BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jakobsson O, Grenvall C, Nordin M, Evander M, Laurell T. Acoustic actuated fluorescence activated sorting of microparticles. Lab Chip 2014;14:1943-50. [DOI: 10.1039/c3lc51408k] [Cited by in Crossref: 57] [Cited by in F6Publishing: 16] [Article Influence: 7.1] [Reference Citation Analysis]
Number Citing Articles
1 Zervantonakis IK, Arvanitis CD. Controlled Drug Release and Chemotherapy Response in a Novel Acoustofluidic 3D Tumor Platform. Small 2016;12:2616-26. [PMID: 27031786 DOI: 10.1002/smll.201503342] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
2 Shields CW 4th, Ohiri KA, Szott LM, López GP. Translating microfluidics: Cell separation technologies and their barriers to commercialization. Cytometry B Clin Cytom 2017;92:115-25. [PMID: 27282966 DOI: 10.1002/cyto.b.21388] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 7.5] [Reference Citation Analysis]
3 Shields CW 4th, Reyes CD, López GP. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015;15:1230-49. [PMID: 25598308 DOI: 10.1039/c4lc01246a] [Cited by in Crossref: 547] [Cited by in F6Publishing: 164] [Article Influence: 78.1] [Reference Citation Analysis]
4 Hosic S, Murthy SK, Koppes AN. Microfluidic Sample Preparation for Single Cell Analysis. Anal Chem 2016;88:354-80. [PMID: 26567589 DOI: 10.1021/acs.analchem.5b04077] [Cited by in Crossref: 88] [Cited by in F6Publishing: 66] [Article Influence: 12.6] [Reference Citation Analysis]
5 Zhong R, Yang S, Ugolini GS, Naquin T, Zhang J, Yang K, Xia J, Konry T, Huang TJ. Acoustofluidic Droplet Sorter Based on Single Phase Focused Transducers. Small 2021;17:e2103848. [PMID: 34658129 DOI: 10.1002/smll.202103848] [Reference Citation Analysis]
6 Zhao W, Wang H, Guo Y, Sun K, Cheng Z, Chen H. A high-throughput label-free time-stretch acoustofluidic imaging cytometer for single-cell mechanotyping. Microfluid Nanofluid 2020;24. [DOI: 10.1007/s10404-020-02395-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Ren L, Chen Y, Li P, Mao Z, Huang PH, Rufo J, Guo F, Wang L, McCoy JP, Levine SJ, Huang TJ. A high-throughput acoustic cell sorter. Lab Chip 2015;15:3870-9. [PMID: 26289231 DOI: 10.1039/c5lc00706b] [Cited by in Crossref: 94] [Cited by in F6Publishing: 29] [Article Influence: 15.7] [Reference Citation Analysis]
8 Li P, Huang TJ. Applications of Acoustofluidics in Bioanalytical Chemistry. Anal Chem 2019;91:757-67. [PMID: 30561981 DOI: 10.1021/acs.analchem.8b03786] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 10.8] [Reference Citation Analysis]
9 Vargas C, Campos-silva I, Méndez F, Arcos J, Bautista O. Acoustic streaming in Maxwell fluids generated by standing waves in two-dimensional microchannels. J Fluid Mech 2022;933. [DOI: 10.1017/jfm.2021.1116] [Reference Citation Analysis]
10 Nawaz AA, Chen Y, Nama N, Nissly RH, Ren L, Ozcelik A, Wang L, McCoy JP, Levine SJ, Huang TJ. Acoustofluidic Fluorescence Activated Cell Sorter. Anal Chem 2015;87:12051-8. [PMID: 26331909 DOI: 10.1021/acs.analchem.5b02398] [Cited by in Crossref: 56] [Cited by in F6Publishing: 50] [Article Influence: 8.0] [Reference Citation Analysis]
11 Ng JW, Neild A. Multiple outcome particle manipulation using cascaded surface acoustic waves (CSAW). Microfluid Nanofluid 2021;25. [DOI: 10.1007/s10404-020-02417-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Ren L, Yang S, Zhang P, Qu Z, Mao Z, Huang PH, Chen Y, Wu M, Wang L, Li P, Huang TJ. Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter. Small 2018;14:e1801996. [PMID: 30168662 DOI: 10.1002/smll.201801996] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
13 Mao Z, Li P, Wu M, Bachman H, Mesyngier N, Guo X, Liu S, Costanzo F, Huang TJ. Enriching Nanoparticles via Acoustofluidics. ACS Nano 2017;11:603-12. [PMID: 28068078 DOI: 10.1021/acsnano.6b06784] [Cited by in Crossref: 83] [Cited by in F6Publishing: 63] [Article Influence: 16.6] [Reference Citation Analysis]
14 Rambach RW, Taiber J, Scheck CM, Meyer C, Reboud J, Cooper JM, Franke T. Visualization of Surface Acoustic Waves in Thin Liquid Films. Sci Rep 2016;6:21980. [PMID: 26917490 DOI: 10.1038/srep21980] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
15 Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Jun Huang T. Acoustofluidic separation of cells and particles. Microsyst Nanoeng 2019;5:32. [PMID: 31231539 DOI: 10.1038/s41378-019-0064-3] [Cited by in Crossref: 93] [Cited by in F6Publishing: 54] [Article Influence: 31.0] [Reference Citation Analysis]
16 Wang C, Ma Y, Pei Z, Song F, Zhong J, Wang Y, Yan X, Dai P, Jiang Y, Qiu J, Shi M, Wu X. Sheathless acoustic based flow cell sorter for enrichment of rare cells. Cytometry A 2021. [PMID: 34806837 DOI: 10.1002/cyto.a.24521] [Reference Citation Analysis]
17 Grenvall C, Magnusson C, Lilja H, Laurell T. Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal Chem 2015;87:5596-604. [PMID: 25909882 DOI: 10.1021/acs.analchem.5b00370] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 5.3] [Reference Citation Analysis]
18 Tang T, Liu X, Yuan Y, Kiya R, Shen Y, Zhang T, Suzuki K, Tanaka Y, Li M, Hosokawa Y, Yaxiaer Y. Dual-frequency impedance assays for intracellular components in microalgal cells. Lab Chip 2022. [PMID: 35072196 DOI: 10.1039/d1lc00721a] [Reference Citation Analysis]
19 Lee DJ, Mai J, Huang TJ. Microfluidic approaches for cell-based molecular diagnosis. Biomicrofluidics 2018;12:051501. [PMID: 30271515 DOI: 10.1063/1.5030891] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
20 Keloth A, Anderson O, Risbridger D, Paterson L. Single Cell Isolation Using Optical Tweezers. Micromachines (Basel) 2018;9:E434. [PMID: 30424367 DOI: 10.3390/mi9090434] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
21 Ahmad M, Bozkurt A, Farhanieh O. Evaluation of acoustic-based particle separation methods. WJE 2019;16:823-38. [DOI: 10.1108/wje-06-2019-0167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Park JW, Kim SH, Ito T, Fujii T, Kim SY, Laurell T, Lee SW, Goda K. Acoustofluidic harvesting of microalgae on a single chip. Biomicrofluidics 2016;10:034119. [PMID: 27462380 DOI: 10.1063/1.4954744] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
23 Gao L, Wyatt Shields C 4th, Johnson LM, Graves SW, Yellen BB, López GP. Two-dimensional spatial manipulation of microparticles in continuous flows in acoustofluidic systems. Biomicrofluidics 2015;9:014105. [PMID: 25713687 DOI: 10.1063/1.4905875] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]