BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dang J, He H, Chen D, Yin L. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater Sci 2017;5:1500-11. [DOI: 10.1039/c7bm00392g] [Cited by in Crossref: 138] [Cited by in F6Publishing: 175] [Article Influence: 27.6] [Reference Citation Analysis]
Number Citing Articles
1 Kalyane D, Choudhary D, Polaka S, Goykar H, Karanwad T, Rajpoot K, Kumar Tekade R. Reactive oxygen nano-generators for cancer therapy. Progress in Materials Science 2022;130:100974. [DOI: 10.1016/j.pmatsci.2022.100974] [Reference Citation Analysis]
2 Xue F, Li C, Kuang Y, Shi L, Chen J, Chen S, Ma M, Wang X, Chen H. A NTR and O2 programmed responsive photogenic radicals for efficient hypoxia cancer therapy. Sensors and Actuators B: Chemical 2022;369:132311. [DOI: 10.1016/j.snb.2022.132311] [Reference Citation Analysis]
3 Saha P, Das S, Indurthi HK, Sharma DK. Advancement in use of silicon pthalocyanine derivatives for cancer treatment. Dyes and Pigments 2022;206:110608. [DOI: 10.1016/j.dyepig.2022.110608] [Reference Citation Analysis]
4 Thomas DT, Baby A, Raman V, Balakrishnan SP. Carbon‐Based Nanomaterials for Cancer Treatment and Diagnosis: A Review. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202455] [Reference Citation Analysis]
5 Li J, Zhang Q, Cai J, Yang Y, Zhang J, Gao Y, Liu S, Li K, Shi M, Liu Z, Gao L. . IJN 2022;Volume 17:3821-39. [DOI: 10.2147/ijn.s369732] [Reference Citation Analysis]
6 Du Y, Han J, Jin F, Du Y. Recent Strategies to Address Hypoxic Tumor Environments in Photodynamic Therapy. Pharmaceutics 2022;14:1763. [DOI: 10.3390/pharmaceutics14091763] [Reference Citation Analysis]
7 Li B, Fu Y, Xie M, Feng L, Niu X, Que L, You Z. Gold-based nanoparticles realize photothermal and photodynamic synergistic treatment of liver cancer and improve the anaerobic tumor microenvironment under near-infrared light. Front Bioeng Biotechnol 2022;10:957349. [DOI: 10.3389/fbioe.2022.957349] [Reference Citation Analysis]
8 Zhu X, Xu N, Zhang L, Wang D, Zhang P. Novel design of multifunctional nanozymes based on tumor microenvironment for diagnosis and therapy. European Journal of Medicinal Chemistry 2022;238:114456. [DOI: 10.1016/j.ejmech.2022.114456] [Reference Citation Analysis]
9 Yuan Z, Liu C, Sun Y, Li Y, Wu H, Ma S, Shang J, Zhan Y, Yin P, Gao F. Bufalin exacerbates Photodynamic therapy of colorectal cancer by targeting SRC-3/HIF-1α pathway. Int J Pharm 2022;624:122018. [PMID: 35839982 DOI: 10.1016/j.ijpharm.2022.122018] [Reference Citation Analysis]
10 Luo S, Liang C, Zhang Q, Zhang P. Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.07.009] [Reference Citation Analysis]
11 Zhang M, Liu X, Mao Y, He Y, Xu J, Zheng F, Tan W, Rong S, Chen Y, Jia X, Li H. Oxygen-Generating Hydrogels Overcome Tumor Hypoxia to Enhance Photodynamic/Gas Synergistic Therapy. ACS Appl Mater Interfaces 2022;14:27551-63. [PMID: 35686947 DOI: 10.1021/acsami.2c02949] [Reference Citation Analysis]
12 Chen K, Li H, Zhou A, Zhou X, Xu Y, Ge H, Ning X. Cell Membrane Camouflaged Metal Oxide-Black Phosphorus Biomimetic Nanocomplex Enhances Photo-chemo-dynamic Ferroptosis. ACS Appl Mater Interfaces 2022. [PMID: 35658416 DOI: 10.1021/acsami.2c08413] [Reference Citation Analysis]
13 Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv Sci (Weinh) 2022;:e2201734. [PMID: 35652198 DOI: 10.1002/advs.202201734] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
14 Zhao J, Zhang Y, Zhang J, Wu H, Li J, Zhao Y, Zhang L, Zou D, Li Z, Wang S. Synthetic and Biodegradable Molybdenum (IV) Diselenide Triggers the Cascade Photo- and Immunotherapy of Tumor. Adv Healthc Mater 2022;:e2200524. [PMID: 35611682 DOI: 10.1002/adhm.202200524] [Reference Citation Analysis]
15 Li J. The preparation of CNT/PMMA composite film on SiO 2 substrates. Materials Science-Poland 2021;39:639-45. [DOI: 10.2478/msp-2022-0001] [Reference Citation Analysis]
16 Ni N, Zhang X, Ma Y, Yuan J, Wang D, Ma G, Dong J, Sun X. Biodegradable two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews 2022;458:214415. [DOI: 10.1016/j.ccr.2022.214415] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
17 Gamal-Eldeen AM, Alrehaili AA, Alharthi A, Raafat BM. Effect of Combined Perftoran and Indocyanine Green-Photodynamic Therapy on HypoxamiRs and OncomiRs in Lung Cancer Cells. Front Pharmacol 2022;13:844104. [PMID: 35370727 DOI: 10.3389/fphar.2022.844104] [Reference Citation Analysis]
18 Xu X, Chen X, Wang H, Mei X, Chen B, Li R, Qin Y. Balancing the toxicity, photothermal effect, and promotion of osteogenesis: Photothermal scaffolds for malignant bone tumor therapy. Materials Today Advances 2022;13:100209. [DOI: 10.1016/j.mtadv.2022.100209] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Gamal-eldeen AM, Alrehaili AA, Alharthi A, Banjer HJ, Raafat BM, Hawsawi NM. Perftoran improves Visudyne-photodynamic therapy via suppressing hypoxia pathway in murine lung cancer. Journal of Radiation Research and Applied Sciences 2022;15:238-44. [DOI: 10.1016/j.jrras.2022.03.011] [Reference Citation Analysis]
20 Wu X, Xu M, Wang S, Abbas K, Huang X, Zhang R, Tedesco AC, Bi H. F,N-Doped carbon dots as efficient Type I photosensitizers for photodynamic therapy. Dalton Trans 2022;51:2296-303. [PMID: 35040834 DOI: 10.1039/d1dt03788a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
21 Decraene B, Yang Y, De Smet F, Garg AD, Agostinis P, De Vleeschouwer S. Immunogenic cell death and its therapeutic or prognostic potential in high-grade glioma. Genes Immun 2022;23:1-11. [PMID: 35046546 DOI: 10.1038/s41435-021-00161-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Bera A, Hasan MN, Pal U, Bagchi D, Maji TK, Saha-dasgupta T, Das R, Pal SK. Fabrication of nanohybrids toward improving therapeutic potential of a NIR photo-sensitizer: An optical spectroscopic and computational study. Journal of Photochemistry and Photobiology A: Chemistry 2022;424:113610. [DOI: 10.1016/j.jphotochem.2021.113610] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Hong L, Li J, Luo Y, Guo T, Zhang C, Ou S, Long Y, Hu Z. Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022;12:81. [DOI: 10.3390/biom12010081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Guo J, Dai J, Peng X, Wang Q, Wang S, Lou X, Xia F, Zhao Z, Tang BZ. 9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS Nano 2021;15:20042-55. [PMID: 34846125 DOI: 10.1021/acsnano.1c07730] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
25 Gu W, Hua Z, Li Z, Cai Z, Wang W, Guo K, Yuan F, Gao F, Chen H. Palladium cubes with Pt shell deposition for localized surface plasmon resonance enhanced photodynamic and photothermal therapy of hypoxic tumors. Biomater Sci 2021;10:216-26. [PMID: 34843611 DOI: 10.1039/d1bm01406d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Xu M, Gao H, Ji Q, Chi B, He L, Song Q, Xu Z, Li L, Wang J. Construction multifunctional nanozyme for synergistic catalytic therapy and phototherapy based on controllable performance. J Colloid Interface Sci 2022;609:364-74. [PMID: 34902673 DOI: 10.1016/j.jcis.2021.11.183] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
27 Bosio GN, Mártire DO. Carbon nitride nanomaterials with application in photothermal and photodynamic therapies. Photodiagnosis Photodyn Ther 2021;37:102683. [PMID: 34915184 DOI: 10.1016/j.pdpdt.2021.102683] [Reference Citation Analysis]
28 Hua J, Wu P, Gan L, Zhang Z, He J, Zhong L, Zhao Y, Huang Y. Current Strategies for Tumor Photodynamic Therapy Combined With Immunotherapy. Front Oncol 2021;11:738323. [PMID: 34868932 DOI: 10.3389/fonc.2021.738323] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Yan K, Mu C, Wang D, Jing X, Zhang N, Meng L. Yolk-shell polyphosphazenes nanotheranostics for multimodal imaging guided effective phototherapy. Composites Communications 2021;28:100950. [DOI: 10.1016/j.coco.2021.100950] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
30 Wan Y, Fu LH, Li C, Lin J, Huang P. Conquering the Hypoxia Limitation for Photodynamic Therapy. Adv Mater 2021;33:e2103978. [PMID: 34580926 DOI: 10.1002/adma.202103978] [Cited by in Crossref: 21] [Cited by in F6Publishing: 29] [Article Influence: 21.0] [Reference Citation Analysis]
31 Liu H, Yang F, Chen W, Gong T, Zhou Y, Dai X, Leung W, Xu C. Enzyme-Responsive Materials as Carriers for Improving Photodynamic Therapy. Front Chem 2021;9:763057. [PMID: 34796163 DOI: 10.3389/fchem.2021.763057] [Reference Citation Analysis]
32 Serain AF, Morosi L, Ceruti T, Matteo C, Meroni M, Minatel E, Zucchetti M, Salvador MJ. Betulinic acid and its spray dried microparticle formulation: In vitro PDT effect against ovarian carcinoma cell line and in vivo plasma and tumor disposition. J Photochem Photobiol B 2021;224:112328. [PMID: 34628206 DOI: 10.1016/j.jphotobiol.2021.112328] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Tian J, Teng M, Song M, Li Z, Zhang X, Xu Y. A feasible molecular engineering for bright Π-conjugation free radical photosensitizers with aggregation-induced emission. Dyes and Pigments 2021;194:109651. [DOI: 10.1016/j.dyepig.2021.109651] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
34 Day RA, Sletten EM. Perfluorocarbon nanomaterials for photodynamic therapy. Curr Opin Colloid Interface Sci 2021;54:101454. [PMID: 34504391 DOI: 10.1016/j.cocis.2021.101454] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
35 Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021;13:4447. [PMID: 34503255 DOI: 10.3390/cancers13174447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 23] [Article Influence: 1.0] [Reference Citation Analysis]
36 Pobłocki K, Drzeżdżon J, Kostrzewa T, Jacewicz D. Coordination Complexes as a New Generation Photosensitizer for Photodynamic Anticancer Therapy. Int J Mol Sci 2021;22:8052. [PMID: 34360819 DOI: 10.3390/ijms22158052] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
37 Qin Y, Tong F, Zhang W, Zhou Y, He S, Xie R, Lei T, Wang Y, Peng S, Li Z, Leong J, Gao H, Lu L. Self‐Delivered Supramolecular Nanomedicine with Transformable Shape for Ferrocene‐Amplified Photodynamic Therapy of Breast Cancer and Bone Metastases. Adv Funct Mater 2021;31:2104645. [DOI: 10.1002/adfm.202104645] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 20.0] [Reference Citation Analysis]
38 Jain NK, Chathoth BM, Bhaskar VS, Meena H, Prasad R, Srivastava R. Nanoengineered photoactive theranostic agents for cancer. Nanophotonics 2021;10:2973-97. [DOI: 10.1515/nanoph-2021-0205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
39 Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021;50:9152-201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Cited by in F6Publishing: 51] [Reference Citation Analysis]
40 Liang T, Wen D, Chen G, Chan A, Chen Z, Li H, Wang Z, Han X, Jiang L, Zhu JJ, Gu Z. Adipocyte-Derived Anticancer Lipid Droplets. Adv Mater 2021;33:e2100629. [PMID: 33987883 DOI: 10.1002/adma.202100629] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
41 Yang C, Wang X, Ma W, Wang Z, Tan G, Fang W, Jin Y. Improving the photodynamic therapy of pyropheophorbide a through the combination of hypoxia-sensitive molecule and infrared light-excited d-TiO2−X nanoparticles. J Porphyrins Phthalocyanines 2022;26:31-43. [DOI: 10.1142/s1088424621500784] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Hu C, Yu Y, Chao S, Zhu H, Pei Y, Chen L, Pei Z. A Supramolecular Photosensitizer System Based on Nano-Cu/ZIF-8 Capped with Water-Soluble Pillar[6]arene and Methylene Blue Host-Guest Complexations. Molecules 2021;26:3878. [PMID: 34201944 DOI: 10.3390/molecules26133878] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
43 Chen Y, Zhang L, Li F, Sheng J, Xu C, Li D, Yu H, Liu W. Combination of Chemotherapy and Photodynamic Therapy with Oxygen Self-Supply in the Form of Mutual Assistance for Cancer Therapy. Int J Nanomedicine 2021;16:3679-94. [PMID: 34093012 DOI: 10.2147/IJN.S298146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Wang L, Niu C. IR780-based nanomaterials for cancer imaging and therapy. J Mater Chem B 2021;9:4079-97. [PMID: 33912889 DOI: 10.1039/d1tb00407g] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
45 Liu P, Zhou Y, Shi X, Yuan Y, Peng Y, Hua S, Luo Q, Ding J, Li Y, Zhou W. A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances. J Nanobiotechnology 2021;19:149. [PMID: 34020663 DOI: 10.1186/s12951-021-00893-6] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
46 Huang W, Zhang Y, Tan X, Wang N, Wang J, He M, Peng J, Hu J, Zhao Y, Wang S. An AIEgen-based photosensitizer for lysosome imaging and photodynamic therapy in tumor. Sensors and Actuators B: Chemical 2021;335:129698. [DOI: 10.1016/j.snb.2021.129698] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
47 Wang S, Jin S, Li G, Xu M, Deng D, Xiao Z, Sun H, Zhang S, Zhang E, Xie L, Li G, Dai Y, Liu Z, Shu Q, Wu S. Transmucosal Delivery of Self-Assembling Photosensitizer-Nitazoxanide Nanocomplexes with Fluorinated Chitosan for Instillation-Based Photodynamic Therapy of Orthotopic Bladder Tumors. ACS Biomater Sci Eng 2021;7:1485-95. [PMID: 33641333 DOI: 10.1021/acsbiomaterials.0c01786] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
48 Chou YT, Lin CY, Wen JW, Hung LC, Chang YF, Yang CM, Wu LC, Ho JA. Targeting triple-negative breast cancer with an aptamer-functionalized nanoformulation: a synergistic treatment that combines photodynamic and bioreductive therapies. J Nanobiotechnology 2021;19:89. [PMID: 33781277 DOI: 10.1186/s12951-021-00786-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
49 Liu P, Xie X, Liu M, Hu S, Ding J, Zhou W. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm Sin B 2021;11:823-34. [PMID: 33777684 DOI: 10.1016/j.apsb.2020.07.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 19.0] [Reference Citation Analysis]
50 Ni N, Su Y, Wei Y, Ma Y, Zhao L, Sun X. Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. Adv Therap 2021;4:2000218. [DOI: 10.1002/adtp.202000218] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Yoo SW, Oh G, Ahn JC, Chung E. Non-Oncologic Applications of Nanomedicine-Based Phototherapy. Biomedicines 2021;9:113. [PMID: 33504015 DOI: 10.3390/biomedicines9020113] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
52 Alizadeh N, Salimi A. Multienzymes activity of metals and metal oxide nanomaterials: applications from biotechnology to medicine and environmental engineering. J Nanobiotechnology 2021;19:26. [PMID: 33468160 DOI: 10.1186/s12951-021-00771-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
53 Li J, Ou H, Ding D. Recent Progress in Boosted PDT Induced Immunogenic Cell Death for Tumor Immunotherapy. Chem Res Chin Univ 2021;37:83-9. [DOI: 10.1007/s40242-021-0402-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
54 He X, Zhu Y, Wang Y, Hao Y, Hong J. Advances in stent therapy for malignant biliary obstruction. Abdom Radiol (NY) 2021;46:351-61. [PMID: 32451676 DOI: 10.1007/s00261-020-02593-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
55 Nsubuga A, Mandl GA, Capobianco JA. Investigating the reactive oxygen species production of Rose Bengal and Merocyanine 540-loaded radioluminescent nanoparticles. Nanoscale Adv 2021;3:1375-81. [DOI: 10.1039/d0na00964d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
56 Liu Y, Jia H, Han X, Wu F. Endoplasmic reticulum-targeting nanomedicines for cancer therapy. Smart Materials in Medicine 2021;2:334-49. [DOI: 10.1016/j.smaim.2021.09.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
57 Qiu Y, Tan G, Fang Y, Liu S, Zhou Y, Kumar A, Trivedi M, Liu D, Liu J. Biomedical applications of metal–organic framework (MOF)-based nano-enzymes. New J Chem 2021;45:20987-1000. [DOI: 10.1039/d1nj04045f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 15.0] [Reference Citation Analysis]
58 Zhang Y, Zhang J, Jia Q, Ge J, Wang P. Innovative strategies of hydrogen peroxide-involving tumor therapeutics. Mater Chem Front 2021;5:4474-501. [DOI: 10.1039/d1qm00134e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Xu H, Dong L, Bin Z, Yansong H, Shaofeng L, Chang L, Chen C, Changli W. Supramolecular self-assembly of a hybrid 'hyalurosome' for targeted photothermal therapy in non-small cell lung cancer. Drug Deliv 2020;27:378-86. [PMID: 32098528 DOI: 10.1080/10717544.2020.1730521] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
60 Ming L, Cheng K, Chen Y, Yang R, Chen D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med 2021;10:257-68. [PMID: 33141513 DOI: 10.1002/cam4.3592] [Cited by in Crossref: 6] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
61 Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo P. Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angew Chem 2020;132:23428-38. [DOI: 10.1002/ange.202010005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
62 Aru B, Günay A, Şenkuytu E, Yanıkkaya Demirel G, Gürek AG, Atilla D. A Translational Study of a Silicon Phthalocyanine Substituted with a Histone Deacetylase Inhibitor for Photodynamic Therapy. ACS Omega 2020;5:25854-67. [PMID: 33073111 DOI: 10.1021/acsomega.0c03180] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
63 Wan Z, Zhang P, Lv L, Zhou Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020;10:11837-61. [PMID: 33052249 DOI: 10.7150/thno.49784] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
64 Zhang P, Kuang H, Xu Y, Shi L, Cao W, Zhu K, Xu L, Ma J. Rational Design of a High-Performance Quinoxalinone-Based AIE Photosensitizer for Image-Guided Photodynamic Therapy. ACS Appl Mater Interfaces 2020;12:42551-7. [PMID: 32862640 DOI: 10.1021/acsami.0c12670] [Cited by in Crossref: 6] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
65 Zhang L, Li M, Zhou Q, Dang M, Tang Y, Wang S, Fu J, Teng Z, Lu G. Computed tomography and photoacoustic imaging guided photodynamic therapy against breast cancer based on mesoporous platinum with insitu oxygen generation ability. Acta Pharm Sin B 2020;10:1719-29. [PMID: 33088691 DOI: 10.1016/j.apsb.2020.05.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
66 Pei X, Wang X, Xian J, Mi J, Gao J, Li X, Li Z, Yang M, Bi L, Yan Y, Lv W, Jin H. Metformin and oxyphotodynamic therapy as a novel treatment approach for triple-negative breast cancer. Ann Transl Med 2020;8:1138. [PMID: 33240987 DOI: 10.21037/atm-20-5704] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
67 Zhang Z, Wang L, Liu W, Yan Z, Zhu Y, Zhou S, Guan S. Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. Natl Sci Rev 2021;8:nwaa155. [PMID: 34691632 DOI: 10.1093/nsr/nwaa155] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
68 Gao J, Wang WQ, Pei Q, Lord MS, Yu HJ. Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacol Sin 2020;41:986-94. [PMID: 32317755 DOI: 10.1038/s41401-020-0400-z] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 23.0] [Reference Citation Analysis]
69 Ji, Wang Q, Zhao Q, Tong H, Yu M, Wang M, Lu T, Jiang C. Co-delivery of miR-29b and germacrone based on cyclic RGD-modified nanoparticles for liver fibrosis therapy. J Nanobiotechnology 2020;18:86. [PMID: 32513194 DOI: 10.1186/s12951-020-00645-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
70 Demazeau M, Gibot L, Mingotaud AF, Vicendo P, Roux C, Lonetti B. Rational design of block copolymer self-assemblies in photodynamic therapy. Beilstein J Nanotechnol 2020;11:180-212. [PMID: 32082960 DOI: 10.3762/bjnano.11.15] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
71 Hu H, Yu L, Qian X, Chen Y, Chen B, Li Y. Chemoreactive Nanotherapeutics by Metal Peroxide Based Nanomedicine. Adv Sci (Weinh) 2020;8:2000494. [PMID: 33437566 DOI: 10.1002/advs.202000494] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
72 Tsuji T, Yoshitomi H, Ishikawa Y, Koshizaki N, Suzuki M, Usukura J. A method to selectively internalise submicrometer boron carbide particles into cancer cells using surface transferrin conjugation for developing a new boron neutron capture therapy agent. Journal of Experimental Nanoscience 2020;15:1-11. [DOI: 10.1080/17458080.2019.1692178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
73 Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C. Fighting Hypoxia to Improve PDT. Pharmaceuticals (Basel) 2019;12:E163. [PMID: 31671658 DOI: 10.3390/ph12040163] [Cited by in Crossref: 36] [Cited by in F6Publishing: 47] [Article Influence: 12.0] [Reference Citation Analysis]
74 Ferroni C, Del Rio A, Martini C, Manoni E, Varchi G. Light-Induced Therapies for Prostate Cancer Treatment. Front Chem 2019;7:719. [PMID: 31737599 DOI: 10.3389/fchem.2019.00719] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
75 Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun 2019;10:3349. [PMID: 31350406 DOI: 10.1038/s41467-019-11269-8] [Cited by in Crossref: 163] [Cited by in F6Publishing: 298] [Article Influence: 54.3] [Reference Citation Analysis]
76 Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P. Photosensitizers for Photodynamic Therapy. Adv Healthc Mater 2019;8:e1900132. [PMID: 31067008 DOI: 10.1002/adhm.201900132] [Cited by in Crossref: 304] [Cited by in F6Publishing: 299] [Article Influence: 101.3] [Reference Citation Analysis]
77 Zhu R, He H, Liu Y, Cao D, Yan J, Duan S, Chen Y, Yin L. Cancer-Selective Bioreductive Chemotherapy Mediated by Dual Hypoxia-Responsive Nanomedicine upon Photodynamic Therapy-Induced Hypoxia Aggravation. Biomacromolecules 2019;20:2649-56. [DOI: 10.1021/acs.biomac.9b00428] [Cited by in Crossref: 24] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
78 Zhu T, Shi L, Yu C, Dong Y, Qiu F, Shen L, Qian Q, Zhou G, Zhu X. Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment. Theranostics 2019;9:3293-307. [PMID: 31244955 DOI: 10.7150/thno.32867] [Cited by in Crossref: 92] [Cited by in F6Publishing: 99] [Article Influence: 30.7] [Reference Citation Analysis]
79 Shi X, Zhang CY, Gao J, Wang Z. Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1560. [PMID: 31058443 DOI: 10.1002/wnan.1560] [Cited by in Crossref: 40] [Cited by in F6Publishing: 61] [Article Influence: 13.3] [Reference Citation Analysis]
80 Shao J, Pijpers IAB, Cao S, Williams DS, Yan X, Li J, Abdelmohsen LKEA, van Hest JCM. Biomorphic Engineering of Multifunctional Polylactide Stomatocytes toward Therapeutic Nano-Red Blood Cells. Adv Sci (Weinh) 2019;6:1801678. [PMID: 30886797 DOI: 10.1002/advs.201801678] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
81 Fan Y, Zhou T, Cui P, He Y, Chang X, Xing L, Jiang H. Modulation of Intracellular Oxygen Pressure by Dual‐Drug Nanoparticles to Enhance Photodynamic Therapy. Adv Funct Mater 2019;29:1806708. [DOI: 10.1002/adfm.201806708] [Cited by in Crossref: 72] [Cited by in F6Publishing: 65] [Article Influence: 24.0] [Reference Citation Analysis]
82 Xia D, Xu P, Luo X, Zhu J, Gu H, Huo D, Hu Y. Overcoming Hypoxia by Multistage Nanoparticle Delivery System to Inhibit Mitochondrial Respiration for Photodynamic Therapy. Adv Funct Mater 2019;29:1807294. [DOI: 10.1002/adfm.201807294] [Cited by in Crossref: 87] [Cited by in F6Publishing: 81] [Article Influence: 29.0] [Reference Citation Analysis]
83 Sivasubramanian M, Chuang YC, Lo LW. Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules 2019;24:E520. [PMID: 30709030 DOI: 10.3390/molecules24030520] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
84 Li T, Yan L. Functional Polymer Nanocarriers for Photodynamic Therapy. Pharmaceuticals (Basel) 2018;11:E133. [PMID: 30513613 DOI: 10.3390/ph11040133] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
85 Kucinska M, Mieszczak H, Piotrowska-Kempisty H, Kaczmarek M, Granig W, Murias M, Erker T. The role of oxidative stress in 63 T-induced cytotoxicity against human lung cancer and normal lung fibroblast cell lines. Invest New Drugs 2019;37:849-64. [PMID: 30498945 DOI: 10.1007/s10637-018-0704-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
86 Chen D, Zhang F, Wang J, He H, Duan S, Zhu R, Chen C, Yin L, Chen Y. Biodegradable Nanoparticles Mediated Co-delivery of Erlotinib (ELTN) and Fedratinib (FDTN) Toward the Treatment of ELTN-Resistant Non-small Cell Lung Cancer (NSCLC) via Suppression of the JAK2/STAT3 Signaling Pathway. Front Pharmacol 2018;9:1214. [PMID: 30483119 DOI: 10.3389/fphar.2018.01214] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
87 Kruger CA, Abrahamse H. Utilisation of Targeted Nanoparticle Photosensitiser Drug Delivery Systems for the Enhancement of Photodynamic Therapy. Molecules 2018;23:E2628. [PMID: 30322132 DOI: 10.3390/molecules23102628] [Cited by in Crossref: 22] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
88 Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine 2018;13:6049-58. [PMID: 30323592 DOI: 10.2147/IJN.S140462] [Cited by in Crossref: 143] [Cited by in F6Publishing: 200] [Article Influence: 35.8] [Reference Citation Analysis]
89 Saleem J, Wang L, Chen C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater 2018;7:e1800525. [PMID: 30073803 DOI: 10.1002/adhm.201800525] [Cited by in Crossref: 96] [Cited by in F6Publishing: 93] [Article Influence: 24.0] [Reference Citation Analysis]
90 Luan X, Guan YY, Liu HJ, Lu Q, Zhao M, Sun D, Lovell JF, Sun P, Chen HZ, Fang C. A Tumor Vascular-Targeted Interlocking Trimodal Nanosystem That Induces and Exploits Hypoxia. Adv Sci (Weinh) 2018;5:1800034. [PMID: 30128230 DOI: 10.1002/advs.201800034] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
91 Al-Afyouni MH, Rohrabaugh TN Jr, Al-Afyouni KF, Turro C. New Ru(ii) photocages operative with near-IR light: new platform for drug delivery in the PDT window. Chem Sci 2018;9:6711-20. [PMID: 30310605 DOI: 10.1039/c8sc02094a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 50] [Article Influence: 9.5] [Reference Citation Analysis]
92 Liu M, Wang L, Zheng X, Liu S, Xie Z. Hypoxia-Triggered Nanoscale Metal–Organic Frameworks for Enhanced Anticancer Activity. ACS Appl Mater Interfaces 2018;10:24638-47. [DOI: 10.1021/acsami.8b07570] [Cited by in Crossref: 54] [Cited by in F6Publishing: 72] [Article Influence: 13.5] [Reference Citation Analysis]
93 Meng Q, Meng J, Ran W, Wang J, Zhai Y, Zhang P, Li Y. Light-Activated Core-Shell Nanoparticles for Spatiotemporally Specific Treatment of Metastatic Triple-Negative Breast Cancer. ACS Nano 2018;12:2789-802. [PMID: 29462553 DOI: 10.1021/acsnano.7b09210] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 12.5] [Reference Citation Analysis]
94 Wei J, Li J, Sun D, Li Q, Ma J, Chen X, Zhu X, Zheng N. A Novel Theranostic Nanoplatform Based on Pd@Pt-PEG-Ce6 for Enhanced Photodynamic Therapy by Modulating Tumor Hypoxia Microenvironment. Adv Funct Mater 2018;28:1706310. [DOI: 10.1002/adfm.201706310] [Cited by in Crossref: 159] [Cited by in F6Publishing: 141] [Article Influence: 39.8] [Reference Citation Analysis]
95 Zhang W, Li S, Liu X, Yang C, Hu N, Dou L, Zhao B, Zhang Q, Suo Y, Wang J. Oxygen-Generating MnO 2 Nanodots-Anchored Versatile Nanoplatform for Combined Chemo-Photodynamic Therapy in Hypoxic Cancer. Adv Funct Mater 2018;28:1706375. [DOI: 10.1002/adfm.201706375] [Cited by in Crossref: 153] [Cited by in F6Publishing: 140] [Article Influence: 38.3] [Reference Citation Analysis]