BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xiao H, Woods EC, Vukojicic P, Bertozzi CR. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci. 2016;113:10304-10309. [PMID: 27551071 DOI: 10.1073/pnas.1608069113] [Cited by in Crossref: 156] [Cited by in F6Publishing: 148] [Article Influence: 26.0] [Reference Citation Analysis]
Number Citing Articles
1 Scott DA, Drake RR. Glycosylation and its implications in breast cancer. Expert Rev Proteomics 2019;16:665-80. [PMID: 31314995 DOI: 10.1080/14789450.2019.1645604] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
2 Li RE, de Haas A, Rodríguez E, Kalay H, Zaal A, Jimenez CR, Piersma SR, Pham TV, Henneman AA, de Goeij-de Haas RR, van Vliet SJ, van Kooyk Y. Quantitative Phosphoproteomic Analysis Reveals Dendritic Cell- Specific STAT Signaling After α2-3-Linked Sialic Acid Ligand Binding. Front Immunol 2021;12:673454. [PMID: 33968084 DOI: 10.3389/fimmu.2021.673454] [Reference Citation Analysis]
3 Sasaki K, Harada M, Yoshikawa T, Tagawa H, Harada Y, Yonemitsu Y, Ryujin T, Kishimura A, Mori T, Katayama Y. Fc-Binding Antibody-Recruiting Molecules Targeting Prostate-Specific Membrane Antigen: Defucosylation of Antibody for Efficacy Improvement*. Chembiochem 2021;22:496-500. [PMID: 32969164 DOI: 10.1002/cbic.202000577] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Lee WL, Wang PH. Aberrant sialylation in ovarian cancers. J Chin Med Assoc 2020;83:337-44. [PMID: 31904658 DOI: 10.1097/JCMA.0000000000000252] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 20.0] [Reference Citation Analysis]
5 Sun Z, Ji G, Wang G, Wei L, Zhang Y, Lu H. One step carboxyl group isotopic labeling for quantitative analysis of intact N-glycopeptides by mass spectrometry. Chem Commun (Camb) 2021;57:4154-7. [PMID: 33908447 DOI: 10.1039/d1cc00197c] [Reference Citation Analysis]
6 Wang Y, Pan P, Khan A, Çil Ç, Pineda MA. Synovial Fibroblast Sialylation Regulates Cell Migration and Activation of Inflammatory Pathways in Arthritogenesis. Front Immunol 2022;13:847581. [DOI: 10.3389/fimmu.2022.847581] [Reference Citation Analysis]
7 van de Wall S, Santegoets KC, van Houtum EJ, Büll C, Adema GJ. Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment. Trends in Immunology 2020;41:274-85. [DOI: 10.1016/j.it.2020.02.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 17.0] [Reference Citation Analysis]
8 Zhou ZR, Wang XY, Jiang L, Li DW, Qian RC. Sialidase-Conjugated "NanoNiche" for Efficient Immune Checkpoint Blockade Therapy. ACS Appl Bio Mater 2021;4:5735-41. [PMID: 35006749 DOI: 10.1021/acsabm.1c00507] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Rodrigues E, Jung J, Park H, Loo C, Soukhtehzari S, Kitova EN, Mozaneh F, Daskhan G, Schmidt EN, Aghanya V, Sarkar S, Streith L, St Laurent CD, Nguyen L, Julien JP, West LJ, Williams KC, Klassen JS, Macauley MS. A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands. Nat Commun 2020;11:5091. [PMID: 33037195 DOI: 10.1038/s41467-020-18907-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
10 Mereiter S, Balmaña M, Campos D, Gomes J, Reis CA. Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell 2019;36:6-16. [PMID: 31287993 DOI: 10.1016/j.ccell.2019.06.006] [Cited by in Crossref: 109] [Cited by in F6Publishing: 102] [Article Influence: 54.5] [Reference Citation Analysis]
11 Chen L, Wu J, Yan F, Ju H. A facile strategy for quantitative sensing of glycans on cell surface using organic electrochemical transistors. Biosens Bioelectron 2021;175:112878. [PMID: 33298337 DOI: 10.1016/j.bios.2020.112878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Lee WL, Wang PH. Immunology and ovarian cancers. J Chin Med Assoc 2020;83:425-32. [PMID: 32149893 DOI: 10.1097/JCMA.0000000000000283] [Cited by in Crossref: 14] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
13 Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020;9:1534-62. [PMID: 32526139 DOI: 10.1021/acssynbio.0c00210] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
14 Lamprinaki D, Garcia-Vello P, Marchetti R, Hellmich C, McCord KA, Bowles KM, Macauley MS, Silipo A, De Castro C, Crocker PR, Juge N. Siglec-7 Mediates Immunomodulation by Colorectal Cancer-Associated Fusobacterium nucleatum ssp. animalis. Front Immunol 2021;12:744184. [PMID: 34659241 DOI: 10.3389/fimmu.2021.744184] [Reference Citation Analysis]
15 Li Q, Shi Z, Zhang F, Zeng W, Zhu D, Mei L. Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharmaceutica Sinica B 2022;12:107-34. [DOI: 10.1016/j.apsb.2021.05.031] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Wang ST, Gray MA, Xuan S, Lin Y, Byrnes J, Nguyen AI, Todorova N, Stevens MM, Bertozzi CR, Zuckermann RN, Gang O. DNA origami protection and molecular interfacing through engineered sequence-defined peptoids. Proc Natl Acad Sci U S A 2020;117:6339-48. [PMID: 32165539 DOI: 10.1073/pnas.1919749117] [Cited by in Crossref: 46] [Cited by in F6Publishing: 32] [Article Influence: 23.0] [Reference Citation Analysis]
17 Li Z, Wu N, Wang J, Zhang Q. Roles of Endovascular Calyx Related Enzymes in Endothelial Dysfunction and Diabetic Vascular Complications. Front Pharmacol 2020;11:590614. [PMID: 33328998 DOI: 10.3389/fphar.2020.590614] [Reference Citation Analysis]
18 Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021;20:217-43. [PMID: 33462432 DOI: 10.1038/s41573-020-00093-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
19 Malaker SA, Quanico J, Raffo-Romero A, Kobeissy F, Aboulouard S, Tierny D, Bertozzi CR, Fournier I, Salzet M. On-tissue spatially resolved glycoproteomics guided by N-glycan imaging reveal global dysregulation of canine glioma glycoproteomic landscape. Cell Chem Biol 2021:S2451-9456(21)00224-5. [PMID: 34102146 DOI: 10.1016/j.chembiol.2021.05.007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Tian Z, Yu C, Zhang W, Wu K, Wang C, Gupta R, Xu Z, Wu L, Chen Y, Zhang XH, Xiao H. Bone-Specific Enhancement of Antibody Therapy for Breast Cancer Metastasis to Bone. ACS Cent Sci . [DOI: 10.1021/acscentsci.1c01024] [Reference Citation Analysis]
21 Yoshimura A, Asahina Y, Chang LY, Angata T, Tanaka H, Kitajima K, Sato C. Identification and functional characterization of a Siglec-7 counter-receptor on K562 cells. J Biol Chem 2021;296:100477. [PMID: 33640457 DOI: 10.1016/j.jbc.2021.100477] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J, Cha JH, Xia W, Chan LC, Kim T, Chang SS, Lee HH, Chou CK, Liu YL, Yeh HC, Perillo EP, Dunn AK, Kuo CW, Khoo KH, Hsu JL, Wu Y, Hsu JM, Yamaguchi H, Huang TH, Sahin AA, Hortobagyi GN, Yoo SS, Hung MC. Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell 2018;33:187-201.e10. [PMID: 29438695 DOI: 10.1016/j.ccell.2018.01.009] [Cited by in Crossref: 160] [Cited by in F6Publishing: 155] [Article Influence: 40.0] [Reference Citation Analysis]
23 Wu L, Zhang Y, Li Z, Yang G, Kochovski Z, Chen G, Jiang M. “Sweet” Architecture-Dependent Uptake of Glycocalyx-Mimicking Nanoparticles Based on Biodegradable Aliphatic Polyesters by Macrophages. J Am Chem Soc 2017;139:14684-92. [DOI: 10.1021/jacs.7b07768] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 8.2] [Reference Citation Analysis]
24 Parayath N, Padmakumar S, Nair SV, Menon D, Amiji MM. Strategies for Targeting Cancer Immunotherapy Through Modulation of the Tumor Microenvironment. Regen Eng Transl Med 2020;6:29-49. [DOI: 10.1007/s40883-019-00113-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Front Immunol 2020;11:564499. [PMID: 33133075 DOI: 10.3389/fimmu.2020.564499] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Abbina S, Siren EMJ, Moon H, Kizhakkedathu JN. Surface Engineering for Cell-Based Therapies: Techniques for Manipulating Mammalian Cell Surfaces. ACS Biomater Sci Eng 2018;4:3658-77. [DOI: 10.1021/acsbiomaterials.7b00514] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 6.4] [Reference Citation Analysis]
27 [DOI: 10.1101/2020.04.23.057208] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Zhou X, Zhai Y, Liu C, Yang G, Guo J, Li G, Sun C, Qi X, Li X, Guan F. Sialidase NEU1 suppresses progression of human bladder cancer cells by inhibiting fibronectin-integrin α5β1 interaction and Akt signaling pathway. Cell Commun Signal 2020;18:44. [PMID: 32164705 DOI: 10.1186/s12964-019-0500-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
29 Yao K, Bertran A, Howarth A, Goicoechea JM, Hare SM, Rees NH, Foroozandeh M, Bowen AM, Farrer NJ. A visible-light photoactivatable di-nuclear PtIV triazolato azido complex. Chem Commun (Camb) 2019;55:11287-90. [PMID: 31475995 DOI: 10.1039/c9cc05310g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Murugesan G, Weigle B, Crocker PR. Siglec and anti-Siglec therapies. Curr Opin Chem Biol 2021;62:34-42. [PMID: 33607404 DOI: 10.1016/j.cbpa.2021.01.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
31 Bule P, Chuzel L, Blagova E, Wu L, Gray MA, Henrissat B, Rapp E, Bertozzi CR, Taron CH, Davies GJ. Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nat Commun 2019;10:4816. [PMID: 31645552 DOI: 10.1038/s41467-019-12684-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Balneger N, Cornelissen LAM, Wassink M, Moons SJ, Boltje TJ, Bar-Ephraim YE, Das KK, Søndergaard JN, Büll C, Adema GJ. Sialic acid blockade in dendritic cells enhances CD8+ T cell responses by facilitating high-avidity interactions. Cell Mol Life Sci 2022;79:98. [PMID: 35089436 DOI: 10.1007/s00018-021-04027-x] [Reference Citation Analysis]
33 Zhao T, Terracciano R, Becker J, Monaco A, Yilmaz G, Becer CR. Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules 2022. [PMID: 34982551 DOI: 10.1021/acs.biomac.1c01294] [Reference Citation Analysis]
34 Edgar LJ. Engineering the Sialome. ACS Chem Biol 2021;16:1829-40. [PMID: 34590818 DOI: 10.1021/acschembio.1c00273] [Reference Citation Analysis]
35 Yamakawa N, Yasuda Y, Yoshimura A, Goshima A, Crocker PR, Vergoten G, Nishiura Y, Takahashi T, Hanashima S, Matsumoto K, Yamaguchi Y, Tanaka H, Kitajima K, Sato C. Discovery of a new sialic acid binding region that regulates Siglec-7. Sci Rep 2020;10:8647. [PMID: 32457377 DOI: 10.1038/s41598-020-64887-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
36 Purcell SC, Godula K. Synthetic glycoscapes: addressing the structural and functional complexity of the glycocalyx. Interface Focus 2019;9:20180080. [PMID: 30842878 DOI: 10.1098/rsfs.2018.0080] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
37 Manni M, Läubli H. Targeting glyco-immune checkpoints for cancer therapy. Expert Opin Biol Ther 2021;21:1063-71. [PMID: 33502268 DOI: 10.1080/14712598.2021.1882989] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Umlauf BJ, Mix KA, Grosskopf VA, Raines RT, Shusta EV. Site-Specific Antibody Functionalization Using Tetrazine-Styrene Cycloaddition. Bioconjug Chem 2018;29:1605-13. [PMID: 29694034 DOI: 10.1021/acs.bioconjchem.8b00114] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
39 Christianson HC, Menard JA, Chandran VI, Bourseau-Guilmain E, Shevela D, Lidfeldt J, Månsson AS, Pastorekova S, Messinger J, Belting M. Tumor antigen glycosaminoglycan modification regulates antibody-drug conjugate delivery and cytotoxicity. Oncotarget 2017;8:66960-74. [PMID: 28978009 DOI: 10.18632/oncotarget.16921] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
40 Woo CM, Felix A, Zhang L, Elias JE, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars. Anal Bioanal Chem 2017;409:579-88. [PMID: 27695962 DOI: 10.1007/s00216-016-9934-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
41 Cai D, Xun C, Tang F, Tian X, Yang L, Ding K, Li W, Le Z, Huang W. Glycoconjugate probes containing a core-fucosylated N-glycan trisaccharide for fucose lectin identification and purification. Carbohydrate Research 2017;449:143-52. [DOI: 10.1016/j.carres.2017.07.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
42 Park J, Lee S, Kim Y, Yoo TH. Methods to generate site-specific conjugates of antibody and protein. Bioorganic & Medicinal Chemistry 2021;30:115946. [DOI: 10.1016/j.bmc.2020.115946] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
43 Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T, Bonanno L, Li L, Lee DP, Morgens DW, Yang AC, Shuken SR, Gate D, Scott M, Khatri P, Luo J, Bertozzi CR, Bassik MC, Wyss-Coray T. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 2019;568:187-92. [PMID: 30944478 DOI: 10.1038/s41586-019-1088-4] [Cited by in Crossref: 114] [Cited by in F6Publishing: 101] [Article Influence: 38.0] [Reference Citation Analysis]
44 Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, Yu J, Woods EC, Kramer JR, Westerlind U, Dorigo O, Bertozzi CR. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci U S A 2019;116:7278-87. [PMID: 30910957 DOI: 10.1073/pnas.1813020116] [Cited by in Crossref: 82] [Cited by in F6Publishing: 71] [Article Influence: 27.3] [Reference Citation Analysis]
45 Wei M, Wang PG. Desialylation in physiological and pathological processes: New target for diagnostic and therapeutic development. Prog Mol Biol Transl Sci 2019;162:25-57. [PMID: 30905454 DOI: 10.1016/bs.pmbts.2018.12.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
46 Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018;10:E207. [PMID: 29912148 DOI: 10.3390/cancers10060207] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 19.8] [Reference Citation Analysis]
47 Farhadi SA, Bracho-Sanchez E, Freeman SL, Keselowsky BG, Hudalla GA. Enzymes as Immunotherapeutics. Bioconjug Chem 2018;29:649-56. [PMID: 29285931 DOI: 10.1021/acs.bioconjchem.7b00719] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
48 Zhang X, Ou C, Liu H, Prabhu SK, Li C, Yang Q, Wang LX. General and Robust Chemoenzymatic Method for Glycan-Mediated Site-Specific Labeling and Conjugation of Antibodies: Facile Synthesis of Homogeneous Antibody-Drug Conjugates. ACS Chem Biol 2021;16:2502-14. [PMID: 34569782 DOI: 10.1021/acschembio.1c00597] [Reference Citation Analysis]
49 Hong S, Feng L, Yang Y, Jiang H, Hou X, Guo P, Marlow FL, Stanley P, Wu P. In Situ Fucosylation of the Wnt Co-receptor LRP6 Increases Its Endocytosis and Reduces Wnt/β-Catenin Signaling. Cell Chem Biol 2020;27:1140-1150.e4. [PMID: 32649905 DOI: 10.1016/j.chembiol.2020.06.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Delaveris CS, Chiu SH, Riley NM, Bertozzi CR. Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc Natl Acad Sci U S A 2021;118:e2012408118. [PMID: 33431669 DOI: 10.1073/pnas.2012408118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
51 Kudo K, Yoneda A, Sakiyama D, Kojima K, Miyaji T, Yamazaki M, Yaita S, Hyodo T, Satow R, Fukami K. Cell surface CD63 increased by up-regulated polylactosamine modification sensitizes human melanoma cells to the BRAF inhibitor PLX4032. FASEB J 2019;33:3851-69. [PMID: 30508500 DOI: 10.1096/fj.201800664RR] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
52 Möckl L, Pedram K, Roy AR, Krishnan V, Gustavsson AK, Dorigo O, Bertozzi CR, Moerner WE. Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. Dev Cell 2019;50:57-72.e6. [PMID: 31105009 DOI: 10.1016/j.devcel.2019.04.035] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 11.0] [Reference Citation Analysis]
53 Shami Shah A, Sun H, Baskin JM. For Wnt Signaling, Fucosylation of LRP6 Is a Bitter Pill. Cell Chem Biol 2020;27:1114-6. [PMID: 32946757 DOI: 10.1016/j.chembiol.2020.08.003] [Reference Citation Analysis]
54 Liu Z, Ren F, Zhang H, Yuan Q, Jiang Z, Liu H, Sun Q, Li Z. Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma. Biomaterials 2019;219:119364. [PMID: 31352311 DOI: 10.1016/j.biomaterials.2019.119364] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
55 Barrow AD, Colonna M. Tailoring Natural Killer cell immunotherapy to the tumour microenvironment. Semin Immunol. 2017;31:30-36. [PMID: 28935344 DOI: 10.1016/j.smim.2017.09.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
56 Diniz F, Coelho P, Duarte HO, Sarmento B, Reis CA, Gomes J. Glycans as Targets for Drug Delivery in Cancer. Cancers 2022;14:911. [DOI: 10.3390/cancers14040911] [Reference Citation Analysis]
57 Joh DY, Heggestad JT, Zhang S, Anderson GR, Bhattacharyya J, Wardell SE, Wall SA, Cheng AB, Albarghouthi F, Liu J, Oshima S, Hucknall AM, Hyslop T, Hall AHS, Wood KC, Shelley Hwang E, Strickland KC, Wei Q, Chilkoti A. Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates. NPJ Breast Cancer 2021;7:85. [PMID: 34215753 DOI: 10.1038/s41523-021-00290-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Gray MA, Stanczak MA, Mantuano NR, Xiao H, Pijnenborg JFA, Malaker SA, Miller CL, Weidenbacher PA, Tanzo JT, Ahn G, Woods EC, Läubli H, Bertozzi CR. Targeted glycan degradation potentiates the anticancer immune response in vivo. Nat Chem Biol 2020;16:1376-84. [PMID: 32807964 DOI: 10.1038/s41589-020-0622-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 17.5] [Reference Citation Analysis]
59 Giron LB, Colomb F, Papasavvas E, Azzoni L, Yin X, Fair M, Anzurez A, Damra M, Mounzer K, Kostman JR, Tebas P, O'Doherty U, Tateno H, Liu Q, Betts MR, Montaner LJ, Abdel-Mohsen M. Interferon-α alters host glycosylation machinery during treated HIV infection. EBioMedicine 2020;59:102945. [PMID: 32827942 DOI: 10.1016/j.ebiom.2020.102945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Chen L, Wu J, Yan F, Ju H. Monose-modified organic electrochemical transistors for cell surface glycan analysis via competitive recognition to enzyme-labeled lectin. Mikrochim Acta 2021;188:252. [PMID: 34255200 DOI: 10.1007/s00604-021-04918-7] [Reference Citation Analysis]
61 Nessler I, Khera E, Thurber GM. Quantitative pharmacology in antibody-drug conjugate development: armed antibodies or targeted small molecules? Oncoscience 2018;5:161-3. [PMID: 30035177 DOI: 10.18632/oncoscience.435] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
62 Adeniji OS, Kuri-Cervantes L, Yu C, Xu Z, Ho M, Chew GM, Shikuma C, Tomescu C, George AF, Roan NR, Ndhlovu LC, Liu Q, Muthumani K, Weiner DB, Betts MR, Xiao H, Abdel-Mohsen M. Siglec-9 defines and restrains a natural killer subpopulation highly cytotoxic to HIV-infected cells. PLoS Pathog 2021;17:e1010034. [PMID: 34762717 DOI: 10.1371/journal.ppat.1010034] [Reference Citation Analysis]
63 Fong JJ, Tsai CM, Saha S, Nizet V, Varki A, Bui JD. Siglec-7 engagement by GBS β-protein suppresses pyroptotic cell death of natural killer cells. Proc Natl Acad Sci U S A 2018;115:10410-5. [PMID: 30254166 DOI: 10.1073/pnas.1804108115] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
64 Zhou H, Qiu X, Shen Z. [T1-weighted magnetic resonance imaging contrast agents and their theranostic nanoprobes]. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:427-44. [PMID: 32376585 DOI: 10.12122/j.issn.1673-4254.2020.03.24] [Reference Citation Analysis]
65 RodrÍguez E, Schetters STT, van Kooyk Y. The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 2018;18:204-11. [PMID: 29398707 DOI: 10.1038/nri.2018.3] [Cited by in Crossref: 140] [Cited by in F6Publishing: 130] [Article Influence: 35.0] [Reference Citation Analysis]
66 Bärenwaldt A, Läubli H. The sialoglycan-Siglec glyco-immune checkpoint - a target for improving innate and adaptive anti-cancer immunity. Expert Opin Ther Targets 2019;23:839-53. [PMID: 31524529 DOI: 10.1080/14728222.2019.1667977] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
67 Di Y, Zhang L, Zhang Y, Zhao H, Yan G, Yao J, Zhang S, Lu H. MdCDPM: A Mass Defect-Based Chemical-Directed Proteomics Method for Targeted Analysis of Intact Sialylglycopeptides. Anal Chem 2019;91:9986-92. [DOI: 10.1021/acs.analchem.9b01798] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Chauhan SKS, Koehl U, Kloess S. Harnessing NK Cell Checkpoint-Modulating Immunotherapies. Cancers (Basel) 2020;12:E1807. [PMID: 32640575 DOI: 10.3390/cancers12071807] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Munkley J, Scott E. Targeting Aberrant Sialylation to Treat Cancer. Medicines (Basel) 2019;6:E102. [PMID: 31614918 DOI: 10.3390/medicines6040102] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
70 Metcalf KJ, Kimmel BR, Sykora DJ, Modica JA, Parker KA, Berens E, Dai R, Dravid VP, Werb Z, Mrksich M. Synthetic Tuning of Domain Stoichiometry in Nanobody-Enzyme Megamolecules. Bioconjug Chem 2021;32:143-52. [PMID: 33301672 DOI: 10.1021/acs.bioconjchem.0c00578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Leung KK, Wilson GM, Kirkemo LL, Riley NM, Coon JJ, Wells JA. Broad and thematic remodeling of the surfaceome and glycoproteome on isogenic cells transformed with driving proliferative oncogenes. Proc Natl Acad Sci U S A 2020;117:7764-75. [PMID: 32205440 DOI: 10.1073/pnas.1917947117] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
72 Feng M, Marjon KD, Zhu F, Weissman-Tsukamoto R, Levett A, Sullivan K, Kao KS, Markovic M, Bump PA, Jackson HM, Choi TS, Chen J, Banuelos AM, Liu J, Gip P, Cheng L, Wang D, Weissman IL. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat Commun 2018;9:3194. [PMID: 30097573 DOI: 10.1038/s41467-018-05211-7] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 12.3] [Reference Citation Analysis]
73 Jain KK. An Overview of Drug Delivery Systems. Methods Mol Biol 2020;2059:1-54. [PMID: 31435914 DOI: 10.1007/978-1-4939-9798-5_1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
74 Tsui CK, Barfield RM, Fischer CR, Morgens DW, Li A, Smith BAH, Gray MA, Bertozzi CR, Rabuka D, Bassik MC. CRISPR-Cas9 screens identify regulators of antibody-drug conjugate toxicity. Nat Chem Biol 2019;15:949-58. [PMID: 31451760 DOI: 10.1038/s41589-019-0342-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 7.3] [Reference Citation Analysis]
75 Zhang P, Li Y, Yu X, Ju H, Ding L. Switchable Enzymatic Accessibility for Precision Cell-Selective Surface Glycan Remodeling. Chemistry 2019;25:10505-10. [PMID: 31173420 DOI: 10.1002/chem.201902113] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
76 Edgar LJ, Thompson AJ, Vartabedian VF, Kikuchi C, Woehl JL, Teijaro JR, Paulson JC. Sialic Acid Ligands of CD28 Suppress Costimulation of T Cells. ACS Cent Sci 2021;7:1508-15. [PMID: 34584952 DOI: 10.1021/acscentsci.1c00525] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019;144:90-111. [PMID: 31419450 DOI: 10.1016/j.addr.2019.08.004] [Cited by in Crossref: 92] [Cited by in F6Publishing: 84] [Article Influence: 30.7] [Reference Citation Analysis]
78 Delso-Vallejo M, Kollet J, Koehl U, Huppert V. Influence of Irradiated Peripheral Blood Mononuclear Cells on Both Ex Vivo Proliferation of Human Natural Killer Cells and Change in Cellular Property. Front Immunol 2017;8:854. [PMID: 28791015 DOI: 10.3389/fimmu.2017.00854] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
79 Skropeta D, Dobie C, Montgomery AP, Steele H, Szabo R, Yu H. Sialyltransferase Inhibitors as Potential Anti-Cancer Agents. Aust J Chem 2021;74:758. [DOI: 10.1071/ch21195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 O'Farrell LK, Fraser AD, Davey GP. Monitoring the Sialome on Human Immune Cells. Methods Mol Biol 2022;2370:323-9. [PMID: 34611878 DOI: 10.1007/978-1-0716-1685-7_17] [Reference Citation Analysis]
81 Baeza-Kallee N, Bergès R, Soubéran A, Colin C, Denicolaï E, Appay R, Tchoghandjian A, Figarella-Branger D. Glycolipids Recognized by A2B5 Antibody Promote Proliferation, Migration, and Clonogenicity in Glioblastoma Cells. Cancers (Basel) 2019;11:E1267. [PMID: 31466399 DOI: 10.3390/cancers11091267] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
82 Aghlara-Fotovat S, Nash A, Kim B, Krencik R, Veiseh O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv Transl Res 2021. [PMID: 34176099 DOI: 10.1007/s13346-021-01018-0] [Reference Citation Analysis]
83 Liu HM, Ma LL, Cao B, Lin JZ, Han L, Li CY, Xu RC, Zhang DK. Progress in research into the role of abnormal glycosylation modification in tumor immunity. Immunol Lett 2021;229:8-17. [PMID: 33186635 DOI: 10.1016/j.imlet.2020.11.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
84 Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020. [PMID: 33251699 DOI: 10.1111/febs.15647] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
85 Teoh ST, Ogrodzinski MP, Ross C, Hunter KW, Lunt SY. Sialic Acid Metabolism: A Key Player in Breast Cancer Metastasis Revealed by Metabolomics. Front Oncol 2018;8:174. [PMID: 29892572 DOI: 10.3389/fonc.2018.00174] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 8.3] [Reference Citation Analysis]
86 Astapenko D, Benes J, Pouska J, Lehmann C, Islam S, Cerny V. Endothelial glycocalyx in acute care surgery - what anaesthesiologists need to know for clinical practice. BMC Anesthesiol 2019;19:238. [PMID: 31862008 DOI: 10.1186/s12871-019-0896-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
87 Modell AE, Lai S, Nguyen TM, Choudhary A. Bifunctional modalities for repurposing protein function. Cell Chem Biol 2021;28:1081-9. [PMID: 34270935 DOI: 10.1016/j.chembiol.2021.06.005] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 Badrigilan S, Choupani J, Khanbabaei H, Hoseini‐ghahfarokhi M, Webster TJ, Tayebi L. Bismuth‐Based Nanomaterials: Recent Advances in Tumor Targeting and Synergistic Cancer Therapy Techniques. Adv Healthcare Mater 2020;9:1901695. [DOI: 10.1002/adhm.201901695] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
89 Shade KT, Conroy ME, Anthony RM. IgE Glycosylation in Health and Disease. Curr Top Microbiol Immunol 2019;423:77-93. [PMID: 30820668 DOI: 10.1007/82_2019_151] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
90 Costa AF, Campos D, Reis CA, Gomes C. Targeting Glycosylation: A New Road for Cancer Drug Discovery. Trends Cancer 2020;6:757-66. [PMID: 32381431 DOI: 10.1016/j.trecan.2020.04.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
91 Yin SS, Gao FH. Molecular Mechanism of Tumor Cell Immune Escape Mediated by CD24/Siglec-10. Front Immunol 2020;11:1324. [PMID: 32765491 DOI: 10.3389/fimmu.2020.01324] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
92 Li L, Qu C, Wu X, Dai J, Lu Y, Gong Y, You R, Liu Y. Patterns and levels of platelet glycosylation in patients with coronary heart disease and type 2 diabetes mellitus. J Thromb Thrombolysis 2018;45:56-65. [DOI: 10.1007/s11239-017-1573-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
93 Wei M, McKitrick TR, Mehta AY, Gao C, Jia N, McQuillan AM, Heimburg-Molinaro J, Sun L, Cummings RD. Novel Reversible Fluorescent Glycan Linker for Functional Glycomics. Bioconjug Chem 2019;30:2897-908. [PMID: 31600064 DOI: 10.1021/acs.bioconjchem.9b00613] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
94 Han J, Huang X, Liu H, Wang J, Xiong C, Nie Z. Laser cleavable probes for in situ multiplexed glycan detection by single cell mass spectrometry. Chem Sci 2019;10:10958-62. [PMID: 32190253 DOI: 10.1039/c9sc03912k] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
95 Khan M, Arooj S, Wang H. NK Cell-Based Immune Checkpoint Inhibition. Front Immunol. 2020;11:167. [PMID: 32117298 DOI: 10.3389/fimmu.2020.00167] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 27.0] [Reference Citation Analysis]
96 Temming AR, de Taeye SW, de Graaf EL, de Neef LA, Dekkers G, Bruggeman CW, Koers J, Ligthart P, Nagelkerke SQ, Zimring JC, Kuijpers TW, Wuhrer M, Rispens T, Vidarsson G. Functional Attributes of Antibodies, Effector Cells, and Target Cells Affecting NK Cell-Mediated Antibody-Dependent Cellular Cytotoxicity. J Immunol 2019;203:3126-35. [PMID: 31748349 DOI: 10.4049/jimmunol.1900985] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
97 Möckl L. The Emerging Role of the Mammalian Glycocalyx in Functional Membrane Organization and Immune System Regulation. Front Cell Dev Biol 2020;8:253. [PMID: 32351961 DOI: 10.3389/fcell.2020.00253] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
98 Karmakar S, Pal P, Lal G. Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. Immunotargets Ther 2021;10:387-407. [PMID: 34754837 DOI: 10.2147/ITT.S306109] [Reference Citation Analysis]
99 Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017;117:13566-638. [DOI: 10.1021/acs.chemrev.7b00258] [Cited by in Crossref: 749] [Cited by in F6Publishing: 682] [Article Influence: 149.8] [Reference Citation Analysis]
100 Rodriguez E, Boelaars K, Brown K, Eveline Li RJ, Kruijssen L, Bruijns SCM, van Ee T, Schetters STT, Crommentuijn MHW, van der Horst JC, van Grieken NCT, van Vliet SJ, Kazemier G, Giovannetti E, Garcia-Vallejo JJ, van Kooyk Y. Sialic acids in pancreatic cancer cells drive tumour-associated macrophage differentiation via the Siglec receptors Siglec-7 and Siglec-9. Nat Commun 2021;12:1270. [PMID: 33627655 DOI: 10.1038/s41467-021-21550-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
101 Iwaki Y, Matsunaga E, Takegawa K, Sato C, Kitajima K. Identification and characterization of a novel, versatile sialidase from a Sphingobacterium that can hydrolyze the glycosides of any sialic acid species at neutral pH. Biochem Biophys Res Commun 2020;523:487-92. [PMID: 31889533 DOI: 10.1016/j.bbrc.2019.12.079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
102 Trang VH, Senter PD. Cutting back on the carbs. Proc Natl Acad Sci U S A 2016;113:10228-30. [PMID: 27588908 DOI: 10.1073/pnas.1612432113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
103 Burchell JM, Beatson R, Graham R, Taylor-Papadimitriou J, Tajadura-Ortega V. O-linked mucin-type glycosylation in breast cancer. Biochem Soc Trans 2018;46:779-88. [PMID: 29903935 DOI: 10.1042/BST20170483] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
104 Duarte HO, Reis CA, Gomes J. Insights on ErbB glycosylation – contributions to precision oncology. Trends in Cancer 2022. [DOI: 10.1016/j.trecan.2022.02.003] [Reference Citation Analysis]
105 Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. JCM 2020;9:2967. [DOI: 10.3390/jcm9092967] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
106 Huang HW, Chang CC, Wang CS, Lin KH. Association between Inflammation and Function of Cell Adhesion Molecules Influence on Gastrointestinal Cancer Development. Cells 2021;10:E67. [PMID: 33406733 DOI: 10.3390/cells10010067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
107 Buffone A, Weaver VM. Don't sugarcoat it: How glycocalyx composition influences cancer progression. J Cell Biol 2020;219:e201910070. [PMID: 31874115 DOI: 10.1083/jcb.201910070] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
108 Tang F, Zhou M, Qin K, Shi W, Yashinov A, Yang Y, Yang L, Guan D, Zhao L, Tang Y, Chang Y, Zhao L, Yang H, Zhou H, Huang R, Huang W. Selective N-glycan editing on living cell surfaces to probe glycoconjugate function. Nat Chem Biol 2020;16:766-75. [DOI: 10.1038/s41589-020-0551-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
109 Nycholat CM, Duan S, Knuplez E, Worth C, Elich M, Yao A, O'Sullivan J, McBride R, Wei Y, Fernandes SM, Zhu Z, Schnaar RL, Bochner BS, Paulson JC. A Sulfonamide Sialoside Analogue for Targeting Siglec-8 and -F on Immune Cells. J Am Chem Soc 2019;141:14032-7. [PMID: 31460762 DOI: 10.1021/jacs.9b05769] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
110 Choi Y, Kim J, Chae J, Hong J, Park J, Jeong E, Kim H, Tanaka M, Okochi M, Choi J. Surface glycan targeting for cancer nano-immunotherapy. J Control Release 2022:S0168-3659(22)00004-9. [PMID: 34998918 DOI: 10.1016/j.jconrel.2022.01.004] [Reference Citation Analysis]
111 Shurer CR, Colville MJ, Gupta VK, Head SE, Kai F, Lakins JN, Paszek MJ. Genetically Encoded Toolbox for Glycocalyx Engineering: Tunable Control of Cell Adhesion, Survival, and Cancer Cell Behaviors. ACS Biomater Sci Eng 2018;4:388-99. [PMID: 29805991 DOI: 10.1021/acsbiomaterials.7b00037] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
112 Lenza MP, Atxabal U, Oyenarte I, Jiménez-Barbero J, Ereño-Orbea J. Current Status on Therapeutic Molecules Targeting Siglec Receptors. Cells 2020;9:E2691. [PMID: 33333862 DOI: 10.3390/cells9122691] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
113 Lakshminarayanan S, Scorrano L. Judging a tumor cell by its cover: a matter of mitochondrial contact sites. EMBO J 2017;36:1465-7. [PMID: 28302655 DOI: 10.15252/embj.201796637] [Reference Citation Analysis]
114 Ma S, Xu Y, Song W. Functional bionanomaterials for cell surface engineering in cancer immunotherapy. APL Bioeng 2021;5:021506. [PMID: 33981940 DOI: 10.1063/5.0045945] [Reference Citation Analysis]
115 Rodrigues Mantuano N, Natoli M, Zippelius A, Läubli H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J Immunother Cancer 2020;8:e001222. [PMID: 33020245 DOI: 10.1136/jitc-2020-001222] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
116 Delaveris CS, Webster ER, Banik SM, Boxer SG, Bertozzi CR. Membrane-tethered mucin-like polypeptides sterically inhibit binding and slow fusion kinetics of influenza A virus. Proc Natl Acad Sci U S A 2020;117:12643-50. [PMID: 32457151 DOI: 10.1073/pnas.1921962117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
117 Lübbers J, Rodríguez E, van Kooyk Y. Modulation of Immune Tolerance via Siglec-Sialic Acid Interactions. Front Immunol 2018;9:2807. [PMID: 30581432 DOI: 10.3389/fimmu.2018.02807] [Cited by in Crossref: 80] [Cited by in F6Publishing: 72] [Article Influence: 20.0] [Reference Citation Analysis]
118 Scott E, Elliott DJ, Munkley J. Tumour associated glycans: A route to boost immunotherapy? Clin Chim Acta 2020;502:167-73. [PMID: 31870793 DOI: 10.1016/j.cca.2019.12.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
119 Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020;18:5784-97. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
120 Ghasempour S, Freeman SA. The glycocalyx and immune evasion in cancer. FEBS J 2021. [PMID: 34665926 DOI: 10.1111/febs.16236] [Reference Citation Analysis]
121 Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, George BM, Majzoub K, Villalta PW, Carette JE, Bertozzi CR. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell 2021;184:3109-3124.e22. [PMID: 34004145 DOI: 10.1016/j.cell.2021.04.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
122 Rodrigues JG, Duarte HO, Reis CA, Gomes J. Aberrant protein glycosylation in cancer: implications in targeted therapy. Biochem Soc Trans 2021;49:843-54. [PMID: 33704376 DOI: 10.1042/BST20200763] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Xia Y, Li Y, Fu BM. Differential effects of vascular endothelial growth factor on glycocalyx of endothelial and tumor cells and potential targets for tumor metastasis. APL Bioengineering 2022;6:016101. [DOI: 10.1063/5.0064381] [Reference Citation Analysis]
124 Leal FE, Premeaux TA, Abdel-Mohsen M, Ndhlovu LC. Role of Natural Killer Cells in HIV-Associated Malignancies. Front Immunol 2017;8:315. [PMID: 28377768 DOI: 10.3389/fimmu.2017.00315] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
125 Esmail S, Manolson MF. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. Eur J Cell Biol 2021;100:151186. [PMID: 34839178 DOI: 10.1016/j.ejcb.2021.151186] [Reference Citation Analysis]
126 Mitchell MJ, Jain RK, Langer R. Engineering and physical sciences in oncology: challenges and opportunities. Nat Rev Cancer 2017;17:659-75. [PMID: 29026204 DOI: 10.1038/nrc.2017.83] [Cited by in Crossref: 127] [Cited by in F6Publishing: 113] [Article Influence: 25.4] [Reference Citation Analysis]
127 Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol. 2020;17:597-617. [PMID: 32710014 DOI: 10.1038/s41575-020-0331-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
128 Jia HR, Zhu YX, Xu KF, Liu X, Wu FG. Plasma membrane-anchorable photosensitizing nanomicelles for lipid raft-responsive and light-controllable intracellular drug delivery. J Control Release 2018;286:103-13. [PMID: 30026079 DOI: 10.1016/j.jconrel.2018.07.027] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
129 Wu B, Mei S, Cui L, Zhao Z, Chen J, Wu T, Li G. Marine Lectins DlFBL and HddSBL Fused with Soluble Coxsackie-Adenovirus Receptor Facilitate Adenovirus Infection in Cancer Cells BUT Have Different Effects on Cell Survival. Mar Drugs 2017;15:E73. [PMID: 28335432 DOI: 10.3390/md15030073] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
130 Musolino A, Gradishar WJ, Rugo HS, Nordstrom JL, Rock EP, Arnaldez F, Pegram MD. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer 2022;10:e003171. [PMID: 34992090 DOI: 10.1136/jitc-2021-003171] [Reference Citation Analysis]
131 Sun R, Kim AMJ, Lim SO. Glycosylation of Immune Receptors in Cancer. Cells 2021;10:1100. [PMID: 34064396 DOI: 10.3390/cells10051100] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
132 Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, Mandal SK, Liu Y, Li Z, Xue T, Zhu G, Munasinghe J, Niu G, Wu A, Chen X. Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors. ACS Nano 2018;12:11355-65. [PMID: 30375848 DOI: 10.1021/acsnano.8b06201] [Cited by in Crossref: 158] [Cited by in F6Publishing: 156] [Article Influence: 39.5] [Reference Citation Analysis]
133 Pagan JD, Kitaoka M, Anthony RM. Engineered Sialylation of Pathogenic Antibodies In Vivo Attenuates Autoimmune Disease. Cell 2018;172:564-577.e13. [PMID: 29275858 DOI: 10.1016/j.cell.2017.11.041] [Cited by in Crossref: 86] [Cited by in F6Publishing: 84] [Article Influence: 17.2] [Reference Citation Analysis]
134 Rosenstock P, Kaufmann T. Sialic Acids and Their Influence on Human NK Cell Function. Cells 2021;10:263. [PMID: 33572710 DOI: 10.3390/cells10020263] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
135 Steentoft C, Migliorini D, King TR, Mandel U, June CH, Posey AD Jr. Glycan-directed CAR-T cells. Glycobiology 2018;28:656-69. [PMID: 29370379 DOI: 10.1093/glycob/cwy008] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 10.5] [Reference Citation Analysis]
136 Colomb F, Giron LB, Trbojevic-Akmacic I, Lauc G, Abdel-Mohsen M. Breaking the Glyco-Code of HIV Persistence and Immunopathogenesis. Curr HIV/AIDS Rep 2019;16:151-68. [PMID: 30707400 DOI: 10.1007/s11904-019-00433-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
137 Lünemann JD, von Gunten S, Neumann H. Targeting sialylation to treat central nervous system diseases. Trends Pharmacol Sci 2021;42:998-1008. [PMID: 34607695 DOI: 10.1016/j.tips.2021.09.002] [Reference Citation Analysis]
138 Park Y, Kim MJ, Choi Y, Kim NH, Kim L, Hong SPD, Cho HG, Yu E, Chae YK. Role of mass spectrometry-based serum proteomics signatures in predicting clinical outcomes and toxicity in patients with cancer treated with immunotherapy. J Immunother Cancer 2022;10:e003566. [PMID: 35347071 DOI: 10.1136/jitc-2021-003566] [Reference Citation Analysis]
139 Chen Y, Ding L, Ju H. In Situ Cellular Glycan Analysis. Acc Chem Res 2018;51:890-9. [DOI: 10.1021/acs.accounts.7b00617] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
140 Bartelink IH, Jones EF, Shahidi-Latham SK, Lee PRE, Zheng Y, Vicini P, van 't Veer L, Wolf D, Iagaru A, Kroetz DL, Prideaux B, Cilliers C, Thurber GM, Wimana Z, Gebhart G. Tumor Drug Penetration Measurements Could Be the Neglected Piece of the Personalized Cancer Treatment Puzzle. Clin Pharmacol Ther 2019;106:148-63. [PMID: 30107040 DOI: 10.1002/cpt.1211] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 7.5] [Reference Citation Analysis]
141 Belardi B, Son S, Felce JH, Dustin ML, Fletcher DA. Cell-cell interfaces as specialized compartments directing cell function. Nat Rev Mol Cell Biol 2020;21:750-64. [PMID: 33093672 DOI: 10.1038/s41580-020-00298-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
142 Khan T, Cabral H. Abnormal Glycosylation of Cancer Stem Cells and Targeting Strategies. Front Oncol 2021;11:649338. [PMID: 33889547 DOI: 10.3389/fonc.2021.649338] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
143 Dobie C, Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br J Cancer 2021;124:76-90. [PMID: 33144696 DOI: 10.1038/s41416-020-01126-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
144 Yu X, Shi H, Li Y, Guo Y, Zhang P, Wang G, Li L, Chen X, Ding L, Ju H. Thermally Triggered, Cell-Specific Enzymatic Glyco-Editing: In Situ Regulation of Lectin Recognition and Immune Response on Target Cells. ACS Appl Mater Interfaces 2020;12:54387-98. [PMID: 33236873 DOI: 10.1021/acsami.0c15212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
145 Yamaguchi S, Yoshimura A, Yasuda Y, Mori A, Tanaka H, Takahashi T, Kitajima K, Sato C. Chemical Synthesis and Evaluation of a Disialic Acid-Containing Dextran Polymer as an Inhibitor for the Interaction between Siglec 7 and Its Ligand. ChemBioChem 2017;18:1194-203. [DOI: 10.1002/cbic.201600694] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
146 Läubli H, Borsig L. Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis. Front Immunol 2019;10:2120. [PMID: 31552050 DOI: 10.3389/fimmu.2019.02120] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 14.7] [Reference Citation Analysis]
147 Rudra A, Li J, Shakur R, Bhagchandani S, Langer R. Trends in Therapeutic Conjugates: Bench to Clinic. Bioconjug Chem 2020;31:462-73. [PMID: 31990184 DOI: 10.1021/acs.bioconjchem.9b00828] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
148 Liu Y, Peng FX. Research progress on O-GlcNAcylation in the occurrence, development, and treatment of colorectal cancer. World J Gastrointest Surg 2021; 13(2): 96-115 [PMID: 33643531 DOI: 10.4240/wjgs.v13.i2.96] [Reference Citation Analysis]
149 Altmann S, Mut J, Wolf N, Meißner-Weigl J, Rudert M, Jakob F, Gutmann M, Lühmann T, Seibel J, Ebert R. Metabolic Glycoengineering in hMSC-TERT as a Model for Skeletal Precursors by Using Modified Azide/Alkyne Monosaccharides. Int J Mol Sci 2021;22:2820. [PMID: 33802220 DOI: 10.3390/ijms22062820] [Reference Citation Analysis]
150 Wisnovsky S, Möckl L, Malaker SA, Pedram K, Hess GT, Riley NM, Gray MA, Smith BAH, Bassik MC, Moerner WE, Bertozzi CR. Genome-wide CRISPR screens reveal a specific ligand for the glycan-binding immune checkpoint receptor Siglec-7. Proc Natl Acad Sci U S A 2021;118:e2015024118. [PMID: 33495350 DOI: 10.1073/pnas.2015024118] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
151 Zhou X, Yang S, Yang G, Tan Z, Guan F. Two-step derivatization and mass spectral distinction of α2,3 and α2,6 sialic acid linkages on N-glycans by MALDI-TOF. Chinese Chemical Letters 2019;30:676-80. [DOI: 10.1016/j.cclet.2018.12.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
152 Läubli H, Varki A. Sialic acid-binding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell Mol Life Sci 2020;77:593-605. [PMID: 31485715 DOI: 10.1007/s00018-019-03288-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 12.3] [Reference Citation Analysis]
153 Zeng Y, Tang F, Shi W, Dong Q, Huang W. Recent advances in synthetic glycoengineering for biological applications. Curr Opin Biotechnol 2022;74:247-55. [PMID: 34998108 DOI: 10.1016/j.copbio.2021.12.008] [Reference Citation Analysis]
154 Adams OJ, Stanczak MA, von Gunten S, Läubli H. Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology 2018;28:640-7. [PMID: 29309569 DOI: 10.1093/glycob/cwx108] [Cited by in Crossref: 32] [Cited by in F6Publishing: 50] [Article Influence: 8.0] [Reference Citation Analysis]
155 Zhong X, D’antona AM, Scarcelli JJ, Rouse JC. New Opportunities in Glycan Engineering for Therapeutic Proteins. Antibodies 2022;11:5. [DOI: 10.3390/antib11010005] [Reference Citation Analysis]
156 Daly J, Carlsten M, O'Dwyer M. Sugar Free: Novel Immunotherapeutic Approaches Targeting Siglecs and Sialic Acids to Enhance Natural Killer Cell Cytotoxicity Against Cancer. Front Immunol 2019;10:1047. [PMID: 31143186 DOI: 10.3389/fimmu.2019.01047] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 11.3] [Reference Citation Analysis]
157 Metcalf KJ, Alazzeh A, Werb Z, Weaver VM. Leveraging microenvironmental synthetic lethalities to treat cancer. J Clin Invest 2021;131:143765. [PMID: 33720045 DOI: 10.1172/JCI143765] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
158 Müller M, Buchner MR. Understanding the Localization of Berylliosis: Interaction of Be2+ with Carbohydrates and Related Biomimetic Ligands. Chemistry 2019;25:16257-69. [PMID: 31498482 DOI: 10.1002/chem.201903439] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
159 Müller M, Buchner MR. Beryllium-Induced Conversion of Aldehydes. Chemistry 2019;25:11147-56. [PMID: 31264745 DOI: 10.1002/chem.201902414] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
160 Estevez A, Zhu D, Blankenship C, Jiang J. Molecular Interrogation to Crack the Case of O-GlcNAc. Chemistry 2020;26:12086-100. [PMID: 32207184 DOI: 10.1002/chem.202000155] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
161 Lopes N, Correia VG, Palma AS, Brito C. Cracking the Breast Cancer Glyco-Code through Glycan-Lectin Interactions: Targeting Immunosuppressive Macrophages. Int J Mol Sci 2021;22:1972. [PMID: 33671245 DOI: 10.3390/ijms22041972] [Reference Citation Analysis]
162 Pally D, Pramanik D, Hussain S, Verma S, Srinivas A, Kumar RV, Everest-Dass A, Bhat R. Heterogeneity in 2,6-Linked Sialic Acids Potentiates Invasion of Breast Cancer Epithelia. ACS Cent Sci 2021;7:110-25. [PMID: 33532574 DOI: 10.1021/acscentsci.0c00601] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
163 Critcher M, Hassan AA, Huang ML. Seeing the forest through the trees: characterizing the glycoproteome. Trends in Biochemical Sciences 2022. [DOI: 10.1016/j.tibs.2022.02.007] [Reference Citation Analysis]
164 Cornelissen LAM, Blanas A, van der Horst JC, Kruijssen L, Zaal A, O'Toole T, Wiercx L, van Kooyk Y, van Vliet SJ. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer 2019;144:2290-302. [PMID: 30578646 DOI: 10.1002/ijc.32084] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
165 Grabenstein S, Barnard KN, Anim M, Armoo A, Weichert WS, Bertozzi CR, Parrish CR, Willand-Charnley R. Deacetylated sialic acids modulates immune mediated cytotoxicity via the sialic acid-Siglec pathway. Glycobiology 2021:cwab068. [PMID: 34192335 DOI: 10.1093/glycob/cwab068] [Reference Citation Analysis]
166 Ma J, Qiu J, Wang S. Nanozymes for Catalytic Cancer Immunotherapy. ACS Appl Nano Mater 2020;3:4925-43. [DOI: 10.1021/acsanm.0c00396] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
167 Wu KL, Yu C, Lee C, Zuo C, Ball ZT, Xiao H. Precision Modification of Native Antibodies. Bioconjug Chem 2021;32:1947-59. [PMID: 34428033 DOI: 10.1021/acs.bioconjchem.1c00342] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
168 Jia HR, Zhu YX, Chen Z, Wu FG. Cholesterol-Assisted Bacterial Cell Surface Engineering for Photodynamic Inactivation of Gram-Positive and Gram-Negative Bacteria. ACS Appl Mater Interfaces 2017;9:15943-51. [PMID: 28426936 DOI: 10.1021/acsami.7b02562] [Cited by in Crossref: 84] [Cited by in F6Publishing: 65] [Article Influence: 16.8] [Reference Citation Analysis]
169 Khera E, Thurber GM. Pharmacokinetic and Immunological Considerations for Expanding the Therapeutic Window of Next-Generation Antibody-Drug Conjugates. BioDrugs 2018;32:465-80. [PMID: 30132210 DOI: 10.1007/s40259-018-0302-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]