BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Day RA, Estabrook DA, Logan JK, Sletten EM. Fluorous photosensitizers enhance photodynamic therapy with perfluorocarbon nanoemulsions. Chem Commun 2017;53:13043-6. [DOI: 10.1039/c7cc07038a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 7.6] [Reference Citation Analysis]
Number Citing Articles
1 Moghassemi S, Dadashzadeh A, Azevedo RB, Amorim CA. Nanoemulsion applications in photodynamic therapy. J Control Release 2022;351:164-73. [PMID: 36165834 DOI: 10.1016/j.jconrel.2022.09.035] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Lebedeva NS, Koifman OI. Supramolecular Systems Based on Macrocyclic Compounds with Proteins: Application Prospects. Russ J Bioorg Chem 2022;48:1-26. [DOI: 10.1134/s1068162022010071] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Dabbour NM, Salama AM, Donia T, Al-deeb RT, Abd Elghane AM, Badry KH, Loutfy SA. Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. Journal of Drug Delivery Science and Technology 2022;67:103022. [DOI: 10.1016/j.jddst.2021.103022] [Reference Citation Analysis]
4 Qin S, Xu Y, Li H, Chen H, Yuan Z. Recent advances in in situ oxygen-generating and oxygen-replenishing strategies for hypoxic-enhanced photodynamic therapy. Biomater Sci 2021;10:51-84. [PMID: 34882762 DOI: 10.1039/d1bm00317h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Zhuang J, Zhang W, Xuan Q, Ma T, Zhang Q, Chen C, Wang P. Oxygen-Abundant and pH/NIR Dual-Responsive Nanocarriers for Tumor Hypoxia Reduction Therapy. ACS Appl Nano Mater 2021;4:11480-92. [DOI: 10.1021/acsanm.1c01588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2021. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Cited by in F6Publishing: 24] [Reference Citation Analysis]
7 Qin J, Guo L, Yang T, Wu X, Wang Z, Xie F, Peng H. Facile Synthesis of ZnPc‐Polydopamine Co‐loaded Nanoparticles for Synergetic Photodynamic‐Photothermal Therapy. ChemNanoMat 2021;7:1322-9. [DOI: 10.1002/cnma.202100312] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Day RA, Sletten EM. Perfluorocarbon nanomaterials for photodynamic therapy. Curr Opin Colloid Interface Sci 2021;54:101454. [PMID: 34504391 DOI: 10.1016/j.cocis.2021.101454] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Bai Y, Hu Y, Gao Y, Wei X, Li J, Zhang Y, Wu Z, Zhang X. Oxygen Self-Supplying Nanotherapeutic for Mitigation of Tissue Hypoxia and Enhanced Photodynamic Therapy of Bacterial Keratitis. ACS Appl Mater Interfaces 2021;13:33790-801. [PMID: 34254513 DOI: 10.1021/acsami.1c04996] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Estabrook DA, Day RA, Sletten EM. Redox-Responsive Gene Delivery from Perfluorocarbon Nanoemulsions through Cleavable Poly(2-oxazoline) Surfactants. Angew Chem Int Ed Engl 2021;60:17362-7. [PMID: 33930255 DOI: 10.1002/anie.202102413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Estabrook DA, Day RA, Sletten EM. Redox‐Responsive Gene Delivery from Perfluorocarbon Nanoemulsions through Cleavable Poly(2‐oxazoline) Surfactants. Angew Chem 2021;133:17502-7. [DOI: 10.1002/ange.202102413] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Yang H, Liu R, Xu Y, Qian L, Dai Z. Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment. Nanomicro Lett 2021;13:35. [PMID: 34138222 DOI: 10.1007/s40820-020-00561-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
13 Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021;10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
14 Wu M, Liu Z, Zhang W. An ultra-stable bio-inspired bacteriochlorin analogue for hypoxia-tolerant photodynamic therapy. Chem Sci 2020;12:1295-301. [PMID: 34163892 DOI: 10.1039/d0sc05525e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
15 Liang X, Chen M, Bhattarai P, Hameed S, Dai Z. Perfluorocarbon@Porphyrin Nanoparticles for Tumor Hypoxia Relief to Enhance Photodynamic Therapy against Liver Metastasis of Colon Cancer. ACS Nano 2020;14:13569-83. [PMID: 32915537 DOI: 10.1021/acsnano.0c05617] [Cited by in Crossref: 51] [Cited by in F6Publishing: 56] [Article Influence: 25.5] [Reference Citation Analysis]
16 Day RA, Estabrook DA, Wu C, Chapman JO, Togle AJ, Sletten EM. Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS Appl Mater Interfaces 2020;12:38887-98. [PMID: 32706233 DOI: 10.1021/acsami.0c07206] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
17 Beniazza R, Bayo N, Jardel D, Rust R, Mao B, Divoux T, Schmutz M, Castet F, Raffy G, Del Guerzo A, McClenaghan ND, Buffeteau T, Vincent JM. A fluorous sodium l-prolinate derivative as low molecular weight gelator for perfluorocarbons. Chem Commun (Camb) 2020;56:8655-8. [PMID: 32602483 DOI: 10.1039/d0cc02446e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 You Y, Zhao Z, He L, Sun Z, Zhang D, Shi C, Cheng Q, Liu Y, Luo L, Chen T. Long‐Term Oxygen Storage Nanosystem for Near‐Infrared Light‐Triggered Oxygen Supplies to Antagonize Hypoxia‐Induced Therapeutic Resistance in Nasopharyngeal Carcinoma. Adv Funct Mater 2020;30:2002369. [DOI: 10.1002/adfm.202002369] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 10.5] [Reference Citation Analysis]
19 Miller MA, Day RA, Estabrook DA, Sletten EM. A Reduction-Sensitive Fluorous Fluorogenic Coumarin. Synlett 2020;31:450-4. [PMID: 34349356 DOI: 10.1055/s-0039-1690770] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019;12:E163. [PMID: 31671658 DOI: 10.3390/ph12040163] [Cited by in Crossref: 36] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
21 Yang Z, Wang J, Ai S, Sun J, Mai X, Guan W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics 2019;9:6809-23. [PMID: 31660070 DOI: 10.7150/thno.36988] [Cited by in Crossref: 38] [Cited by in F6Publishing: 49] [Article Influence: 12.7] [Reference Citation Analysis]
22 Srivastava PK, Han S, Tu CC, Jing L. Phototoxicity Generated by Silicon Quantum Dot Nanoparticles on Zebrafish Embryos. ACS Appl Bio Mater 2019;2:2872-8. [PMID: 35030821 DOI: 10.1021/acsabm.9b00264] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Xiang Y, Bernards N, Hoang B, Zheng J, Matsuura N. Perfluorocarbon nanodroplets can reoxygenate hypoxic tumors in vivo without carbogen breathing. Nanotheranostics 2019;3:135-44. [PMID: 31008022 DOI: 10.7150/ntno.29908] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
24 Estabrook DA, Ennis AF, Day RA, Sletten EM. Controlling nanoemulsion surface chemistry with poly(2-oxazoline) amphiphiles. Chem Sci 2019;10:3994-4003. [PMID: 31015940 DOI: 10.1039/c8sc05735d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
25 Miller MA, Sletten EM. A General Approach to Biocompatible Branched Fluorous Tags for Increased Solubility in Perfluorocarbon Solvents. Org Lett 2018;20:6850-4. [PMID: 30354161 DOI: 10.1021/acs.orglett.8b02976] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
26 Foletto P, Correa F, Dornelles L, A Iglesias B, H da Silveira C, A Nogara P, T da Rocha JB, F Faustino MA, D Rodrigues OE. A New Protocol for the Synthesis of New Thioaryl-Porphyrins Derived from 5,10,15,20-Tetrakis(pentafluorophenyl)porphyrin: Photophysical Evaluation and DNA-Binding Interactive Studies. Molecules 2018;23:E2588. [PMID: 30308960 DOI: 10.3390/molecules23102588] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
27 Pushalkar S, Ghosh G, Xu Q, Liu Y, Ghogare AA, Atem C, Greer A, Saxena D, Lyons AM. Superhydrophobic Photosensitizers: Airborne 1O2 Killing of an in Vitro Oral Biofilm at the Plastron Interface. ACS Appl Mater Interfaces 2018;10:25819-29. [PMID: 29972022 DOI: 10.1021/acsami.8b09439] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]