BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. Lab Chip 2021;21:22-54. [PMID: 33331376 DOI: 10.1039/d0lc00840k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Salahi A, Honrado C, Rane A, Caselli F, Swami NS. Modified Red Blood Cells as Multimodal Standards for Benchmarking Single-Cell Cytometry and Separation Based on Electrical Physiology. Anal Chem 2022. [PMID: 35107262 DOI: 10.1021/acs.analchem.1c04739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Liu Y, Li S, Liu Y. Machine Learning-Driven Multiobjective Optimization: An Opportunity of Microfluidic Platforms Applied in Cancer Research. Cells 2022;11:905. [DOI: 10.3390/cells11050905] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Honrado C, Adair SJ, Moore JH, Salahi A, Bauer TW, Swami NS. Apoptotic Bodies in the Pancreatic Tumor Cell Culture Media Enable Label-Free Drug Sensitivity Assessment by Impedance Cytometry. Adv Biol (Weinh) 2021;5:e2100438. [PMID: 34015194 DOI: 10.1002/adbi.202100438] [Reference Citation Analysis]
4 Wu Y, Zhao L, Chang Y, Zhao L, Guo G, Wang X. Ultra-thin temperature controllable microwell array chip for continuous real-time high-resolution imaging of living single cells. Chinese Chemical Letters 2021;32:3446-9. [DOI: 10.1016/j.cclet.2021.05.034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
5 McIntyre D, Lashkaripour A, Fordyce P, Densmore D. Machine learning for microfluidic design and control. Lab Chip 2022. [PMID: 35904162 DOI: 10.1039/d2lc00254j] [Reference Citation Analysis]
6 de Bruijn DS, Jorissen KFA, Olthuis W, van den Berg A. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry. Biosensors (Basel) 2021;11:353. [PMID: 34677309 DOI: 10.3390/bios11100353] [Reference Citation Analysis]
7 Xie X, Gong M, Zhang Z, Dou X, Zhou W, Li J, Zhu M, Du Y, Xu X. Optimization of an electrical impedance flow cytometry system and analysis of submicron particles and bacteria. Sensors and Actuators B: Chemical 2022;360:131432. [DOI: 10.1016/j.snb.2022.131432] [Reference Citation Analysis]
8 Tang T, Liu X, Yuan Y, Zhang T, Kiya R, Yang Y, Suzuki K, Tanaka Y, Li M, Hosokawa Y, Yalikun Y. Assessment of the electrical penetration of cell membranes using four-frequency impedance cytometry. Microsyst Nanoeng 2022;8:68. [PMID: 35757522 DOI: 10.1038/s41378-022-00405-y] [Reference Citation Analysis]
9 [DOI: 10.1109/transducers50396.2021.9495657] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Rezvani Jalal N, Mehrbod P, Shojaei S, Labouta HI, Mokarram P, Afkhami A, Madrakian T, Los MJ, Schaafsma D, Giersig M, Ahmadi M, Ghavami S. Magnetic Nanomaterials in Microfluidic Sensors for Virus Detection: A Review. ACS Appl Nano Mater 2021;4:4307-28. [DOI: 10.1021/acsanm.1c01077] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
11 Feng Y, Chai H, He W, Liang F, Cheng Z, Wang W. Impedance-Enabled Camera-Free Intrinsic Mechanical Cytometry. Small Methods 2022;:e2200325. [PMID: 35595712 DOI: 10.1002/smtd.202200325] [Reference Citation Analysis]
12 Choi SE, Khoo H, Hur SC. Recent Advances in Microscale Electroporation. Chem Rev 2022. [PMID: 35737882 DOI: 10.1021/acs.chemrev.1c00677] [Reference Citation Analysis]
13 Wu Y, Chang Y, Shao Y, Guo G, Liu Z, Wang X. Controllable Fabrication of Small-Size Holding Pipets for the Nondestructive Manipulation of Suspended Living Single Cells. Anal Chem 2022. [PMID: 35298884 DOI: 10.1021/acs.analchem.2c00418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Petchakup C, Yang H, Gong L, He L, Tay HM, Dalan R, Chung AJ, Li KHH, Hou HW. Microfluidic Impedance‐Deformability Cytometry for Label‐Free Single Neutrophil Mechanophenotyping. Small. [DOI: 10.1002/smll.202104822] [Reference Citation Analysis]
15 Gökçe F, Ravaynia PS, Modena MM, Hierlemann A. What is the future of electrical impedance spectroscopy in flow cytometry? Biomicrofluidics 2021;15:061302. [PMID: 34917226 DOI: 10.1063/5.0073457] [Reference Citation Analysis]
16 Duncombe TA, Ponti A, Seebeck FP, Dittrich PS. UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Droplets. Anal Chem 2021;93:13008-13. [PMID: 34533299 DOI: 10.1021/acs.analchem.1c02822] [Reference Citation Analysis]
17 Huang X, Torres-Castro K, Varhue W, Salahi A, Rasin A, Honrado C, Brown A, Guler J, Swami NS. Self-aligned sequential lateral field non-uniformities over channel depth for high throughput dielectrophoretic cell deflection. Lab Chip 2021;21:835-43. [PMID: 33532812 DOI: 10.1039/d0lc01211d] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Feng Y, Cheng Z, Chai H, He W, Huang L, Wang W. Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization. Lab Chip 2021. [PMID: 34849522 DOI: 10.1039/d1lc00755f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
19 Chen T, Huang C, Wang Y, Wu J. Microfluidic methods for cell separation and subsequent analysis. Chinese Chemical Letters 2022;33:1180-92. [DOI: 10.1016/j.cclet.2021.07.067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Chen Y, Zhou Z, Zhu S, Ni Z, Xiang N. Label-free microfluidics for single-cell analysis. Microchemical Journal 2022;177:107284. [DOI: 10.1016/j.microc.2022.107284] [Reference Citation Analysis]