BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH. Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 2013;1:401-28. [DOI: 10.1039/c2tb00085g] [Cited by in Crossref: 152] [Cited by in F6Publishing: 154] [Article Influence: 15.2] [Reference Citation Analysis]
Number Citing Articles
1 Maas M, Wehling J. Carbon Nanomaterials for Antibacterial Applications. Surface‐Functionalized Ceramics 2023. [DOI: 10.1002/9783527698042.ch9] [Reference Citation Analysis]
2 Kadhim MM, Taha A, Abdullaha SA, Naser ST, Hachim SK, Rheima AM. Delivery of Cisplatin Anti-cancer Drug by Si-Decorated Al24N24 Nanocage: DFT Evaluation of Electronic and Structural Features. J Electron Mater 2023. [DOI: 10.1007/s11664-023-10289-x] [Reference Citation Analysis]
3 Khakpour E, Salehi S, Naghib SM, Ghorbanzadeh S, Zhang W. Graphene-based nanomaterials for stimuli-sensitive controlled delivery of therapeutic molecules. Front Bioeng Biotechnol 2023;11:1129768. [PMID: 36845181 DOI: 10.3389/fbioe.2023.1129768] [Reference Citation Analysis]
4 Zhang D, Mitchell E, Lu X, Chu D, Shang L, Zhang T, Amal R, Han Z. Metal-free carbon-based catalysts design for oxygen reduction reaction towards hydrogen peroxide: From 3D to 0D. Materials Today 2023. [DOI: 10.1016/j.mattod.2023.02.004] [Reference Citation Analysis]
5 Kal’vinkovskaya YA, Pavich TA, Romanenko AA, Bushuk SB, Sobchuk AN, Lapina VA. Influence of Nanodiamonds on Enhancement of Fluorescence of Products of the Tryptophan-Phototransformation Reaction in the Presence of Halogenated Carbohydrates. Opt Spectrosc 2023. [DOI: 10.1134/s0030400x22110030] [Reference Citation Analysis]
6 Qasim M, Clarkson AN, Hinkley SFR. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. Int J Mol Sci 2023;24. [PMID: 36674532 DOI: 10.3390/ijms24021023] [Reference Citation Analysis]
7 Fouejio D, Tadjouteu Assatse Y, Yossa Kamsi RA, Ejuh GW, Ndjaka JMB. Structural, electronic and nonlinear optical properties, reactivity and solubility of the drug dihydroartemisinin functionalized on the carbon nanotube. Heliyon 2023;9:e12663. [PMID: 36632106 DOI: 10.1016/j.heliyon.2022.e12663] [Reference Citation Analysis]
8 Ruiu A, González-méndez I, Sorroza-martínez K, Rivera E. Drug delivery aspects of carbon nanotubes. Emerging Applications of Carbon Nanotubes in Drug and Gene Delivery 2023. [DOI: 10.1016/b978-0-323-85199-2.00008-x] [Reference Citation Analysis]
9 Karagianni A, Tsierkezos NG, Prato M, Terrones M, Kordatos KV. Application of carbon-based quantum dots in photodynamic therapy. Carbon 2022. [DOI: 10.1016/j.carbon.2022.11.026] [Reference Citation Analysis]
10 Al-otaibi JS, Mary YS, Mary YS, Acharjee N, Churchill DG. Spectroscopic studies of 5-fluoro-1H-pyrimidine-2,4-dione adsorption on nanorings, solvent effects and SERS analysis. Computational and Theoretical Chemistry 2022;1217:113873. [DOI: 10.1016/j.comptc.2022.113873] [Reference Citation Analysis]
11 Pourmadadi M, Tajiki A, Hosseini SM, Samadi A, Abdouss M, Daneshnia S, Yazdian F. A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. Journal of Drug Delivery Science and Technology 2022;76:103767. [DOI: 10.1016/j.jddst.2022.103767] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Bagyalakshmi S, Sivakami A, Pal K, Sarankumar R, Mahendran C. Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. J Nanopart Res 2022;24. [DOI: 10.1007/s11051-022-05576-3] [Reference Citation Analysis]
13 Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022;350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022;17:1375-95. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Reference Citation Analysis]
15 Grilli F, Hajimohammadi Gohari P, Zou S. Characteristics of Graphene Oxide for Gene Transfection and Controlled Release in Breast Cancer Cells. Int J Mol Sci 2022;23:6802. [PMID: 35743245 DOI: 10.3390/ijms23126802] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Bhogale D, Mazahir F, Yadav AK. Recent Synergy of Nanodiamonds: Role in Brain-Targeted Drug Delivery for the Management of Neurological Disorders. Mol Neurobiol 2022. [PMID: 35618981 DOI: 10.1007/s12035-022-02882-8] [Reference Citation Analysis]
17 Kulakova II, Lisichkin GV. Potential Directions in the Use of Graphene Nanomaterials in Pharmacology and Biomedicine (Review). Pharm Chem J. [DOI: 10.1007/s11094-022-02594-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Farshid S, Ebrahimian-hosseinabadi M, Rafienia M. Electrophoretic deposition of biphasic calcium phosphate/graphene nanocomposite coatings on Ti6Al4V substrate for biomedical applications. Journal of Alloys and Compounds 2022;892:162150. [DOI: 10.1016/j.jallcom.2021.162150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Nejati M, Rostami M, Mirzaei H, Rahimi-nasrabadi M, Vosoughifar M, Nasab AS, Ganjali MR. Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. Inorganic Chemistry Communications 2022;136:109107. [DOI: 10.1016/j.inoche.2021.109107] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
20 Oliveira IM, Gomes M, Gomes LC, Pereira MFR, Soares OSGP, Mergulhão FJ. Performance of Graphene/Polydimethylsiloxane Surfaces against S. aureus and P. aeruginosa Single- and Dual-Species Biofilms. Nanomaterials 2022;12:355. [DOI: 10.3390/nano12030355] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
21 Bajpai A, Shinde S, Basu S. Nanobiomaterials for drug delivery and theranostics. Nanotechnology in Medicine and Biology 2022. [DOI: 10.1016/b978-0-12-819469-0.00002-2] [Reference Citation Analysis]
22 Dandu NK, Chandaluri CG, Ramesh K, Saritha D, Mahender Reddy N, Ramesh GV. Carbon nanomaterials: Application as sensors for diagnostics. Advanced Nanomaterials for Point of Care Diagnosis and Therapy 2022. [DOI: 10.1016/b978-0-323-85725-3.00015-5] [Reference Citation Analysis]
23 Abdolahpur S, Bagheri N, Azami SM. Kinetic Energy Pressure and Relaxation Analysis of Intermolecular Interaction between Carbon Nanorings and Some Molecules. Russ J Phys Chem 2021;95:2609-18. [DOI: 10.1134/s0036024421130021] [Reference Citation Analysis]
24 Pandey RR, Chusuei CC. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. Molecules 2021;26:6674. [PMID: 34771082 DOI: 10.3390/molecules26216674] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
25 Dias LD, Buzzá HH, Stringasci MD, Bagnato VS. Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies. Photochem 2021;1:434-450. [DOI: 10.3390/photochem1030026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
26 Berdichevskiy GM, Vasina LV, Ageev SV, Meshcheriakov AA, Galkin MA, Ishmukhametov RR, Nashchekin AV, Kirilenko DA, Petrov AV, Martynova SD, Semenov KN, Sharoyko VV. A comprehensive study of biocompatibility of detonation nanodiamonds. Journal of Molecular Liquids 2021;332:115763. [DOI: 10.1016/j.molliq.2021.115763] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials (Basel) 2021;11:967. [PMID: 33918769 DOI: 10.3390/nano11040967] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 19.0] [Reference Citation Analysis]
28 Jha R, Singh A, Sharma PK, Porwal O, Fuloria NK. Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. J Pharm Investig 2021;51:245-80. [DOI: 10.1007/s40005-021-00513-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2021;2:1821-71. [DOI: 10.1039/d0ma00807a] [Cited by in Crossref: 260] [Cited by in F6Publishing: 293] [Article Influence: 130.0] [Reference Citation Analysis]
30 Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. Adv Therap 2021;4:2000207. [DOI: 10.1002/adtp.202000207] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
31 Liu Y, Xie X, Xu C, Jiang H, Liu W. 2D Near‐Infrared Luminescence Ln–Coordination‐Polymers as an Assistor for Biomedicine. ChemistrySelect 2020;5:10771-4. [DOI: 10.1002/slct.202001050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Garriga R, Herrero-Continente T, Palos M, Cebolla VL, Osada J, Muñoz E, Rodríguez-Yoldi MJ. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. Nanomaterials (Basel) 2020;10:E1617. [PMID: 32824730 DOI: 10.3390/nano10081617] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
33 Belko NV, Samtsov MP, Gusakov GA, Khludeev II, Lugovski AP, Lugovski AA. Spectral Properties of an Indotricarbocyanine Dye upon Complexation by Detonation Nanodiamonds and Blood Serum Proteins. J Appl Spectrosc 2020;87:412-420. [DOI: 10.1007/s10812-020-01016-z] [Reference Citation Analysis]
34 Kazakov AG, Garashchenko BL, Ivanova MK, Vinokurov SE, Myasoedov BF. Carbon Nanomaterials for Sorption of 68Ga for Potential Using in Positron Emission Tomography. Nanomaterials (Basel) 2020;10:E1090. [PMID: 32492808 DOI: 10.3390/nano10061090] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Farshad S, Darvish Ganji M, Student, Department of Nanochemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran, Associate Professor, Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. Theoretical study of interaction between aspirine drug and Al-soped graphene nanostructure toward designing of suitable nanocarrier for drug delivery. MEDICAL SCIENCES 2020;30:141-154. [DOI: 10.29252/iau.30.2.141] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Kazakov AG, Garashchenko BL, Yakovlev RY, Vinokurov SE, Kalmykov SN, Myasoedov BF. An experimental study of sorption/desorption of selected radionuclides on carbon nanomaterials: a quest for possible applications in future nuclear medicine. Diamond and Related Materials 2020;104:107752. [DOI: 10.1016/j.diamond.2020.107752] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
37 Anbarasan R, Viswanath KB, Nithya K, Vasantha VS, Suresh D, Amali AJ. Bifunctional Platinum Tetrapods: High‐Performance Catalyst for Hydrogenation of Aromatic Nitro Compounds and Electrochemical Sensor for Hydrazine. ChemistrySelect 2019;4:12117-12123. [DOI: 10.1002/slct.201903063] [Reference Citation Analysis]
38 Karantagli E, Sigalas M, Garoufalis CS. Exotic nanoparticles of group IV monochalcogenides. Solid State Communications 2019;295:38-42. [DOI: 10.1016/j.ssc.2019.02.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
39 Inzhevatkin EV, Baron AV, Maksimov NG, Volkova MB, Puzyr AP, Bondar VS. EPR Spectrometric Estimation of the Distribution of Intravenously Injected Nanodiamonds in Mice. Biol Bull Russ Acad Sci 2019;46:277-283. [DOI: 10.1134/s1062359019020079] [Reference Citation Analysis]
40 Ibrahim ID, Sadiku ER, Jamiru T, Hamam Y, Alayli Y, Eze AA, Kupolati WK. Biopolymer Composites and Bionanocomposites for Energy Applications. Materials Horizons: From Nature to Nanomaterials 2019. [DOI: 10.1007/978-981-13-8063-1_14] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
41 Imani R, Yousefzadeh M, Nour S. Functional Nanofiber for Drug Delivery Applications. Handbook of Nanofibers 2019. [DOI: 10.1007/978-3-319-53655-2_34] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
42 Singh AK, Yadav TP, Pandey B, Gupta V, Singh SP. Engineering Nanomaterials for Smart Drug Release. Applications of Targeted Nano Drugs and Delivery Systems 2019. [DOI: 10.1016/b978-0-12-814029-1.00015-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
43 Zhao Y, Lian Y, Tan H. Study on the icosahedral fullerene structure with ultra-light and pressure resistance character. Phys Chem Chem Phys 2019;21:11748-54. [DOI: 10.1039/c8cp07787h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
44 Hu L, Yang W, Yang Z, Xu J. Fabrication of graphite via electrochemical conversion of CO 2 in a CaCl 2 based molten salt at a relatively low temperature. RSC Adv 2019;9:8585-93. [DOI: 10.1039/c8ra10560j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
45 Grant J, Naeim M, Lee Y, Miya D, Kee T, Ho D. Engineering Multifunctional Nanomedicine Platforms for Drug Delivery and Imaging. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
46 Kshersagar J, A. Bohara R, Joshi MG. Pharmacological Study of Hybrid Nanostructures. Hybrid Nanostructures for Cancer Theranostics 2019. [DOI: 10.1016/b978-0-12-813906-6.00005-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
47 Rhee C, Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353, Republic of Korea, Puzyr AP, Burov AE, Burova OG, Kim W, Bondar VS. Nanodiamonds Conjugated with Nonsteroidal Anti-inflammatory Drugs for Transdermal Delivery. J Korean Powder Metall Inst 2018;25:459-465. [DOI: 10.4150/kpmi.2018.25.6.459] [Reference Citation Analysis]
48 Ghoderao P, Sahare S, Alegaonkar P, Kulkarni AA, Bhave T. Multiwalled Carbon Nanotubes Decorated with Fe 3 O 4 Nanoparticles for Efficacious Doxycycline Delivery. ACS Appl Nano Mater 2019;2:607-16. [DOI: 10.1021/acsanm.8b02268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
49 Yang G, Hao L, Cao Q, Zhang H, Yang J, Ji L, Mao Z. Three-in-One Self-Assembled Nanocarrier for Dual-Drug Delivery, Two-Photon Imaging, and Chemo-Photodynamic Synergistic Therapy. ACS Appl Mater Interfaces 2018;10:28301-13. [DOI: 10.1021/acsami.8b07270] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
50 Kim J, Benelmekki M. Bottom-up synthesis of hybrid carbon nanoscrolls. Emerging Applications of Nanoparticles and Architecture Nanostructures 2018. [DOI: 10.1016/b978-0-323-51254-1.00018-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
51 Klegerman ME. Quantitative characterization of targeted nanoparticulate formulations for prediction of clinical efficacy. Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology 2018. [DOI: 10.1016/b978-0-12-813629-4.00010-3] [Reference Citation Analysis]
52 Saini RK, Bajpai AK, Jain E. Advances in bionanocomposites for biomedical applications. Biodegradable and Biocompatible Polymer Composites 2018. [DOI: 10.1016/b978-0-08-100970-3.00013-4] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
53 Imani R, Yousefzadeh M, Nour S. Functional Nanofiber for Drug Delivery Applications. Handbook of Nanofibers 2018. [DOI: 10.1007/978-3-319-42789-8_34-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
54 Xi X, Chen Y, Wang J, Li Y, Shao X, He L, Huang Q, Pei X. A multiscale hydrothermal carbon layer modified carbon fiber for composite fabrication. RSC Adv 2018;8:23339-47. [DOI: 10.1039/c8ra04064h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
55 Shiozawa H, Zhang D, Eisterer M, Ayala P, Pichler T, Mccartney MR, Smith DJ. Microscale magnetic compasses. Journal of Applied Physics 2017;122:094301. [DOI: 10.1063/1.4985838] [Reference Citation Analysis]
56 Wu MX, Yang YW. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv Mater 2017;29. [PMID: 28370555 DOI: 10.1002/adma.201606134] [Cited by in Crossref: 1217] [Cited by in F6Publishing: 1252] [Article Influence: 202.8] [Reference Citation Analysis]
57 Lee JO, Narasimhan V, Du J, Ndjamen B, Sretavan D, Choo H. Biocompatible Multifunctional Black-Silicon for Implantable Intraocular Sensor. Adv Healthc Mater 2017;6. [PMID: 28081305 DOI: 10.1002/adhm.201601356] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
58 Korayem MH, Hefzabad RN, Homayooni A, Aslani H. Investigation of geometrical effects in the carbon allotropes manipulation based on AFM: multiscale approach. J Nanopart Res 2017;19. [DOI: 10.1007/s11051-016-3702-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
59 Koizumi R, Hart AH, Brunetto G, Bhowmick S, Owuor PS, Hamel JT, Gentles AX, Ozden S, Lou J, Vajtai R, Asif SS, Galvão DS, Tiwary C, Ajayan P. Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates. Carbon 2016;110:27-33. [DOI: 10.1016/j.carbon.2016.08.085] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
60 Canales M, Ramírez-de-arellano JM, Magana LF. Interaction of a Ti-doped semi-fullerene (TiC30) with molecules of CO and CO2. J Mol Model 2016;22:223. [DOI: 10.1007/s00894-016-3086-x] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
61 Terzyk A, Gauden P, Furmaniak S, Ciećwierz K, Kowalczyk P, Wiśniewski M. Carbon Nanohorns. Carbon Nanomaterials Sourcebook 2016. [DOI: 10.1201/b19568-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
62 Li S, Chiu C, Chang R, Liou Y, Teng M. Synthesis and properties of modified graphite encapsulated iron metal nanoparticles. Diamond and Related Materials 2016;63:153-8. [DOI: 10.1016/j.diamond.2015.12.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
63 Huang X, Zhang T, Zou X, Tao Z, Asefa T. Improving the dissolution of fenofibrate with yeast cell-derived hollow core/shell carbon microparticles. RSC Adv 2016;6:30226-33. [DOI: 10.1039/c6ra00308g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
64 Dhanasekaran S. SMART Drug Based Targeted Delivery: A New Paradigm for Nanomedicine Strategies. Int J Immunother Cancer Res 2015. [DOI: 10.17352/2455-8591.000003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
65 Zhou R. Nanomedicine: Implications from Nanotoxicity. Modeling of Nanotoxicity 2015. [DOI: 10.1007/978-3-319-15382-7_9] [Reference Citation Analysis]
66 Werengowska-ciećwierz K, Wiśniewski M, Terzyk AP, Furmaniak S. The Chemistry of Bioconjugation in Nanoparticles-Based Drug Delivery System. Advances in Condensed Matter Physics 2015;2015:1-27. [DOI: 10.1155/2015/198175] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 6.6] [Reference Citation Analysis]
67 Ruan Z, Qin J, Li Z. The partially controllable growth trend of carbon nanoparticles in solid-state pyrolysis of organometallic precursor by introducing POSS units, and their magnetic properties. RSC Adv 2015;5:63296-303. [DOI: 10.1039/c5ra05375g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
68 Deborah M, Jawahar A, Mathavan T, Dhas MK, Franklin Benial AM. Spectroscopic Studies on Valine-Functionalized Single-Walled Carbon Nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures 2014;23:649-57. [DOI: 10.1080/1536383x.2014.948954] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
69 Li Y, Wang X, Shi W, Yan Z, Zhao C, Chen C, Miao L, Jiang J. Enhanced and adjustable adsorption of organo-functional groups on Li decorated carbon nanotubes: A first principle study. Journal of Applied Physics 2014;116:084308. [DOI: 10.1063/1.4894146] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
70 Skorb EV, Möhwald H. “Smart” Surface Capsules for Delivery Devices. Adv Mater Interfaces 2014;1:1400237. [DOI: 10.1002/admi.201400237] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
71 Barbinta-patrascu ME, Ungureanu C, Iordache SM, Bunghez IR, Badea N, Rau I. Green silver nanobioarchitectures with amplified antioxidant and antimicrobial properties. J Mater Chem B 2014;2:3221-31. [DOI: 10.1039/c4tb00262h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
72 Markiewicz KH, Wilczewska AZ, Chernyaeva O, Winkler K. Ring-opening reactions of epoxidized SWCNT with nucleophilic agents: a convenient way for sidewall functionalization. New J Chem 2014;38:2670. [DOI: 10.1039/c4nj00148f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
73 Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 2013;9:9243-57. [PMID: 23958782 DOI: 10.1016/j.actbio.2013.08.016] [Cited by in Crossref: 860] [Cited by in F6Publishing: 742] [Article Influence: 86.0] [Reference Citation Analysis]
74 Majumder A, Khazaee M, Opitz J, Beyer E, Baraban L, Cuniberti G. Bio-functionalization of multi-walled carbon nanotubes. Phys Chem Chem Phys 2013;15:17158-64. [PMID: 24013382 DOI: 10.1039/c3cp51844b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]