BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu L, Wang A, Li X, Oh KW. Passive micropumping in microfluidics for point-of-care testing. Biomicrofluidics 2020;14:031503. [PMID: 32509049 DOI: 10.1063/5.0002169] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Mehboudi A, Yeom J. A passive Stokes flow rectifier for Newtonian fluids. Sci Rep 2021;11:10182. [PMID: 33986400 DOI: 10.1038/s41598-021-89699-y] [Reference Citation Analysis]
2 Fajrial AK, Vega A, Shakya G, Ding X. A frugal microfluidic pump. Lab Chip 2021;21:4772-8. [PMID: 34751689 DOI: 10.1039/d1lc00691f] [Reference Citation Analysis]
3 Catalan-Carrio R, Akyazi T, Basabe-Desmonts L, Benito-Lopez F. Predicting Dimensions in Microfluidic Paper Based Analytical Devices. Sensors (Basel) 2020;21:E101. [PMID: 33375225 DOI: 10.3390/s21010101] [Reference Citation Analysis]
4 Wang A, Boroujeni SM, Schneider PJ, Christie LB, Mancuso KA, Andreadis ST, Oh KW. An Integrated Centrifugal Degassed PDMS-Based Microfluidic Device for Serial Dilution. Micromachines (Basel) 2021;12:482. [PMID: 33922553 DOI: 10.3390/mi12050482] [Reference Citation Analysis]
5 Xu Y, Wang T, Chen Z, Jin L, Wu Z, Yan J, Zhao X, Cai L, Deng Y, Guo Y, Li S, He N. The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors. Chinese Chemical Letters 2021;32:3675-86. [DOI: 10.1016/j.cclet.2021.06.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
6 Hassan SU, Tariq A, Noreen Z, Donia A, Zaidi SZJ, Bokhari H, Zhang X. Capillary-Driven Flow Microfluidics Combined with Smartphone Detection: An Emerging Tool for Point-of-Care Diagnostics. Diagnostics (Basel) 2020;10:E509. [PMID: 32708045 DOI: 10.3390/diagnostics10080509] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
7 Lin PH, Li BR. Passively driven microfluidic device with simple operation in the development of nanolitre droplet assay in nucleic acid detection. Sci Rep 2021;11:21019. [PMID: 34697372 DOI: 10.1038/s41598-021-00470-9] [Reference Citation Analysis]
8 Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2021. [PMID: 34897302 DOI: 10.1039/c9cs00621d] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
9 Lu C, Han J, Sun X, Yang G. Electrochemical Detection and Point-of-Care Testing for Circulating Tumor Cells: Current Techniques and Future Potentials. Sensors (Basel) 2020;20:E6073. [PMID: 33114569 DOI: 10.3390/s20216073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]