BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Caltagirone C, Bettoschi A, Garau A, Montis R. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 2015;44:4645-71. [DOI: 10.1039/c4cs00270a] [Cited by in Crossref: 104] [Cited by in F6Publishing: 107] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Treccani L. Introduction to Ceramic Materials. Surface‐Functionalized Ceramics 2023. [DOI: 10.1002/9783527698042.ch1] [Reference Citation Analysis]
2 Guo W, Chen M, Yang Y, Ge G, Tang L, He S, Zeng Z, Li X, Li G, Xiong W, Wu S. Biocompatibility and Biological Effects of Surface-Modified Conjugated Polymer Nanoparticles. Molecules 2023;28. [PMID: 36903280 DOI: 10.3390/molecules28052034] [Reference Citation Analysis]
3 Wang F, Li N, Wang W, Ma L, Sun Y, Wang H, Zhan J, Yu D. A Multifunctional, Highly Biocompatible, and Double-Triggering Caramelized Nanotheranostic System Loaded with Fe(3)O(4) and DOX for Combined Chemo-Photothermal Therapy and Real-Time Magnetic Resonance Imaging Monitoring of Triple Negative Breast Cancer. Int J Nanomedicine 2023;18:881-97. [PMID: 36844435 DOI: 10.2147/IJN.S393507] [Reference Citation Analysis]
4 Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OpenNano 2022;8:100081. [DOI: 10.1016/j.onano.2022.100081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Nguyen NTK, Lebastard C, Wilmet M, Dumait N, Renaud A, Cordier S, Ohashi N, Uchikoshi T, Grasset F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb 6 , Mo 6 , Ta 6 , W 6 , Re 6 ): inorganic 0D and 2D powders and films. Science and Technology of Advanced Materials. [DOI: 10.1080/14686996.2022.2119101] [Reference Citation Analysis]
6 He T, Guo W, Chen Y, Yang X, Tung C, Wu L. Ratiometric hypoxia detection by bright organic room temperature phosphorescence of uniformed silica nanoparticles in water. Aggregate. [DOI: 10.1002/agt2.250] [Reference Citation Analysis]
7 Sun N, Jia Y, Wang C, Xia J, Cao H, Dai L, Li C, Zhang X, Li J. Monitoring the distribution of internalized silica nanoparticles inside cells via direct stochastic optical reconstruction microscopy. Journal of Colloid and Interface Science 2022;615:248-55. [DOI: 10.1016/j.jcis.2022.01.196] [Reference Citation Analysis]
8 Zhang R, Wei S, Shao L, Tong L, Wu Y. Imaging Intracellular Drug/siRNA Co-Delivery by Self-Assembly Cross-Linked Polyethylenimine with Fluorescent Core-Shell Silica Nanoparticles. Polymers (Basel) 2022;14:1813. [PMID: 35566982 DOI: 10.3390/polym14091813] [Reference Citation Analysis]
9 Feldmann C. Large and Small Solids: A Journey Through Inorganic Chemistry. Zeitschrift anorg allge chemie. [DOI: 10.1002/zaac.202200062] [Reference Citation Analysis]
10 Wang Q, Zhu Y, Song B, Fu R, Zhou Y. The In Vivo Toxicity Assessments of Water-Dispersed Fluorescent Silicon Nanoparticles in Caenorhabditis elegans. Int J Environ Res Public Health 2022;19. [PMID: 35409783 DOI: 10.3390/ijerph19074101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, Che Q, Guo J, Su Z. Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Front Pharmacol 2022;13:829796. [DOI: 10.3389/fphar.2022.829796] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Sankaranarayanan SA, Singh SP, Rengan AK. Theranostics: Principles, Materials, and Technical Advancements. BioSensing, Theranostics, and Medical Devices 2022. [DOI: 10.1007/978-981-16-2782-8_13] [Reference Citation Analysis]
13 Ritschel C, Napp J, Alves F, Feldmann C. Monitoring nanoparticle dissolution via fluorescence-colour shift. Nanoscale 2022. [DOI: 10.1039/d2nr03078k] [Reference Citation Analysis]
14 Peng X, Lin G, Zeng Y, Lei Z, Liu G. Mesoporous Silica Nanoparticle-Based Imaging Agents for Hepatocellular Carcinoma Detection. Front Bioeng Biotechnol 2021;9:749381. [PMID: 34869261 DOI: 10.3389/fbioe.2021.749381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Ananda P, Tillekaratne A, Hettiarachchi C, Lalichchandran N. Sensitive detection of E. coli using bioconjugated fluorescent silica nanoparticles. Applied Surface Science Advances 2021;6:100159. [DOI: 10.1016/j.apsadv.2021.100159] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021;50:11293-380. [PMID: 34661205 DOI: 10.1039/d0cs00912a] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
17 Xu L, Jiang X, Liang K, Gao M, Kong B. Frontier luminous strategy of functional silica nanohybrids in sensing and bioimaging: From ACQ to AIE. Aggregate. [DOI: 10.1002/agt2.121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Fang B, Li P, Jiang J, Du W, Wang L, Bai H, Peng B, Huang X, An Z, Li L, Yang X, Fu L, Huang W. Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coordination Chemistry Reviews 2021;440:213979. [DOI: 10.1016/j.ccr.2021.213979] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
19 Ahmad W, Wang J, Li H, Ouyang Q, Wu W, Chen Q. Strategies for combining triplet–triplet annihilation upconversion sensitizers and acceptors in a host matrix. Coordination Chemistry Reviews 2021;439:213944. [DOI: 10.1016/j.ccr.2021.213944] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
20 Fontana F, Ezazi NZ, Tahir N, Santos HA. Cell–Nanoparticle Interactions: Toxicity and Safety Issues. In: Peltonen L, editor. Characterization of Pharmaceutical Nano and Microsystems. Wiley; 2021. pp. 207-42. [DOI: 10.1002/9781119414018.ch6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
21 Gong T, Cheng R, Wang X, Li J, Liang W, Wei Z, Shuang S, Wang Y, Guo R. Supramolecular-interaction-mediated aggregation of anticarcinogens on triformyl cholic acid-functionalized Fe 3 O 4 nanoparticles and their dual-targeting treatment for liver cancer. New J Chem 2021;45:6880-8. [DOI: 10.1039/d1nj00248a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Wang C, Chen Y, Yang Q, Tung C, Wu D, Wu L. Silica-supported dual-dye nanoprobes for ratiometric hypoxia sensing. Mater Chem Front 2021;5:458-64. [DOI: 10.1039/d0qm00653j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Dement’eva OV. Mesoporous Silica Container Particles: New Approaches and New Opportunities. Colloid J 2020;82:479-501. [DOI: 10.1134/s1061933x20050038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Yuan D, Ellis CM, Davis JJ. Mesoporous Silica Nanoparticles in Bioimaging. Materials (Basel) 2020;13:E3795. [PMID: 32867401 DOI: 10.3390/ma13173795] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
25 Clément S, Mehdi A. Sol-Gel Chemistry: From Molecule to Functional Materials. Molecules 2020;25:E2538. [PMID: 32486041 DOI: 10.3390/molecules25112538] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Zarafu I, Jebur Al Taweel AA, Limban C, Popa M, Măruțescu L, Chifiriuc MC, Pircalabioru GG, Culiță D, Ghica C, Ionita P. Aminopropyl-silica functionalized with halogen-reactive compounds for antimicrobial applications. Materials Chemistry and Physics 2020;241:122353. [DOI: 10.1016/j.matchemphys.2019.122353] [Reference Citation Analysis]
27 Deng H, Konopka CJ, Cross TL, Swanson KS, Dobrucki LW, Smith AM. Multimodal Nanocarrier Probes Reveal Superior Biodistribution Quantification by Isotopic Analysis over Fluorescence. ACS Nano 2020;14:509-23. [PMID: 31887006 DOI: 10.1021/acsnano.9b06504] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
28 Mathieu P, Chalet M, Clain MM, Teulon L, Benoist E, Leygue N, Picard C, Boutry S, Laurent S, Stanicki D, Hénoumont C, Novio F, Lorenzo J, Montpeyó D, Ciuculescu-pradines D, Amiens C. Surface engineering of silica nanoparticles with a gadolinium–PCTA complex for efficient T1 -weighted MRI contrast agents. New J Chem 2020;44:18031-47. [DOI: 10.1039/d0nj04430j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Mathieu P, Coppel Y, Respaud M, Nguyen QT, Boutry S, Laurent S, Stanicki D, Henoumont C, Novio F, Lorenzo J, Montpeyó D, Amiens C. Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T2 Weighted Magnetic Resonance Imaging. Molecules 2019;24:E4629. [PMID: 31861222 DOI: 10.3390/molecules24244629] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
30 Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. Adv Mater 2019;31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Cited by in Crossref: 80] [Cited by in F6Publishing: 83] [Article Influence: 20.0] [Reference Citation Analysis]
31 Wadhawan A, Chatterjee M, Singh G. Present Scenario of Bioconjugates in Cancer Therapy: A Review. Int J Mol Sci 2019;20:E5243. [PMID: 31652668 DOI: 10.3390/ijms20215243] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
32 Gulin-Sarfraz T, Pryazhnikov E, Zhang J, Khiroug L, Rosenholm JM. Chemical and photonic interactions in vitro and in vivo between fluorescent tracer and nanoparticle-based scavenger for enhanced molecular imaging. Mater Today Bio 2019;2:100010. [PMID: 32159145 DOI: 10.1016/j.mtbio.2019.100010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
33 Mohammadpour R, Yazdimamaghani M, Cheney DL, Jedrzkiewicz J, Ghandehari H. Subchronic toxicity of silica nanoparticles as a function of size and porosity. J Control Release 2019;304:216-32. [PMID: 31047961 DOI: 10.1016/j.jconrel.2019.04.041] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 11.3] [Reference Citation Analysis]
34 Del Secco B, Ravotto L, Esipova TV, Vinogradov SA, Genovese D, Zaccheroni N, Rampazzo E, Prodi L. Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochem Photobiol Sci 2019;18:2142-9. [PMID: 31011734 DOI: 10.1039/c9pp00047j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
35 Mohammadpour R, Dobrovolskaia MA, Cheney DL, Greish KF, Ghandehari H. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Adv Drug Deliv Rev 2019;144:112-32. [PMID: 31295521 DOI: 10.1016/j.addr.2019.07.006] [Cited by in Crossref: 69] [Cited by in F6Publishing: 75] [Article Influence: 17.3] [Reference Citation Analysis]
36 Kim S, Hur MY, Kim J, Park KM, Kim K. Strong host-guest interaction enables facile and controllable surface modification of cucurbit[6]uril-based polymer nanocapsules for in vivo cancer targeting. Supramolecular Chemistry 2019;31:289-95. [DOI: 10.1080/10610278.2019.1593413] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
37 Kesse S, Boakye-Yiadom KO, Ochete BO, Opoku-Damoah Y, Akhtar F, Filli MS, Asim Farooq M, Aquib M, Maviah Mily BJ, Murtaza G, Wang B. Mesoporous Silica Nanomaterials: Versatile Nanocarriers for Cancer Theranostics and Drug and Gene Delivery. Pharmaceutics 2019;11:E77. [PMID: 30781850 DOI: 10.3390/pharmaceutics11020077] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 12.3] [Reference Citation Analysis]
38 Huang L, Kakadiaris E, Vaneckova T, Huang K, Vaculovicova M, Han G. Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles. Biomaterials 2019;201:77-86. [PMID: 30802685 DOI: 10.1016/j.biomaterials.2019.02.008] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 15.3] [Reference Citation Analysis]
39 Wei Y, Zhou L, Yang D, Yao T, Shi S. Stem Cells Controlling, Imaging and Labeling by Functional Nanomaterials. Nano LIFE 2018;08:1841007. [DOI: 10.1142/s1793984418410076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
40 Xu L, Cui F, Zhang J, Zhang X, Wang Y, Cui T. A general autocatalytic route toward silica nanospheres with ultrasmall sized and well-dispersed metal oxide nanoparticles. Nanoscale 2018;10:9460-5. [PMID: 29766203 DOI: 10.1039/c8nr02299b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
41 Lai J, Wang T, Wang H, Shi F, Gu W, Ye L. MnO nanoparticles with unique excitation-dependent fluorescence for multicolor cellular imaging and MR imaging of brain glioma. Mikrochim Acta 2018;185:244. [PMID: 29610993 DOI: 10.1007/s00604-018-2779-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
42 Kluenker M, Kurch S, Tahir MN, Tremel W. Bio-nano: Theranostic at Cellular Level. Particles and Nanoparticles in Pharmaceutical Products 2018. [DOI: 10.1007/978-3-319-94174-5_3] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
43 Dréau D, Moore LJ, Alvarez-Berrios MP, Tarannum M, Mukherjee P, Vivero-Escoto JL. Mucin-1-Antibody-Conjugated Mesoporous Silica Nanoparticles for Selective Breast Cancer Detection in a Mucin-1 Transgenic Murine Mouse Model. J Biomed Nanotechnol 2016;12:2172-84. [PMID: 28522938 DOI: 10.1166/jbn.2016.2318] [Cited by in Crossref: 48] [Cited by in F6Publishing: 49] [Article Influence: 8.0] [Reference Citation Analysis]
44 Vivero-escoto JL, Moore Jeffords L, Dréau D, Alvarez-berrios M, Mukherjee P. Mucin1 antibody-conjugated dye-doped mesoporous silica nanoparticles for breast cancer detection in vivo. Colloidal Nanoparticles for Biomedical Applications XII 2017. [DOI: 10.1117/12.2252369] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
45 Crisponi G, Nurchi VM, Lachowicz JI, Peana M, Medici S, Zoroddu MA. Toxicity of Nanoparticles: Etiology and Mechanisms. Antimicrobial Nanoarchitectonics 2017. [DOI: 10.1016/b978-0-323-52733-0.00018-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
46 Abadjian MZ, Choi J, Anderson CJ. Nanoparticles for PET Imaging of Tumors and Cancer Metastasis. Design and Applications of Nanoparticles in Biomedical Imaging 2017. [DOI: 10.1007/978-3-319-42169-8_11] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
47 Hayashi K, Maruhashi T, Nakamura M, Sakamoto W, Yogo T. One-Pot Synthesis of Dual Stimulus-Responsive Degradable Hollow Hybrid Nanoparticles for Image-Guided Trimodal Therapy. Adv Funct Mater 2016;26:8613-22. [DOI: 10.1002/adfm.201603394] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
48 Yamaguchi H, Tsuchimochi M, Hayama K, Kawase T, Tsubokawa N. Dual-Labeled Near-Infrared/(99m)Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells. Int J Mol Sci 2016;17:E1086. [PMID: 27399687 DOI: 10.3390/ijms17071086] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
49 Alvarez-berríos MP, Sosa-cintron N, Rodriguez-lugo M, Juneja R, Vivero-escoto JL. Hybrid Nanomaterials Based on Iron Oxide Nanoparticles and Mesoporous Silica Nanoparticles: Overcoming Challenges in Current Cancer Treatments. Journal of Chemistry 2016;2016:1-15. [DOI: 10.1155/2016/2672740] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.7] [Reference Citation Analysis]
50 Kempen PJ, Greasley S, Parker KA, Campbell JL, Chang HY, Jones JR, Sinclair R, Gambhir SS, Jokerst JV. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 2015;5:631-42. [PMID: 25825602 DOI: 10.7150/thno.11389] [Cited by in Crossref: 145] [Cited by in F6Publishing: 152] [Article Influence: 18.1] [Reference Citation Analysis]
51 Song N, Yang Y. Molecular and supramolecular switches on mesoporous silica nanoparticles. Chem Soc Rev 2015;44:3474-504. [DOI: 10.1039/c5cs00243e] [Cited by in Crossref: 361] [Cited by in F6Publishing: 369] [Article Influence: 45.1] [Reference Citation Analysis]