BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lubbe L, Cozier GE, Oosthuizen D, Acharya KR, Sturrock ED. ACE2 and ACE: structure-based insights into mechanism, regulation and receptor recognition by SARS-CoV. Clin Sci (Lond) 2020;134:2851-71. [PMID: 33146371 DOI: 10.1042/CS20200899] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Shen Q, Li J, Zhang Z, Guo S, Wang Q, An X, Chang H. COVID-19: systemic pathology and its implications for therapy. Int J Biol Sci 2022;18:386-408. [PMID: 34975340 DOI: 10.7150/ijbs.65911] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
2 Porchera DCRF, Leal DFVB, Braga ACO, Pinto PDC, Santana da Silva MN, Bezerra Santos LC, Braga da Silva CH, da Costa GE, Barros MCDC, Athayde ADSC, de N Cohen-Paes A, da Silva CA, de Assumpção PP, Ribeiro-Dos-Santos ÂKC, Dos Santos SEB, Fernandes MR, Dos Santos NPC. Association of the rs4646994 in ACE gene with susceptibility to tuberculosis in a region of the Brazilian Amazon. Transl Med Commun 2022;7:10. [PMID: 35571459 DOI: 10.1186/s41231-022-00116-6] [Reference Citation Analysis]
3 Tang SW, Leonard BE, Helmeste DM. Long COVID, neuropsychiatric disorders, psychotropics, present and future. Acta Neuropsychiatr 2022;34:109-26. [PMID: 35144718 DOI: 10.1017/neu.2022.6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Ridgway H, Chasapis CT, Kelaidonis K, Ligielli I, Moore GJ, Gadanec LK, Zulli A, Apostolopoulos V, Mavromoustakos T, Matsoukas JM. Understanding the Driving Forces That Trigger Mutations in SARS-CoV-2: Mutational Energetics and the Role of Arginine Blockers in COVID-19 Therapy. Viruses 2022;14:1029. [DOI: 10.3390/v14051029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Dos Santos CM, de Barros Sampaio S, Santana F, Leite RC, Lacchini S, Affonso R. A new approach for purification of the catalytic site of the angiotensin-conversion enzyme, N-domain, mediated by the ELP-Intein system. J Pharmacol Toxicol Methods 2022;:107174. [PMID: 35779849 DOI: 10.1016/j.vascn.2022.107174] [Reference Citation Analysis]
6 Dai J, Teng X, Jin S, Wu Y. The Antiviral Roles of Hydrogen Sulfide by Blocking the Interaction between SARS-CoV-2 and Its Potential Cell Surface Receptors. Oxid Med Cell Longev 2021;2021:7866992. [PMID: 34497683 DOI: 10.1155/2021/7866992] [Reference Citation Analysis]
7 Ahsan T, Sajib AA. Repurposing of approved drugs with potential to interact with SARS-CoV-2 receptor. Biochem Biophys Rep 2021;26:100982. [PMID: 33817352 DOI: 10.1016/j.bbrep.2021.100982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Xu SY, Fomenkov A, Chen TH, Yigit E. Expression of Human ACE2 N-terminal Domain, Part of the Receptor for SARS-CoV-2, in Fusion With Maltose-Binding Protein, E. coli Ribonuclease I and Human RNase A. Front Microbiol 2021;12:660149. [PMID: 34177838 DOI: 10.3389/fmicb.2021.660149] [Reference Citation Analysis]
9 Pak AJ, Yu A, Ke Z, Briggs JAG, Voth GA. Cooperative multivalent receptor binding promotes exposure of the SARS-CoV-2 fusion machinery core. Nat Commun 2022;13:1002. [PMID: 35194049 DOI: 10.1038/s41467-022-28654-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Turner AJ, Nalivaeva NN. Angiotensin-converting enzyme 2 (ACE2): Two decades of revelations and re-evaluation. Peptides 2022. [DOI: 10.1016/j.peptides.2022.170766] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Oosthuizen D, Sturrock ED, Sun M. Exploring the Impact of ACE Inhibition in Immunity and Disease. Journal of the Renin-Angiotensin-Aldosterone System 2022;2022:1-17. [DOI: 10.1155/2022/9028969] [Reference Citation Analysis]
12 Butnariu AB, Look A, Grillo M, Tabish TA, McGarvey MJ, Pranjol MZI. SARS-CoV-2-host cell surface interactions and potential antiviral therapies. Interface Focus 2022;12:20200081. [PMID: 34956606 DOI: 10.1098/rsfs.2020.0081] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Herrera P, Cauchi RJ. ACE and ACE2: insights from Drosophila and implications for COVID-19. Heliyon 2021;7:e08555. [PMID: 34901515 DOI: 10.1016/j.heliyon.2021.e08555] [Reference Citation Analysis]
14 Annunziata A, Coppola A, Di Spirito V, Cauteruccio R, Marotta A, Micco PD, Fiorentino G. The Angiotensin Converting Enzyme Deletion/Deletion Genotype Is a Risk Factor for Severe COVID-19: Implication and Utility for Patients Admitted to Emergency Department. Medicina (Kaunas) 2021;57:844. [PMID: 34441050 DOI: 10.3390/medicina57080844] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Sanna V, Satta S, Hsiai T, Sechi M. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114121] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Goh NY, Mohamad Razif MF, Yap YH, Ng CL, Fung SY. In silico analysis and characterization of medicinal mushroom cystathionine beta-synthase as an angiotensin converting enzyme (ACE) inhibitory protein. Comput Biol Chem 2021;96:107620. [PMID: 34971900 DOI: 10.1016/j.compbiolchem.2021.107620] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]