervous System Infections. Mediators Inflamm 2016;2016:8562805. [PMID: 27313404 DOI: 10.1155/2016/8562805] [Cited by in Crossref: 57] [Cited by in F6Publishing: 74] [Article Influence: 9.5] [Reference Citation Analysis]
66 Durrant DM, Ghosh S, Klein RS. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chem Neurosci 2016;7:464-9. [PMID: 27058872 DOI: 10.1021/acschemneuro.6b00043] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 11.8] [Reference Citation Analysis]
67 Larragoite ET, Tacchi L, LaPatra SE, Salinas I. An attenuated virus vaccine appears safe to the central nervous system of rainbow trout (Oncorhynchus mykiss) after intranasal delivery. Fish Shellfish Immunol 2016;49:351-4. [PMID: 26772477 DOI: 10.1016/j.fsi.2016.01.006] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
68 Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JA, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev. 2014;27:691-726. [PMID: 25278572 DOI: 10.1128/cmr.00118-13] [Cited by in Crossref: 174] [Cited by in F6Publishing: 193] [Article Influence: 24.9] [Reference Citation Analysis]
69 Brézillon C, Haustant M, Dupke S, Corre JP, Lander A, Franz T, Monot M, Couture-Tosi E, Jouvion G, Leendertz FH, Grunow R, Mock ME, Klee SR, Goossens PL. Capsules, toxins and AtxA as virulence factors of emerging Bacillus cereus biovar anthracis. PLoS Negl Trop Dis 2015;9:e0003455. [PMID: 25830379 DOI: 10.1371/journal.pntd.0003455] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
70 van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 2015;235:277-87. [PMID: 25294743 DOI: 10.1002/path.4461] [Cited by in Crossref: 174] [Cited by in F6Publishing: 201] [Article Influence: 24.9] [Reference Citation Analysis]
71 Swanson PA 2nd, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol. 2015;11:44-54. [PMID: 25681709 DOI: 10.1016/j.coviro.2014.12.009] [Cited by in Crossref: 148] [Cited by in F6Publishing: 154] [Article Influence: 21.1] [Reference Citation Analysis]
72 Jennische E, Eriksson CE, Lange S, Trybala E, Bergström T. The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection. J Neurovirol 2015;21:129-47. [PMID: 25604497 DOI: 10.1007/s13365-014-0312-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
73 Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014;194:145-58. [PMID: 25281913 DOI: 10.1016/j.virusres.2014.09.011] [Cited by in Crossref: 131] [Cited by in F6Publishing: 197] [Article Influence: 16.4] [Reference Citation Analysis]
74 Tan CS, Stevenson PG. B cell response to herpesvirus infection of the olfactory neuroepithelium. J Virol 2014;88:14030-9. [PMID: 25253348 DOI: 10.1128/JVI.02345-14] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
75 Rajasekharan S, Rana J, Gulati S, Gupta V, Gupta S. Neuroinvasion by Chandipura virus. Acta Trop 2014;135:122-6. [PMID: 24713200 DOI: 10.1016/j.actatropica.2014.03.028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
76 Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe 2013;13:379-93. [PMID: 23601101 DOI: 10.1016/j.chom.2013.03.010] [Cited by in Crossref: 269] [Cited by in F6Publishing: 291] [Article Influence: 33.6] [Reference Citation Analysis]
77 van den Pol AN, Ding S, Robek MD. Long-distance interferon signaling within the brain blocks virus spread. J Virol 2014;88:3695-704. [PMID: 24429359 DOI: 10.1128/JVI.03509-13] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 5.0] [Reference Citation Analysis]
78 Thomas RJ. Particle size and pathogenicity in the respiratory tract. Virulence 2013;4:847-58. [PMID: 24225380 DOI: 10.4161/viru.27172] [Cited by in Crossref: 98] [Cited by in F6Publishing: 103] [Article Influence: 10.9] [Reference Citation Analysis]
79 Shivkumar M, Milho R, May JS, Nicoll MP, Efstathiou S, Stevenson PG. Herpes simplex virus 1 targets the murine olfactory neuroepithelium for host entry. J Virol 2013;87:10477-88. [PMID: 23903843 DOI: 10.1128/JVI.01748-13] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 5.6] [Reference Citation Analysis]
80 Espinoza JA, Bohmwald K, Céspedes PF, Gómez RS, Riquelme SA, Cortés CM, Valenzuela JA, Sandoval RA, Pancetti FC, Bueno SM, Riedel CA, Kalergis AM. Impaired learning resulting from respiratory syncytial virus infection. Proc Natl Acad Sci U S A 2013;110:9112-7. [PMID: 23650398 DOI: 10.1073/pnas.1217508110] [Cited by in Crossref: 51] [Cited by in F6Publishing: 57] [Article Influence: 5.7] [Reference Citation Analysis]
81 Thiebaud N, Veloso Da Silva S, Jakob I, Sicard G, Chevalier J, Ménétrier F, Berdeaux O, Artur Y, Heydel JM, Le Bon AM. Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats. PLoS One 2013;8:e59547. [PMID: 23555703 DOI: 10.1371/journal.pone.0059547] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
82 Leibovitch E, Wohler JE, Cummings Macri SM, Motanic K, Harberts E, Gaitán MI, Maggi P, Ellis M, Westmoreland S, Silva A, Reich DS, Jacobson S. Novel marmoset (Callithrix jacchus) model of human Herpesvirus 6A and 6B infections: immunologic, virologic and radiologic characterization. PLoS Pathog 2013;9:e1003138. [PMID: 23382677 DOI: 10.1371/journal.ppat.1003138] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.2] [Reference Citation Analysis]
83 Grose C. Acute retinal necrosis caused by herpes simplex virus type 2 in children: reactivation of an undiagnosed latent neonatal herpes infection. Semin Pediatr Neurol 2012;19:115-8. [PMID: 22889540 DOI: 10.1016/j.spen.2012.02.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
84 Munster VJ, Prescott JB, Bushmaker T, Long D, Rosenke R, Thomas T, Scott D, Fischer ER, Feldmann H, de Wit E. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2012;2:736. [PMID: 23071900 DOI: 10.1038/srep00736] [Cited by in Crossref: 61] [Cited by in F6Publishing: 55] [Article Influence: 6.1] [Reference Citation Analysis]
85 Plourde JR, Pyles JA, Layton RC, Vaughan SE, Tipper JL, Harrod KS. Neurovirulence of H5N1 infection in ferrets is mediated by multifocal replication in distinct permissive neuronal cell regions. PLoS One 2012;7:e46605. [PMID: 23056366 DOI: 10.1371/journal.pone.0046605] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
86 De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara AT. Infectious agents and neurodegeneration. Mol Neurobiol 2012;46:614-38. [PMID: 22899188 DOI: 10.1007/s12035-012-8320-7] [Cited by in Crossref: 112] [Cited by in F6Publishing: 135] [Article Influence: 11.2] [Reference Citation Analysis]
87 Mori I. The vomeronasal chemosensory pathway: a potential route for neuroinvasion by neurotropic microbes: Vomeronasal entry route for microbes. Microbiology and Immunology 2012;56:280-280. [DOI: 10.1111/j.1348-0421.2012.00431.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
88 Chaves AJ, Busquets N, Valle R, Rivas R, Vergara-Alert J, Dolz R, Ramis A, Darji A, Majó N. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens. Vet Res 2011;42:106. [PMID: 21982125 DOI: 10.1186/1297-9716-42-106] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
89 Harberts E, Yao K, Wohler JE, Maric D, Ohayon J, Henkin R, Jacobson S. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc Natl Acad Sci U S A 2011;108:13734-9. [PMID: 21825120 DOI: 10.1073/pnas.1105143108] [Cited by in Crossref: 92] [Cited by in F6Publishing: 78] [Article Influence: 8.4] [Reference Citation Analysis]
90 McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol 2011;11:318-29. [PMID: 21508982 DOI: 10.1038/nri2971] [Cited by in Crossref: 156] [Cited by in F6Publishing: 162] [Article Influence: 14.2] [Reference Citation Analysis]
91 Sjölinder H, Jonsson AB. Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 2010;5:e14034. [PMID: 21124975 DOI: 10.1371/journal.pone.0014034] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 3.3] [Reference Citation Analysis]
92 Mori I. Herpes simplex virus type 1 persists in the aged brain through hypothetical expression of accessory genes. J Neurovirol 2010;16:203-7. [PMID: 20450378 DOI: 10.3109/13550281003739040] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
93 Birek C, Ficarra G. The diagnosis and management of oral herpes simplex infection. Curr Infect Dis Rep 2006;8:181-8. [PMID: 16643769 DOI: 10.1007/s11908-006-0057-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
94 Majde JA. Neuroinflammation resulting from covert brain invasion by common viruses - a potential role in local and global neurodegeneration. Med Hypotheses 2010;75:204-13. [PMID: 20236772 DOI: 10.1016/j.mehy.2010.02.023] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
95 Armien AG, Hu S, Little MR, Robinson N, Lokensgard JR, Low WC, Cheeran MC. Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol 2010;20:738-50. [PMID: 20002440 DOI: 10.1111/j.1750-3639.2009.00354.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 3.5] [Reference Citation Analysis]
96 Severance EG, Dickerson FB, Viscidi RP, Bossis I, Stallings CR, Origoni AE, Sullens A, Yolken RH. Coronavirus immunoreactivity in individuals with a recent onset of psychotic symptoms. Schizophr Bull 2011;37:101-7. [PMID: 19491313 DOI: 10.1093/schbul/sbp052] [Cited by in Crossref: 90] [Cited by in F6Publishing: 102] [Article Influence: 6.9] [Reference Citation Analysis]
97 Detje CN, Meyer T, Schmidt H, Kreuz D, Rose JK, Bechmann I, Prinz M, Kalinke U. Local type I IFN receptor signaling protects against virus spread within the central nervous system. J Immunol 2009;182:2297-304. [PMID: 19201884 DOI: 10.4049/jimmunol.0800596] [Cited by in Crossref: 102] [Cited by in F6Publishing: 105] [Article Influence: 7.8] [Reference Citation Analysis]
98 Corona C, Porcario C, Martucci F, Iulini B, Manea B, Gallo M, Palmitessa C, Maurella C, Mazza M, Pezzolato M, Acutis P, Casalone C. Olfactory system involvement in natural scrapie disease. J Virol 2009;83:3657-67. [PMID: 19158242 DOI: 10.1128/JVI.01966-08] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
99 Lee YH, Simmons MM, Hawkins SAC, Spencer YI, Webb P, Stack MJ, Wells GAH. Detection of Pathologic Prion Protein in the Olfactory Bulb of Natural and Experimental Bovine Spongiform Encephalopathy Affected Cattle in Great Britain. Vet Pathol 2009;46:59-62. [DOI: 10.1354/vp.46-1-59] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
100 Weingartl HM, Berhane Y, Czub M. Animal models of henipavirus infection: A review. The Veterinary Journal 2009;181:211-20. [DOI: 10.1016/j.tvjl.2008.10.016] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 3.7] [Reference Citation Analysis]
101 Loseva E, Yuan TF, Karnup S. Neurogliogenesis in the mature olfactory system: a possible protective role against infection and toxic dust. Brain Res Rev 2009;59:374-87. [PMID: 19027790 DOI: 10.1016/j.brainresrev.2008.10.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
102 Gelperin A. Neural Computations with Mammalian Infochemicals. J Chem Ecol 2008;34:928-42. [DOI: 10.1007/s10886-008-9483-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
103 Majde JA, Bohnet SG, Ellis GA, Churchill L, Leyva-Grado V, Wu M, Szentirmai E, Rehman A, Krueger JM. Detection of mouse-adapted human influenza virus in the olfactory bulbs of mice within hours after intranasal infection. J Neurovirol 2007;13:399-409. [PMID: 17994424 DOI: 10.1080/13550280701427069] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 2.9] [Reference Citation Analysis]
104 Dietzel J, Kuhrt H, Stahl T, Kacza J, Seeger J, Weber M, Uhlig A, Reichenbach A, Grosche A, Pannicke T. Morphometric analysis of the retina from horses infected with the Borna disease virus. Vet Pathol 2007;44:57-63. [PMID: 17197624 DOI: 10.1354/vp.44-1-57] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
105 Rudd PA, Cattaneo R, von Messling V. Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J Virol 2006;80:9361-70. [PMID: 16973542 DOI: 10.1128/JVI.01034-06] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 4.9] [Reference Citation Analysis]
106 van den Pol AN. Viral infections in the developing and mature brain. Trends in Neurosciences 2006;29:398-406. [DOI: 10.1016/j.tins.2006.06.002] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 2.4] [Reference Citation Analysis]
107 Mori I, Goshima F, Watanabe D, Ito H, Koide N, Yoshida T, Liu B, Kimura Y, Yokochi T, Nishiyama Y. Herpes simplex virus US3 protein kinase regulates virus-induced apoptosis in olfactory and vomeronasal chemosensory neurons in vivo. Microbes Infect 2006;8:1806-12. [PMID: 16815072 DOI: 10.1016/j.micinf.2006.02.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 1.0] [Reference Citation Analysis]
108 Mori I, Goshima F, Mizuno T, Imai Y, Kohsaka S, Ito H, Koide N, Yoshida T, Yokochi T, Kimura Y, Nishiyama Y. Axonal injury in experimental herpes simplex encephalitis. Brain Res 2005;1057:186-90. [PMID: 16122712 DOI: 10.1016/j.brainres.2005.07.037] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
109 Baxi KN, Dorries KM, Eisthen HL. Is the vomeronasal system really specialized for detecting pheromones? Trends Neurosci 2006;29:1-7. [PMID: 16271402 DOI: 10.1016/j.tins.2005.10.002] [Cited by in Crossref: 107] [Cited by in F6Publishing: 89] [Article Influence: 6.3] [Reference Citation Analysis]
110 Mori I, Liu B, Goshima F, Ito H, Koide N, Yoshida T, Yokochi T, Kimura Y, Nishiyama Y. HF10, an attenuated herpes simplex virus (HSV) type 1 clone, lacks neuroinvasiveness and protects mice against lethal challenge with HSV types 1 and 2. Microbes Infect 2005;7:1492-500. [PMID: 16054416 DOI: 10.1016/j.micinf.2005.05.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.6] [Reference Citation Analysis]
111 Mori I, Goshima F, Ito H, Koide N, Yoshida T, Yokochi T, Kimura Y, Nishiyama Y. The vomeronasal chemosensory system as a route of neuroinvasion by herpes simplex virus. Virology 2005;334:51-8. [PMID: 15749122 DOI: 10.1016/j.virol.2005.01.023] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 2.0] [Reference Citation Analysis]
112 Mori I, Nishiyama Y. Herpes simplex virus and varicella-zoster virus: why do these human alphaherpesviruses behave so differently from one another? Rev Med Virol 2005;15:393-406. [DOI: 10.1002/rmv.478] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.5] [Reference Citation Analysis]