BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Packer M. Mechanisms Leading to Differential Hypoxia-Inducible Factor Signaling in the Diabetic Kidney: Modulation by SGLT2 Inhibitors and Hypoxia Mimetics. Am J Kidney Dis 2021;77:280-6. [PMID: 32711072 DOI: 10.1053/j.ajkd.2020.04.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Huang Q, Qiao Lv, Jiang L, Chen Q, Zhang K. Recent progress of biocompatible carbon dots in hypoxia-related fields. J Biomater Appl 2022;:8853282221125313. [PMID: 36083209 DOI: 10.1177/08853282221125313] [Reference Citation Analysis]
2 Jiao D, Qi L, Hu L, Hu D, Li X, Li G, Li Z, Liu S, Zhao C, Wu H. Changes in aging-induced kidney dysfunction in mice based on a metabolomics analysis. Front Endocrinol 2022;13:959311. [DOI: 10.3389/fendo.2022.959311] [Reference Citation Analysis]
3 Stanigut AM, Pana C, Enciu M, Deacu M, Cimpineanu B, Tuta LA. Hypoxia-Inducible Factors and Diabetic Kidney Disease—How Deep Can We Go? IJMS 2022;23:10413. [DOI: 10.3390/ijms231810413] [Reference Citation Analysis]
4 Uehara-Watanabe N, Okuno-Ozeki N, Nakamura I, Nakata T, Nakai K, Yagi-Tomita A, Ida T, Yamashita N, Kamezaki M, Kirita Y, Matoba S, Tamagaki K, Kusaba T. Proximal tubular epithelia-specific transcriptomics of diabetic mice treated with dapagliflozin. Heliyon 2022;8:e10615. [PMID: 36148274 DOI: 10.1016/j.heliyon.2022.e10615] [Reference Citation Analysis]
5 Wu S, Li W, Chen B, Pei X, Cao Y, Wei Y, Zhu Y, Schmalz G. Gene-Based Network Analysis Reveals Prognostic Biomarkers Implicated in Diabetic Tubulointerstitial Injury. Disease Markers 2022;2022:1-15. [DOI: 10.1155/2022/2700392] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zaini LM, Kartasasmita AS, Gondhowiardjo TD, Syukri M, Lesmana R. Potential molecular mechanism of action of sodium-glucose co-transporter 2 inhibitors in the prevention and management of diabetic retinopathy. Expert Review of Ophthalmology. [DOI: 10.1080/17469899.2022.2111302] [Reference Citation Analysis]
7 Copur S, Yildiz A, Basile C, Tuttle KR, Kanbay M. Is there any robust evidence showing that SGLT2 inhibitor use predisposes to acute kidney injury? J Nephrol 2022. [PMID: 35962863 DOI: 10.1007/s40620-022-01422-w] [Reference Citation Analysis]
8 Yaribeygi H, Maleki M, Nasimi F, Butler AE, Jamialahmadi T, Sahebkar A. Sodium-glucose co-transporter 2 inhibitors and hematopoiesis. J Cell Physiol 2022. [PMID: 35951776 DOI: 10.1002/jcp.30851] [Reference Citation Analysis]
9 Mahmoudi A, Atkin SL, Nikiforov NG, Sahebkar A. Therapeutic Role of Curcumin in Diabetes: An Analysis Based on Bioinformatic Findings. Nutrients 2022;14:3244. [PMID: 35956419 DOI: 10.3390/nu14153244] [Reference Citation Analysis]
10 Stougaard EB, Rossing P, Cherney D, Vistisen D, Persson F. Sodium-glucose cotransporter 2 inhibitors as adjunct therapy for type 1 diabetes and the benefit on cardiovascular and renal disease evaluated by Steno risk engines. J Diabetes Complications 2022;:108257. [PMID: 35840519 DOI: 10.1016/j.jdiacomp.2022.108257] [Reference Citation Analysis]
11 Yang Z, Li T, Xian J, Chen J, Huang Y, Zhang Q, Lin X, Lu H, Lin Y. SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2α signaling pathway in arrhythmogenic cardiomyopathy. FASEB J 2022;36:e22410. [PMID: 35713937 DOI: 10.1096/fj.202200243R] [Reference Citation Analysis]
12 Wu J, Zhai J, Wang B, Ding W, Ding R, Li K, Muhammad S, Zhang X, He P, Shen B. Fabrication of a zeolite imidazole framework-8-based red emitting nanocomposite for sensitive detection of nitro reductase. Dyes and Pigments 2022;202:110220. [DOI: 10.1016/j.dyepig.2022.110220] [Reference Citation Analysis]
13 Rotbain Curovic V, Houlind MB, Hansen TW, Eugen-Olsen J, Laursen JC, Eickhoff MK, Persson F, Rossing P. Acute and Long-Term Treatment With Dapagliflozin and Association With Serum Soluble Urokinase Plasminogen Activator Receptor. Front Pharmacol 2022;13:799915. [PMID: 35571091 DOI: 10.3389/fphar.2022.799915] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Shao Y, Giustarini D. Bibliometric Study of Trends in the Diabetic Nephropathy Research Space from 2016 to 2020. Oxidative Medicine and Cellular Longevity 2022;2022:1-12. [DOI: 10.1155/2022/8050137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Greco M, Chiefari E, Mirabelli M, Salatino A, Tocci V, Cianfrone P, Foti DP, Brunetti A. Plasma or Urine Neutrophil Gelatinase-Associated Lipocalin (NGAL): Which Is Better at Detecting Chronic Kidney Damage in Type 2 Diabetes? Endocrines 2022;3:175-86. [DOI: 10.3390/endocrines3020016] [Reference Citation Analysis]
16 Zou Y, Zhao L, Zhang J, Wang Y, Wu Y, Ren H, Wang T, Zhang R, Wang J, Zhao Y, Qin C, Xu H, Li L, Chai Z, Cooper ME, Tong N, Liu F. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease. Renal Failure 2022;44:562-70. [DOI: 10.1080/0886022x.2022.2056053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Enescu DM, Parasca SV, Badoiu SC, Miricescu D, Ripszky Totan A, Stanescu-Spinu II, Greabu M, Jinga V. Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022;23:2470. [PMID: 35269613 DOI: 10.3390/ijms23052470] [Reference Citation Analysis]
18 Bailey CJ, Day C, Bellary S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr Diab Rep 2022. [PMID: 35113333 DOI: 10.1007/s11892-021-01442-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
19 Tye SC, de Vries ST, Wanner C, Denig P, Heerspink HJL. Prediction of the Effects of Empagliflozin on Cardiovascular and Kidney Outcomes Based on Short-Term Changes in Multiple Risk Markers. Front Pharmacol 2022;12:786706. [DOI: 10.3389/fphar.2021.786706] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Ruiz-Ortega M, Lamas S, Ortiz A. Antifibrotic Agents for the Management of CKD: A Review. Am J Kidney Dis 2022:S0272-6386(21)01051-9. [PMID: 34999158 DOI: 10.1053/j.ajkd.2021.11.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
21 Deschaine B, Verma S, Rayatzadeh H. Clinical Evidence and Proposed Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors in Heart Failure with Preserved Ejection Fraction: A Class Effect? Card Fail Rev 2022;8:e23. [PMID: 35846984 DOI: 10.15420/cfr.2022.11] [Reference Citation Analysis]
22 Scheen AJ, Delanaye P. Understanding the protective effects of SGLT2 inhibitors in type 2 diabetes patients with chronic kidney disease. Expert Rev Endocrinol Metab 2021;:1-12. [PMID: 34908510 DOI: 10.1080/17446651.2022.2014322] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Owczarek A, Gieczewska KB, Jarzyna R, Frydzinska Z, Winiarska K. Transcription Factor ChREBP Mediates High Glucose-Evoked Increase in HIF-1α Content in Epithelial Cells of Renal Proximal Tubules. Int J Mol Sci 2021;22:13299. [PMID: 34948094 DOI: 10.3390/ijms222413299] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Rokszin G, Kiss Z, Sütő G, Kempler P, Jermendy G, Fábián I, Szekanecz Z, Poór G, Wittmann I, Molnár GA. Sodium-Glucose Co-Transporter 2 Inhibitors May Change the Development of Urinary Tract and Hematological Malignancies as Compared With Dipeptidyl Peptidase-4 Inhibitors: Data of the Post-Hoc Analysis of a Nationwide Study. Front Oncol 2021;11:725465. [PMID: 34778040 DOI: 10.3389/fonc.2021.725465] [Reference Citation Analysis]
25 Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, Zafar MU, Badimon JJ. Prolyl Hydroxylase Inhibitors: a New Opportunity in Renal and Myocardial Protection. Cardiovasc Drugs Ther 2021. [PMID: 34533692 DOI: 10.1007/s10557-021-07257-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Lim JH, Yook JM, Oh SH, Jeon SJ, Noh HW, Jung HY, Choi JY, Cho JH, Kim CD, Kim YL, Park SH. Paricalcitol Improves Hypoxia-Induced and TGF-β1-Induced Injury in Kidney Pericytes. Int J Mol Sci 2021;22:9751. [PMID: 34575914 DOI: 10.3390/ijms22189751] [Reference Citation Analysis]
27 Iacobini C, Vitale M, Pugliese G, Menini S. Normalizing HIF-1α Signaling Improves Cellular Glucose Metabolism and Blocks the Pathological Pathways of Hyperglycemic Damage. Biomedicines 2021;9:1139. [PMID: 34572324 DOI: 10.3390/biomedicines9091139] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
28 Laursen JC, Søndergaard-Heinrich N, de Melo JML, Haddock B, Rasmussen IKB, Safavimanesh F, Hansen CS, Størling J, Larsson HBW, Groop PH, Frimodt-Møller M, Andersen UB, Rossing P. Acute effects of dapagliflozin on renal oxygenation and perfusion in type 1 diabetes with albuminuria: A randomised, double-blind, placebo-controlled crossover trial. EClinicalMedicine 2021;37:100895. [PMID: 34386735 DOI: 10.1016/j.eclinm.2021.100895] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
29 Shahcheraghi SH, Aljabali AAA, Al Zoubi MS, Mishra V, Charbe NB, Haggag YA, Shrivastava G, Almutary AG, Alnuqaydan AM, Barh D, Dua K, Chellappan DK, Gupta G, Lotfi M, Serrano-Aroca Á, Bahar B, Mishra YK, Takayama K, Panda PK, Bakshi HA, Tambuwala MM. Overview of key molecular and pharmacological targets for diabetes and associated diseases. Life Sci 2021;278:119632. [PMID: 34019900 DOI: 10.1016/j.lfs.2021.119632] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Kale A, Sankrityayan H, Anders HJ, Bhanudas Gaikwad A. Klotho: A possible mechanism of action of SGLT2 inhibitors preventing episodes of acute kidney injury and cardiorenal complications of diabetes. Drug Discov Today 2021;26:1963-71. [PMID: 33862192 DOI: 10.1016/j.drudis.2021.04.007] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
31 Ferreira JP, Lamiral Z, Bakris G, Mehta C, White WB, Zannad F. Red cell distribution width in patients with diabetes and myocardial infarction: An analysis from the EXAMINE trial. Diabetes Obes Metab 2021;23:1580-7. [PMID: 33687751 DOI: 10.1111/dom.14371] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
32 Zoja C, Xinaris C, Macconi D. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Front Pharmacol 2020;11:586892. [PMID: 33519447 DOI: 10.3389/fphar.2020.586892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
33 Packer M, Butler J, Filippatos G, Zannad F, Ferreira JP, Zeller C, Brueckmann M, Jamal W, Pocock SJ, Anker SD; EMPEROR Trial Committees and Investigators. Design of a prospective patient-level pooled analysis of two parallel trials of empagliflozin in patients with established heart failure. Eur J Heart Fail 2020;22:2393-8. [PMID: 33251659 DOI: 10.1002/ejhf.2065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
34 Saik OV, Klimontov VV. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. Int J Mol Sci 2020;21:E8691. [PMID: 33217980 DOI: 10.3390/ijms21228691] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]