BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Calero V, Garcia-Sanchez P, Ramos A, Morgan H. Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation. Biomicrofluidics 2019;13:054110. [PMID: 31673301 DOI: 10.1063/1.5124475] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Fernández-Mateo R, Calero V, Morgan H, Ramos A, García-Sánchez P. Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels. Anal Chem 2021;93:14667-74. [PMID: 34704741 DOI: 10.1021/acs.analchem.1c02849] [Reference Citation Analysis]
2 Vaghef-Koodehi A, Dillis C, Lapizco-Encinas BH. High-Resolution Charge-Based Electrokinetic Separation of Almost Identical Microparticles. Anal Chem 2022. [PMID: 35441512 DOI: 10.1021/acs.analchem.2c00355] [Reference Citation Analysis]
3 Lapizco-Encinas BH. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Anal Bioanal Chem 2021. [PMID: 34664103 DOI: 10.1007/s00216-021-03687-9] [Reference Citation Analysis]
4 Kwizera EA, Sun M, White AM, Li J, He X. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater Sci Eng 2021;7:2043-63. [PMID: 33871975 DOI: 10.1021/acsbiomaterials.1c00083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ho BD, Beech JP, Tegenfeldt JO. Charge-Based Separation of Micro- and Nanoparticles. Micromachines (Basel) 2020;11:E1014. [PMID: 33218201 DOI: 10.3390/mi11111014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Tabatabaei SA, Zabetian Targhi M, Javaherchian J, Yaghoubi M. Basic concepts of biological microparticles isolation by inertia spiral microchannels in simple terms: a review. J Micromech Microeng 2021;32:013001. [DOI: 10.1088/1361-6439/ac388c] [Reference Citation Analysis]
7 Calero V, García-sánchez P, Ramos A, Morgan H. Electrokinetic biased deterministic lateral displacement: scaling analysis and simulations. Journal of Chromatography A 2020;1623:461151. [DOI: 10.1016/j.chroma.2020.461151] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 García-Sánchez P, Ramos A. Continuous Particle Separation in Microfluidics: Deterministic Lateral Displacement Assisted by Electric Fields. Micromachines (Basel) 2021;12:66. [PMID: 33435288 DOI: 10.3390/mi12010066] [Reference Citation Analysis]
9 Xuan X. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: From induced charge to Joule heating effects. Electrophoresis 2021. [PMID: 33991344 DOI: 10.1002/elps.202100090] [Reference Citation Analysis]
10 Pesch GR, Du F. A review of dielectrophoretic separation and classification of non-biological particles. Electrophoresis 2021;42:134-52. [PMID: 32667696 DOI: 10.1002/elps.202000137] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
11 Pethig R. Festschrift for Professor Hsueh-Chia Chang. Biomicrofluidics 2019;13:060401. [PMID: 31867085 DOI: 10.1063/1.5141082] [Reference Citation Analysis]
12 Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochim Acta 2021;188:104. [PMID: 33651196 DOI: 10.1007/s00604-021-04748-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zaman MA, Wu M, Padhy P, Jensen MA, Hesselink L, Davis RW. Modeling Brownian Microparticle Trajectories in Lab-on-a-Chip Devices with Time Varying Dielectrophoretic or Optical Forces. Micromachines (Basel) 2021;12:1265. [PMID: 34683316 DOI: 10.3390/mi12101265] [Reference Citation Analysis]