BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Khan MQ, Sweeting B, Mulligan VK, Arslan PE, Cashman NR, Pai EF, Chakrabartty A. Prion disease susceptibility is affected by beta-structure folding propensity and local side-chain interactions in PrP. Proc Natl Acad Sci U S A 2010;107:19808-13. [PMID: 21041683 DOI: 10.1073/pnas.1005267107] [Cited by in Crossref: 94] [Cited by in F6Publishing: 86] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Block AJ, Bartz JC. Prion strains: shining new light on old concepts. Cell Tissue Res 2022. [PMID: 35796874 DOI: 10.1007/s00441-022-03665-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Addis A, Canciani E, Campagnol M, Colombo M, Frigerio C, Recupero D, Dellavia C, Morroni M. A New Anorganic Equine Bone Substitute for Oral Surgery: Structural Characterization and Regenerative Potential. Materials (Basel) 2022;15:1031. [PMID: 35160976 DOI: 10.3390/ma15031031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022;27:705. [PMID: 35163973 DOI: 10.3390/molecules27030705] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
4 Russo L, Salzano G, Corvino A, Bistaffa E, Moda F, Celauro L, D'abrosca G, Isernia C, Milardi D, Giachin G, Malgieri G, Legname G, Fattorusso R. Structural and dynamical determinants of a β-sheet-enriched intermediate involved in amyloid fibrillar assembly of human prion protein. Chem Sci . [DOI: 10.1039/d2sc00345g] [Reference Citation Analysis]
5 Angelli JN, Passos YM, Brito JMA, Silva JL, Cordeiro Y, Vieira TCRG. Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors. Front Neurosci 2021;15:689315. [PMID: 34220442 DOI: 10.3389/fnins.2021.689315] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Myers R, Cembran A, Fernandez-Funez P. Insight From Animals Resistant to Prion Diseases: Deciphering the Genotype - Morphotype - Phenotype Code for the Prion Protein. Front Cell Neurosci 2020;14:254. [PMID: 33013324 DOI: 10.3389/fncel.2020.00254] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hosszu LLP, Conners R, Sangar D, Batchelor M, Sawyer EB, Fisher S, Cliff MJ, Hounslow AM, McAuley K, Leo Brady R, Jackson GS, Bieschke J, Waltho JP, Collinge J. Structural effects of the highly protective V127 polymorphism on human prion protein. Commun Biol 2020;3:402. [PMID: 32728168 DOI: 10.1038/s42003-020-01126-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
8 Foliaki ST, Lewis V, Islam AMT, Senesi M, Finkelstein DI, Ellett LJ, Lawson VA, Adlard PA, Roberts BR, Collins SJ. PrPSc Oligomerization Appears Dynamic, Quickly Engendering Inherent M1000 Acute Synaptotoxicity. Biophys J 2020;119:128-41. [PMID: 32562618 DOI: 10.1016/j.bpj.2020.04.040] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Zhang J. Molecular dynamics studies of dog prion protein wild-type and its D159N mutant. J Biomol Struct Dyn 2021;39:4234-42. [PMID: 32496928 DOI: 10.1080/07391102.2020.1776155] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Piolanti N, Del Chiaro A, Matassi F, Nistri L, Graceffa A, Marcucci M. Bone integration in acetabular revision hip arthroplasty using equine-derived bone grafts: a retrospective study. Eur J Orthop Surg Traumatol 2020;30:575-81. [PMID: 31858258 DOI: 10.1007/s00590-019-02613-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Abskharon R, Wang F, Wohlkonig A, Ruan J, Soror S, Giachin G, Pardon E, Zou W, Legname G, Ma J, Steyaert J. Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathog 2019;15:e1008139. [PMID: 31815959 DOI: 10.1371/journal.ppat.1008139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
12 Baral PK, Yin J, Aguzzi A, James MNG. Transition of the prion protein from a structured cellular form (PrPC ) to the infectious scrapie agent (PrPSc ). Protein Sci 2019;28:2055-63. [PMID: 31583788 DOI: 10.1002/pro.3735] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
13 Mondal B, Reddy G. A Transient Intermediate Populated in Prion Folding Leads to Domain Swapping. Biochemistry 2020;59:114-24. [DOI: 10.1021/acs.biochem.9b00621] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
14 Sengupta I, Udgaonkar J. Monitoring site-specific conformational changes in real-time reveals a misfolding mechanism of the prion protein. Elife 2019;8:e44698. [PMID: 31232689 DOI: 10.7554/eLife.44698] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Goluguri RR, Sen S, Udgaonkar J. Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein. Elife 2019;8:e44766. [PMID: 31025940 DOI: 10.7554/eLife.44766] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
16 Otero A, Hedman C, Fernández-Borges N, Eraña H, Marín B, Monzón M, Sánchez-Martín MA, Nonno R, Badiola JJ, Bolea R, Castilla J. A Single Amino Acid Substitution, Found in Mammals with Low Susceptibility to Prion Diseases, Delays Propagation of Two Prion Strains in Highly Susceptible Transgenic Mouse Models. Mol Neurobiol 2019;56:6501-11. [PMID: 30847740 DOI: 10.1007/s12035-019-1535-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
17 Harrathi C, Fernández-Borges N, Eraña H, Elezgarai SR, Venegas V, Charco JM, Castilla J. Insights into the Bidirectional Properties of the Sheep-Deer Prion Transmission Barrier. Mol Neurobiol 2019;56:5287-303. [PMID: 30592012 DOI: 10.1007/s12035-018-1443-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
18 Sengupta I, Udgaonkar JB. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Chem Commun (Camb) 2018;54:6230-42. [PMID: 29789820 DOI: 10.1039/c8cc03053g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
19 Ambadi Thody S, Mathew M, Udgaonkar JB. Mechanism of aggregation and membrane interactions of mammalian prion protein. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018;1860:1927-35. [DOI: 10.1016/j.bbamem.2018.02.031] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
20 Sanchez-Garcia J, Fernandez-Funez P. D159 and S167 are protective residues in the prion protein from dog and horse, two prion-resistant animals. Neurobiol Dis 2018;119:1-12. [PMID: 30010001 DOI: 10.1016/j.nbd.2018.07.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
21 Moreno JA, Telling GC. Molecular Mechanisms of Chronic Wasting Disease Prion Propagation. Cold Spring Harb Perspect Med 2018;8:a024448. [PMID: 28193766 DOI: 10.1101/cshperspect.a024448] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
22 Fernández-Borges N, Eraña H, Castilla J. Behind the potential evolution towards prion resistant species. Prion 2018;12:83-7. [PMID: 29388474 DOI: 10.1080/19336896.2018.1435935] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
23 Otero A, Bolea R, Hedman C, Fernández-Borges N, Marín B, López-Pérez Ó, Barrio T, Eraña H, Sánchez-Martín MA, Monzón M, Badiola JJ, Castilla J. An Amino Acid Substitution Found in Animals with Low Susceptibility to Prion Diseases Confers a Protective Dominant-Negative Effect in Prion-Infected Transgenic Mice. Mol Neurobiol 2018;55:6182-92. [PMID: 29264770 DOI: 10.1007/s12035-017-0832-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
24 Eraña H, Fernández-Borges N, Elezgarai SR, Harrathi C, Charco JM, Chianini F, Dagleish MP, Ortega G, Millet Ó, Castilla J. In Vitro Approach To Identify Key Amino Acids in Low Susceptibility of Rabbit Prion Protein to Misfolding. J Virol 2017;91:e01543-17. [PMID: 28978705 DOI: 10.1128/JVI.01543-17] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
25 Dee DR, Woodside MT. Comparing the energy landscapes for native folding and aggregation of PrP. Prion 2016;10:207-20. [PMID: 27191683 DOI: 10.1080/19336896.2016.1173297] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kanata E, Arsenakis M, Sklaviadis T. Caprine PrP variants harboring Asp-146, His-154 and Gln-211 alleles display reduced convertibility upon interaction with pathogenic murine prion protein in scrapie infected cells. Prion 2016;10:391-408. [PMID: 27537339 DOI: 10.1080/19336896.2016.1199312] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
27 Sengupta I, Bhate SH, Das R, Udgaonkar JB. Salt-Mediated Oligomerization of the Mouse Prion Protein Monitored by Real-Time NMR. Journal of Molecular Biology 2017;429:1852-72. [DOI: 10.1016/j.jmb.2017.05.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
28 Malevanets A, Chong PA, Hansen DF, Rizk P, Sun Y, Lin H, Muhandiram R, Chakrabartty A, Kay LE, Forman-Kay JD, Wodak SJ. Interplay of buried histidine protonation and protein stability in prion misfolding. Sci Rep 2017;7:882. [PMID: 28408762 DOI: 10.1038/s41598-017-00954-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
29 Srivastava KR, Lapidus LJ. Prion protein dynamics before aggregation. Proc Natl Acad Sci U S A 2017;114:3572-7. [PMID: 28320943 DOI: 10.1073/pnas.1620400114] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
30 Moulick R, Udgaonkar JB. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization. Journal of Molecular Biology 2017;429:886-99. [DOI: 10.1016/j.jmb.2017.01.019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
31 Bian J, Khaychuk V, Angers RC, Fernández-Borges N, Vidal E, Meyerett-Reid C, Kim S, Calvi CL, Bartz JC, Hoover EA, Agrimi U, Richt JA, Castilla J, Telling GC. Prion replication without host adaptation during interspecies transmissions. Proc Natl Acad Sci U S A 2017;114:1141-6. [PMID: 28096357 DOI: 10.1073/pnas.1611891114] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
32 Srivastava A, Sharma S, Sadanandan S, Gupta S, Singh J, Gupta S, Haridas V, Kundu B. Modulation of prion polymerization and toxicity by rationally designed peptidomimetics. Biochemical Journal 2017;474:123-47. [DOI: 10.1042/bcj20160737] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
33 Marrone A, Re N, Storchi L. The Effects of Ca2+ Concentration and E200K Mutation on the Aggregation Propensity of PrPC: A Computational Study. PLoS One 2016;11:e0168039. [PMID: 27959938 DOI: 10.1371/journal.pone.0168039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sabareesan AT, Udgaonkar JB. Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers. J Mol Biol 2016;428:3935-47. [PMID: 27545411 DOI: 10.1016/j.jmb.2016.08.015] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
35 Sanchez-Garcia J, Jensen K, Zhang Y, Rincon-Limas DE, Fernandez-Funez P. A single amino acid (Asp159) from the dog prion protein suppresses the toxicity of the mouse prion protein in Drosophila. Neurobiol Dis 2016;95:204-9. [PMID: 27477054 DOI: 10.1016/j.nbd.2016.07.025] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
36 Dalal V, Arya S, Mukhopadhyay S. Confined Water in Amyloid-Competent Oligomers of the Prion Protein. Chemphyschem 2016;17:2804-7. [PMID: 27253720 DOI: 10.1002/cphc.201600440] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
37 Centonze R, Agostini E, Massaccesi S, Toninelli S, Morabito L. A novel equine-derived pericardium membrane for dural repair: A preliminary, short-term investigation. Asian J Neurosurg 2016;11:201-5. [PMID: 27366245 DOI: 10.4103/1793-5482.179645] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
38 Nagel-Steger L, Owen MC, Strodel B. An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations. Chembiochem 2016;17:657-76. [PMID: 26910367 DOI: 10.1002/cbic.201500623] [Cited by in Crossref: 72] [Cited by in F6Publishing: 72] [Article Influence: 12.0] [Reference Citation Analysis]
39 Singh J, Udgaonkar JB. Unraveling the Molecular Mechanism of pH-Induced Misfolding and Oligomerization of the Prion Protein. J Mol Biol 2016;428:1345-55. [PMID: 26854758 DOI: 10.1016/j.jmb.2016.01.030] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.7] [Reference Citation Analysis]
40 Zhang J, Wang F. A review on the salt bridge ASP177-ARG163 (O-N) of wild-type rabbit prion protein. J Biomol Struct Dyn 2016;34:1020-8. [PMID: 26103085 DOI: 10.1080/07391102.2015.1064832] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
41 Dalal V, Arya S, Bhattacharya M, Mukhopadhyay S. Conformational Switching and Nanoscale Assembly of Human Prion Protein into Polymorphic Amyloids via Structurally Labile Oligomers. Biochemistry 2015;54:7505-13. [DOI: 10.1021/acs.biochem.5b01110] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
42 Agarwal S, Döring K, Gierusz LA, Iyer P, Lane FM, Graham JF, Goldmann W, Pinheiro TJ, Gill AC. Complex folding and misfolding effects of deer-specific amino acid substitutions in the β2-α2 loop of murine prion protein. Sci Rep 2015;5:15528. [PMID: 26490404 DOI: 10.1038/srep15528] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
43 Baral PK, Swayampakula M, Aguzzi A, James MN. X-ray structural and molecular dynamical studies of the globular domains of cow, deer, elk and Syrian hamster prion proteins. J Struct Biol 2015;192:37-47. [PMID: 26320075 DOI: 10.1016/j.jsb.2015.08.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
44 Moulick R, Das R, Udgaonkar JB. Partially Unfolded Forms of the Prion Protein Populated under Misfolding-promoting Conditions: CHARACTERIZATION BY HYDROGEN EXCHANGE MASS SPECTROMETRY AND NMR. J Biol Chem 2015;290:25227-40. [PMID: 26306043 DOI: 10.1074/jbc.M115.677575] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
45 Singh J, Udgaonkar JB. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 2015;54:4431-42. [PMID: 26171558 DOI: 10.1021/acs.biochem.5b00605] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 5.9] [Reference Citation Analysis]
46 Zhang J, Wang F, Chatterjee S. Molecular dynamics studies on the buffalo prion protein. J Biomol Struct Dyn 2016;34:762-77. [PMID: 26043781 DOI: 10.1080/07391102.2015.1052849] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
47 Yu L, Lee SJ, Yee VC. Crystal Structures of Polymorphic Prion Protein β1 Peptides Reveal Variable Steric Zipper Conformations. Biochemistry 2015;54:3640-8. [PMID: 25978088 DOI: 10.1021/acs.biochem.5b00425] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
48 Singh J, Udgaonkar JB. Structural Effects of Multiple Pathogenic Mutations Suggest a Model for the Initiation of Misfolding of the Prion Protein. Angew Chem 2015;127:7639-43. [DOI: 10.1002/ange.201501011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
49 Singh J, Udgaonkar JB. Structural Effects of Multiple Pathogenic Mutations Suggest a Model for the Initiation of Misfolding of the Prion Protein. Angew Chem Int Ed 2015;54:7529-33. [DOI: 10.1002/anie.201501011] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.1] [Reference Citation Analysis]
50 Yuan Z, Yang L, Chen B, Zhu T, Hassan MF, Yin X, Zhou X, Zhao D. Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis. J Neurochem 2015;133:722-9. [DOI: 10.1111/jnc.13098] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
51 Qing LL, Zhao H, Liu LL. Progress on low susceptibility mechanisms of transmissible spongiform encephalopathies. Dongwuxue Yanjiu 2014;35:436-45. [PMID: 25297084 DOI: 10.13918/j.issn.2095-8137.2014.5.436] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
52 Singh J, Kumar H, Sabareesan AT, Udgaonkar JB. Rational stabilization of helix 2 of the prion protein prevents its misfolding and oligomerization. J Am Chem Soc 2014;136:16704-7. [PMID: 25407394 DOI: 10.1021/ja510964t] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 5.6] [Reference Citation Analysis]
53 Yan X, Huang JJ, Zhou Z, Chen J, Liang Y. How does domain replacement affect fibril formation of the rabbit/human prion proteins. PLoS One 2014;9:e113238. [PMID: 25401497 DOI: 10.1371/journal.pone.0113238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
54 Moulick R, Udgaonkar JB. Thermodynamic characterization of the unfolding of the prion protein. Biophys J 2014;106:410-20. [PMID: 24461016 DOI: 10.1016/j.bpj.2013.11.4491] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
55 Zhang J, Wang F, Zhang Y. Molecular dynamics studies on the NMR structures of rabbit prion protein wild type and mutants: surface electrostatic charge distributions. J Biomol Struct Dyn 2015;33:1326-35. [PMID: 25105226 DOI: 10.1080/07391102.2014.947325] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
56 Trevitt CR, Hosszu LL, Batchelor M, Panico S, Terry C, Nicoll AJ, Risse E, Taylor WA, Sandberg MK, Al-Doujaily H, Linehan JM, Saibil HR, Scott DJ, Collinge J, Waltho JP, Clarke AR. N-terminal domain of prion protein directs its oligomeric association. J Biol Chem 2014;289:25497-508. [PMID: 25074940 DOI: 10.1074/jbc.M114.566588] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
57 Angers R, Christiansen J, Nalls AV, Kang HE, Hunter N, Hoover E, Mathiason CK, Sheetz M, Telling GC. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission. Proc Natl Acad Sci U S A 2014;111:11169-74. [PMID: 25034251 DOI: 10.1073/pnas.1404739111] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]
58 Botto L, Cunati D, Coco S, Sesana S, Bulbarelli A, Biasini E, Colombo L, Negro A, Chiesa R, Masserini M, Palestini P. Role of lipid rafts and GM1 in the segregation and processing of prion protein. PLoS One 2014;9:e98344. [PMID: 24859148 DOI: 10.1371/journal.pone.0098344] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
59 Abskharon RN, Giachin G, Wohlkonig A, Soror SH, Pardon E, Legname G, Steyaert J. Probing the N-terminal β-sheet conversion in the crystal structure of the human prion protein bound to a nanobody. J Am Chem Soc 2014;136:937-44. [PMID: 24400836 DOI: 10.1021/ja407527p] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 8.8] [Reference Citation Analysis]
60 Yuan Z, Zhao D, Yang L. Decipher the mechanisms of rabbit's low susceptibility to prion infection. Acta Biochim Biophys Sin (Shanghai) 2013;45:899-903. [PMID: 24041958 DOI: 10.1093/abbs/gmt093] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
61 Zhang J, Zhang Y. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins. J Theor Biol 2014;342:70-82. [PMID: 24184221 DOI: 10.1016/j.jtbi.2013.10.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
62 Lu X, Zeng J, Gao Y, Zhang JZH, Zhang D, Mei Y. The intrinsic helical propensities of the helical fragments in prion protein under neutral and low pH conditions: a replica exchange molecular dynamics study. J Mol Model 2013;19:4897-908. [DOI: 10.1007/s00894-013-1985-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
63 Richmond K, Masterson P, Ortiz JF, Siltberg-Liberles J. Did the prion protein become vulnerable to misfolding after an evolutionary divide and conquer event? J Biomol Struct Dyn 2014;32:1074-84. [PMID: 23859022 DOI: 10.1080/07391102.2013.809022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
64 Larda ST, Simonetti K, Al-abdul-wahid MS, Sharpe S, Prosser RS. Dynamic Equilibria between Monomeric and Oligomeric Misfolded States of the Mammalian Prion Protein Measured by 19 F NMR. J Am Chem Soc 2013;135:10533-41. [DOI: 10.1021/ja404584s] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
65 Kyle LM, John TR, Schätzl HM, Lewis RV. Introducing a rigid loop structure from deer into mouse prion protein increases its propensity for misfolding in vitro. PLoS One 2013;8:e66715. [PMID: 23825561 DOI: 10.1371/journal.pone.0066715] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
66 Zhang J, Zhang Y. Molecular dynamics studies on 3D structures of the hydrophobic region PrP(109-136). Acta Biochim Biophys Sin (Shanghai) 2013;45:509-19. [PMID: 23563221 DOI: 10.1093/abbs/gmt031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
67 Sweeting B, Brown E, Khan MQ, Chakrabartty A, Pai EF. N-terminal helix-cap in α-helix 2 modulates β-state misfolding in rabbit and hamster prion proteins. PLoS One 2013;8:e63047. [PMID: 23675452 DOI: 10.1371/journal.pone.0063047] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
68 Christen B, Damberger FF, Pérez DR, Hornemann S, Wüthrich K. Structural plasticity of the cellular prion protein and implications in health and disease. Proc Natl Acad Sci U S A 2013;110:8549-54. [PMID: 23650394 DOI: 10.1073/pnas.1306178110] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
69 Christen B, Hornemann S, Damberger FF, Wüthrich K. Prion Protein mPrP[F175A](121–231): Structure and Stability in Solution. Journal of Molecular Biology 2012;423:496-502. [DOI: 10.1016/j.jmb.2012.08.011] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
70 Singh J, Sabareesan A, Mathew M, Udgaonkar JB. Development of the Structural Core and of Conformational Heterogeneity during the Conversion of Oligomers of the Mouse Prion Protein to Worm-like Amyloid Fibrils. Journal of Molecular Biology 2012;423:217-31. [DOI: 10.1016/j.jmb.2012.06.040] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 4.6] [Reference Citation Analysis]
71 Sang JC, Lee CY, Luh FY, Huang YW, Chiang YW, Chen RP. Slow spontaneous α-to-β structural conversion in a non-denaturing neutral condition reveals the intrinsically disordered property of the disulfide-reduced recombinant mouse prion protein. Prion 2012;6:489-97. [PMID: 22987112 DOI: 10.4161/pri.22217] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
72 Bell JA, Ho KL, Farid R. Significant reduction in errors associated with nonbonded contacts in protein crystal structures: automated all-atom refinement with PrimeX. Acta Crystallogr D Biol Crystallogr 2012;68:935-52. [PMID: 22868759 DOI: 10.1107/S0907444912017453] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
73 Rincon-Limas DE, Jensen K, Fernandez-Funez P. Drosophila models of proteinopathies: the little fly that could. Curr Pharm Des 2012;18:1108-22. [PMID: 22288402 DOI: 10.2174/138161212799315894] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
74 Hervás R, Oroz J, Galera-Prat A, Goñi O, Valbuena A, Vera AM, Gómez-Sicilia A, Losada-Urzáiz F, Uversky VN, Menéndez M, Laurents DV, Bruix M, Carrión-Vázquez M. Common features at the start of the neurodegeneration cascade. PLoS Biol 2012;10:e1001335. [PMID: 22666178 DOI: 10.1371/journal.pbio.1001335] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
75 Issack BB, Berjanskii M, Wishart DS, Stepanova M. Exploring the essential collective dynamics of interacting proteins: application to prion protein dimers. Proteins 2012;80:1847-65. [PMID: 22488640 DOI: 10.1002/prot.24082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.1] [Reference Citation Analysis]
76 Ladner CL, Wishart DS. Resolution-enhanced native acidic gel electrophoresis: a method for resolving, sizing, and quantifying prion protein oligomers. Anal Biochem 2012;426:54-62. [PMID: 22490465 DOI: 10.1016/j.ab.2012.04.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
77 Cheon M, Chang I, Hall CK. Spontaneous formation of twisted Aβ(16-22) fibrils in large-scale molecular-dynamics simulations. Biophys J 2011;101:2493-501. [PMID: 22098748 DOI: 10.1016/j.bpj.2011.08.042] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 4.9] [Reference Citation Analysis]
78 Linden R, Cordeiro Y, Lima LMTR. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012;69:1105-24. [DOI: 10.1007/s00018-011-0847-7] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
79 Zhou Z, Yan X, Pan K, Chen J, Xie ZS, Xiao GF, Yang FQ, Liang Y. Fibril formation of the rabbit/human/bovine prion proteins. Biophys J 2011;101:1483-92. [PMID: 21943430 DOI: 10.1016/j.bpj.2011.08.018] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 3.7] [Reference Citation Analysis]
80 Biljan I, Ilc G, Giachin G, Raspadori A, Zhukov I, Plavec J, Legname G. Toward the Molecular Basis of Inherited Prion Diseases: NMR Structure of the Human Prion Protein with V210I Mutation. Journal of Molecular Biology 2011;412:660-73. [DOI: 10.1016/j.jmb.2011.07.067] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 4.4] [Reference Citation Analysis]
81 Julien O, Chatterjee S, Bjorndahl TC, Sweeting B, Acharya S, Semenchenko V, Chakrabartty A, Pai EF, Wishart DS, Sykes BD, Cashman NR. Relative and regional stabilities of the hamster, mouse, rabbit, and bovine prion proteins toward urea unfolding assessed by nuclear magnetic resonance and circular dichroism spectroscopies. Biochemistry 2011;50:7536-45. [PMID: 21800884 DOI: 10.1021/bi200731e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
82 Zhang J, Liu DD. Molecular Dynamics Studies on the Structural Stability of Wild-type Dog Prion Protein. Journal of Biomolecular Structure and Dynamics 2011;28:861-9. [DOI: 10.1080/07391102.2011.10508613] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
83 Orrú CD, Wilham JM, Raymond LD, Kuhn F, Schroeder B, Raeber AJ, Caughey B. Prion disease blood test using immunoprecipitation and improved quaking-induced conversion. mBio 2011;2:e00078-11. [PMID: 21558432 DOI: 10.1128/mBio.00078-11] [Cited by in Crossref: 82] [Cited by in F6Publishing: 94] [Article Influence: 7.5] [Reference Citation Analysis]
84 Abskharon RN, Soror SH, Pardon E, El Hassan H, Legname G, Steyaert J, Wohlkonig A. Combining in-situ proteolysis and microseed matrix screening to promote crystallization of PrPc-nanobody complexes. Protein Eng Des Sel 2011;24:737-41. [PMID: 21536542 DOI: 10.1093/protein/gzr017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
85 Fernandez-Funez P, Zhang Y, Sanchez-Garcia J, Jensen K, Zou WQ, Rincon-Limas DE. Pulling rabbits to reveal the secrets of the prion protein. Commun Integr Biol 2011;4:262-6. [PMID: 21980555 DOI: 10.4161/cib.4.3.15054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
86 Prigent S, Rezaei H. PrP assemblies: spotting the responsible regions in prion propagation. Prion. 2011;5:69-75. [PMID: 21788728 DOI: 10.4161/pri.5.2.16383] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]