BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alconcel SNS, Baas AS, Maynard HD. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym Chem 2011;2:1442. [DOI: 10.1039/c1py00034a] [Cited by in Crossref: 482] [Cited by in F6Publishing: 486] [Article Influence: 40.2] [Reference Citation Analysis]
Number Citing Articles
1 Shen A, Zhang L, Xie Y, Zhu X, Hu J, Liu S. Engineering discrete synthetic macromolecules for biomedical applications. Nano Today 2023;48:101728. [DOI: 10.1016/j.nantod.2022.101728] [Reference Citation Analysis]
2 Lin YC, Chen BM, Tran TTM, Chang TC, Al-Qaisi TS, Roffler SR. Accelerated clearance by antibodies against methoxy PEG depends on pegylation architecture. J Control Release 2023;354:354-67. [PMID: 36641121 DOI: 10.1016/j.jconrel.2023.01.021] [Reference Citation Analysis]
3 Iyengar AS, Dobariya P, Pande AH. Paraoxonase 1 as a potential prophylactic against nerve agent poisoning. Sensing of Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological Aspects 2023. [DOI: 10.1016/b978-0-323-90553-4.00006-8] [Reference Citation Analysis]
4 Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023;12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Reference Citation Analysis]
5 Wang W, Jiang Y, Huang Z, Nguyen HV, Liu B, Hartweg M, Shirakura M, Qin KP, Johnson JA. Discrete, Chiral Polymer-Insulin Conjugates. J Am Chem Soc 2022;144:23332-9. [PMID: 36126328 DOI: 10.1021/jacs.2c07382] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Paccione N, Rahmani M, Barcia E, Negro S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2022;15. [PMID: 36678642 DOI: 10.3390/pharmaceutics15010013] [Reference Citation Analysis]
7 Melodia D, Di Pietro Z, Cao C, Stenzel MH, Chapman R. Traceless pH-Sensitive Antibody Conjugation Inspired by Citraconic Anhydride. Biomacromolecules 2022;23:5322-9. [PMID: 36395470 DOI: 10.1021/acs.biomac.2c01125] [Reference Citation Analysis]
8 Zandi M, Hosseini F, Adli AH, Salmanzadeh S, Behboudi E, Halvaei P, Khosravi A, Abbasi S. State-of-the-art cerium nanoparticles as promising agents against human viral infections. Biomedicine & Pharmacotherapy 2022;156:113868. [DOI: 10.1016/j.biopha.2022.113868] [Reference Citation Analysis]
9 Zhang S, Li W, Luan J, Srivastava A, Carnevale V, Klein ML, Sun J, Wang D, Teora SP, Rijpkema SJ, Meeldijk JD, Wilson DA. Adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) host for programmable surface functionalization. Nat Chem 2022. [DOI: 10.1038/s41557-022-01090-0] [Reference Citation Analysis]
10 Messina KMM, Woys AM. Random Heteropolymer Excipients Improve the Colloidal Stability of a Monoclonal Antibody for Subcutaneous Administration. Pharm Res 2022. [DOI: 10.1007/s11095-022-03436-2] [Reference Citation Analysis]
11 Meziadi A, Zuberi N, de Haan HW, Gauthier MA. Overcoming PEG─Protein Mutual Repulsion to Improve the Efficiency of PEGylation. Biomacromolecules 2022. [DOI: 10.1021/acs.biomac.2c01192] [Reference Citation Analysis]
12 Kafili G, Tamjid E, Niknejad H, Simchi A. Development of injectable hydrogels based on human amniotic membrane and polyethyleneglycol-modified nanosilicates for tissue engineering applications. European Polymer Journal 2022;179:111566. [DOI: 10.1016/j.eurpolymj.2022.111566] [Reference Citation Analysis]
13 Ibrahim M, Ramadan E, Elsadek NE, Emam SE, Shimizu T, Ando H, Ishima Y, Elgarhy OH, Sarhan HA, Hussein AK, Ishida T. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J Control Release 2022;351:215-30. [PMID: 36165835 DOI: 10.1016/j.jconrel.2022.09.031] [Reference Citation Analysis]
14 Farjadian F, Ghasemi S, Akbarian M, Hoseini-ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022;10:952675. [DOI: 10.3389/fchem.2022.952675] [Reference Citation Analysis]
15 Kaupbayeva B, Murata H, Rule GS, Matyjaszewski K, Russell AJ. Rational Control of Protein-Protein Interactions with Protein-ATRP-Generated Protease-Sensitive Polymer Cages. Biomacromolecules 2022. [PMID: 35984406 DOI: 10.1021/acs.biomac.2c00679] [Reference Citation Analysis]
16 Abdulmalek S, Mostafa N, Gomaa M, El‑kersh M, Elkady AI, Balbaa M. Bee venom-loaded EGFR-targeting peptide-coupled chitosan nanoparticles for effective therapy of hepatocellular carcinoma by inhibiting EGFR-mediated MEK/ERK pathway. PLoS ONE 2022;17:e0272776. [DOI: 10.1371/journal.pone.0272776] [Reference Citation Analysis]
17 Kanamaru T, Sakurai K, Fujii S. Impact of Polyethylene Glycol (PEG) Conformations on the In Vivo Fate and Drug Release Behavior of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules 2022. [PMID: 35943243 DOI: 10.1021/acs.biomac.2c00730] [Reference Citation Analysis]
18 Montgomery HR, Messina MS, Doud EA, Spokoyny AM, Maynard HD. Organometallic S-arylation Reagents for Rapid PEGylation of Biomolecules. Bioconjug Chem 2022. [PMID: 35939764 DOI: 10.1021/acs.bioconjchem.2c00280] [Reference Citation Analysis]
19 Marco-Dufort B, Janczy JR, Hu T, Lütolf M, Gatti F, Wolf M, Woods A, Tetter S, Sridhar BV, Tibbitt MW. Thermal stabilization of diverse biologics using reversible hydrogels. Sci Adv 2022;8:eabo0502. [PMID: 35930644 DOI: 10.1126/sciadv.abo0502] [Reference Citation Analysis]
20 Nguyen MT, Shih YC, Lin MH, Roffler SR, Hsiao CY, Cheng TL, Lin WW, Lin EC, Jong YJ, Chang CY, Su YC. Structural determination of an antibody that specifically recognizes polyethylene glycol with a terminal methoxy group. Commun Chem 2022;5:88. [PMID: 36697876 DOI: 10.1038/s42004-022-00709-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coordination Chemistry Reviews 2022;464:214559. [DOI: 10.1016/j.ccr.2022.214559] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Hassan EA, Hathout RM, Gad HA, Sammour OA. Multi-purpose zein nanoparticles for battling hepatocellular carcinoma: A Green approach. European Polymer Journal 2022;176:111396. [DOI: 10.1016/j.eurpolymj.2022.111396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
23 Zhao B, Chen S, Hong Y, Jia L, Zhou Y, He X, Wang Y, Tian Z, Yang Z, Gao D. Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics 2022;14:1522. [DOI: 10.3390/pharmaceutics14071522] [Reference Citation Analysis]
24 Vinciguerra D, Gelb MB, Maynard HD. Synthesis and Application of Trehalose Materials. JACS Au 2022;2:1561-87. [PMID: 35911465 DOI: 10.1021/jacsau.2c00309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Hung K, Kowalczyk R, Desai A, Brimble MA, Marshall JF, Harris PWR. Synthesis and Systematic Study on the Effect of Different PEG Units on Stability of PEGylated, Integrin-αvβ6-Specific A20FMDV2 Analogues in Rat Serum and Human Plasma. Molecules 2022;27:4331. [DOI: 10.3390/molecules27144331] [Reference Citation Analysis]
26 Murakami T, Hoshi S, Okamoto F, Sakai T, Katashima T, Naito M, Oshika T. Analysis of the sustained release ability of bevacizumab-loaded tetra-PEG gel. Experimental Eye Research 2022. [DOI: 10.1016/j.exer.2022.109206] [Reference Citation Analysis]
27 Danışman-kalındemirtaş F, Birman H, Karakuş S, Kilislioğlu A, Erdem-kuruca S. Preparation and biological evaluation of novel 5-Fluorouracil and Carmofur loaded polyethylene glycol / rosin ester nanocarriers as potential anticancer agents and ceramidase inhibitors. Journal of Drug Delivery Science and Technology 2022;73:103456. [DOI: 10.1016/j.jddst.2022.103456] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ko JH, Forsythe NL, Gelb MB, Messina KMM, Lau UY, Bhattacharya A, Olafsen T, Lee JT, Kelly KA, Maynard HD. Safety and Biodistribution Profile of Poly(styrenyl acetal trehalose) and Its Granulocyte Colony Stimulating Factor Conjugate. Biomacromolecules 2022. [PMID: 35767465 DOI: 10.1021/acs.biomac.2c00511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Yang H, Li Y, Lin R, Ouyang Z, Han M, Zhu L, Chen S, Zhou X, Jiang ZX. Synthesis of symmetrical secondary oligoethylene glycolated amines from diethanolamine. Org Biomol Chem 2022;20:5129-38. [PMID: 35704908 DOI: 10.1039/d2ob00605g] [Reference Citation Analysis]
30 Pareek S, Flegle AS, Boagni D, Kim JY, Yoo D, Trujillo-Ocampo A, Lee SE, Zhang M, Jon S, Im JS. Post Transplantation Bilirubin Nanoparticles Ameliorate Murine Graft Versus Host Disease via a Reduction of Systemic and Local Inflammation. Front Immunol 2022;13:893659. [PMID: 35720391 DOI: 10.3389/fimmu.2022.893659] [Reference Citation Analysis]
31 Penaloza Arias LC, Huynh DN, Babity S, Marleau S, Brambilla D. Optimization of a Liposomal DNase I Formulation with an Extended Circulating Half-Life. Mol Pharm 2022. [PMID: 35543327 DOI: 10.1021/acs.molpharmaceut.2c00086] [Reference Citation Analysis]
32 Chen G, Butani N, Ghosh R. Fast and high-resolution fractionation of positional isomers of a PEGylated protein using membrane chromatography. Journal of Chromatography B 2022. [DOI: 10.1016/j.jchromb.2022.123292] [Reference Citation Analysis]
33 Beudert M, Hahn L, Horn AHC, Hauptstein N, Sticht H, Meinel L, Luxenhofer R, Gutmann M, Lühmann T. Merging bioresponsive release of insulin-like growth factor I with 3D printable thermogelling hydrogels. J Control Release 2022:S0168-3659(22)00224-3. [PMID: 35489547 DOI: 10.1016/j.jconrel.2022.04.028] [Reference Citation Analysis]
34 Kong YW, Dreaden EC. PEG: Will It Come Back to You? Polyethelyne Glycol Immunogenicity, COVID Vaccines, and the Case for New PEG Derivatives and Alternatives. Front Bioeng Biotechnol 2022;10:879988. [DOI: 10.3389/fbioe.2022.879988] [Reference Citation Analysis]
35 Guastaferro M, Baldino L, Cardea S, Reverchon E. Supercritical processing of PCL and PCL-PEG blends to produce improved PCL-based porous scaffolds. The Journal of Supercritical Fluids 2022. [DOI: 10.1016/j.supflu.2022.105611] [Reference Citation Analysis]
36 Nainwal N, Chirmade T, Gani K, Rana S, Bhambure R. Understanding unfolding and refolding of the antibody fragments (Fab). II. Mapping intra and inter-chain disulfide bonds using mass spectrometry. Biochemical Engineering Journal 2022. [DOI: 10.1016/j.bej.2022.108439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Ferreira Dantas GDP, Nascimento Martins EMD, Gomides LS, Chequer FMD, Burbano RR, Furtado CA, Santos AP, Tagliati CA. Pyrene-polyethylene glycol-modified multi-walled carbon nanotubes: Genotoxicity in V79-4 fibroblast cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2022;876-877:503463. [DOI: 10.1016/j.mrgentox.2022.503463] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Mohammadi Z, Alijanianzadeh M, Khalilzadeh R, Khodadadi S. Process Development for the Production and Purification of PEGylated RhG-CSF Expressed in Escherichia coli. PPL 2022;29:293-305. [DOI: 10.2174/0929866529666220126100559] [Reference Citation Analysis]
39 Zhang C, Lu H. Helical Nonfouling Polypeptides for Biomedical Applications. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2688-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Lu H, Cai J, Fang Y, Ren M, Tan X, Jia F, Wang D, Zhang K. Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide Macromonomer Approach. Macromolecules. [DOI: 10.1021/acs.macromol.1c02624] [Reference Citation Analysis]
41 Mohapatra P, Singh D, Sahoo SK. PEGylated Nanoparticles as a Versatile Drug Delivery System. Nanoengineering of Biomaterials 2022. [DOI: 10.1002/9783527832095.ch10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 De La Torre AL, Smith C, Granger J, Anderson FL, Harned TC, Havrda MC, Chang CCY, Chang TY. Facile method to incorporate high-affinity ACAT/SOAT1 inhibitor F12511 into stealth liposome-based nanoparticle and demonstration of its efficacy in blocking cholesteryl ester biosynthesis without overt toxicity in neuronal cell culture. J Neurosci Methods 2022;367:109437. [PMID: 34890698 DOI: 10.1016/j.jneumeth.2021.109437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Clarke BR, Tew GN. Synthesis and characterization of poly(ethylene glycol) bottlebrush networks via ring‐opening metathesis polymerization. Journal of Polymer Science. [DOI: 10.1002/pol.20210865] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS Appl Bio Mater 2022. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
45 Gao T, Liu Y, Lou C, Wang H, Liu Y, Cao A. PEGylation of Goldbody: PEG-aided conformational engineering of peptides on gold nanoparticles. RSC Adv 2022;12:26123-33. [DOI: 10.1039/d2ra03903f] [Reference Citation Analysis]
46 Ramalingam P, Prabakaran DS, Sivalingam K, Nallal VUM, Razia M, Patel M, Kanekar T, Krishnamoorthy D. Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-030-80371-1_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Abdul Samat A, Yahaya BH. Biomaterials in Organoid Development. Organoid Technology for Disease Modelling and Personalized Treatment 2022. [DOI: 10.1007/978-3-030-93056-1_8] [Reference Citation Analysis]
48 Brown LR. Biomaterials in Their Role in Creating New Approaches for the Delivery of Drugs, Proteins, Nucleic Acids, and Mammalian Cells in Safety Pharmacology. Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays 2022. [DOI: 10.1007/978-3-030-73317-9_25-1] [Reference Citation Analysis]
49 Habib S, Singh M. Nucleic Acid and Drug Dual Agent Nanoplatforms for Breast Cancer. Interdisciplinary Cancer Research 2022. [DOI: 10.1007/16833_2022_2] [Reference Citation Analysis]
50 Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021;10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
51 Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021;10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
52 Abdellatif AAH, Alsowinea AF. Approved and marketed nanoparticles for disease targeting and applications in COVID-19. Nanotechnology Reviews 2021;10:1941-77. [DOI: 10.1515/ntrev-2021-0115] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
53 Cheng S, Zhao R, Seferos DS. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology. Acc Chem Res 2021;54:4203-14. [PMID: 34726058 DOI: 10.1021/acs.accounts.1c00556] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 Hauptstein N, Pouyan P, Kehrein J, Dirauf M, Driessen MD, Raschig M, Licha K, Gottschaldt M, Schubert US, Haag R, Meinel L, Sotriffer C, Lühmann T. Molecular Insights into Site-Specific Interferon-α2a Bioconjugates Originated from PEG, LPG, and PEtOx. Biomacromolecules 2021;22:4521-34. [PMID: 34643378 DOI: 10.1021/acs.biomac.1c00775] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
55 Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. Adv Mater 2021;33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
56 Wang Z, Yang W, Qin Y, Liang W, Yu H, Liu L. Digital micro-mirror device -based light curing technology and its biological applications. Optics & Laser Technology 2021;143:107344. [DOI: 10.1016/j.optlastec.2021.107344] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
57 Tully M, Hauptstein N, Licha K, Meinel L, Lühmann T, Haag R. Linear Polyglycerol for N-terminal-selective Modification of Interleukin-4. J Pharm Sci 2021:S0022-3549(21)00595-5. [PMID: 34728175 DOI: 10.1016/j.xphs.2021.10.032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
58 Pribyl J, Benicewicz BC. Surface and Particle Modification via RAFT Polymerization: An Update. In: Moad G, Rizzardo E, editors. RAFT Polymerization. Wiley; 2021. pp. 1017-49. [DOI: 10.1002/9783527821358.ch22] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
59 Singh R, Gupta S, Kumar P. The Role of Nanotechnology in Antiviral Regime: An Overview. Nano LIFE 2022;12:2130011. [DOI: 10.1142/s1793984421300119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Xu X, Chen R, Li Y, Yu D, Chen J, Wyman I, Xiao C, Peng S, Chen Y, Hu X, Wu X. A Surface-Confined Gradient Conductive Network Strategy for Transparent Strain Sensors toward Full-Range Monitoring. ACS Appl Mater Interfaces 2021;13:43806-19. [PMID: 34478269 DOI: 10.1021/acsami.1c14875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Uricoli B, Birnbaum LA, Do P, Kelvin JM, Jain J, Costanza E, Chyong A, Porter CC, Rafiq S, Dreaden EC. Engineered Cytokines for Cancer and Autoimmune Disease Immunotherapy. Adv Healthc Mater 2021;10:e2002214. [PMID: 33690997 DOI: 10.1002/adhm.202002214] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
62 Rao C, Patel SK, Prasad A, Garg N, Nandi CK. Effect of Protein Corona on the Drug Delivery of Carbogenic Nanodots and Their Mapping by Fluorescence Lifetime Imaging Microscopy. ACS Appl Bio Mater 2021;4:5776-5785. [DOI: 10.1021/acsabm.1c00526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Mao T, Zhu C, Tao L. Multifunctional Polymer–Protein Conjugates Generated by Multicomponent Reactions†. Chin J Chem 2021;39:2287-95. [DOI: 10.1002/cjoc.202100153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
64 Chen G, Pagano J, Yu D, Ghose S, Li Z, Ghosh R. Fast and high-resolution purification of a PEGylated protein using a z2 laterally-fed membrane chromatography device. J Chromatogr A 2021;1652:462375. [PMID: 34256267 DOI: 10.1016/j.chroma.2021.462375] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Ali RF, Guo I, Kang H, Radford MJ, Yapp DT, Gates BD. Tuning the Surface Chemistry of Second-Harmonic-Active Lithium Niobate Nanoprobes Using a Silanol-Alcohol Condensation Reaction. Langmuir 2021;37:7689-700. [PMID: 34128677 DOI: 10.1021/acs.langmuir.1c00645] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Brunzel M, Dirauf M, Sahn M, Czaplewska JA, Fritz N, Weber C, Nischang I, Schubert US. On the identification and quantification of proton-initiated species in the synthesis of poly(2-alkyl-2-oxazoline)s by high resolution liquid chromatography. J Chromatogr A 2021;1653:462364. [PMID: 34280792 DOI: 10.1016/j.chroma.2021.462364] [Reference Citation Analysis]
67 Bhandari PJ, Reddy MM, Rao KJ, Sandanaraj BS. Rapid Chemical Synthesis of Self-Assembling Semi-Synthetic Proteins. J Org Chem 2021;86:8576-89. [DOI: 10.1021/acs.joc.1c00195] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
68 Cheng S, Ye S, Apte CN, Yudin AK, Seferos DS. Improving the Kumada Catalyst Transfer Polymerization with Water-Scavenging Grignard Reagents. ACS Macro Lett 2021;10:697-701. [PMID: 35549106 DOI: 10.1021/acsmacrolett.1c00233] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
69 Walther R, Monge P, Pedersen AB, Benderoth A, Pedersen JN, Farzadfard A, Mandrup OA, Howard KA, Otzen DE, Zelikin AN. Per-glycosylation of the Surface-Accessible Lysines: One-Pot Aqueous Route to Stabilized Proteins with Native Activity. Chembiochem 2021;22:2478-85. [PMID: 33998129 DOI: 10.1002/cbic.202100228] [Reference Citation Analysis]
70 Mukherjee S, Bollu VS, Roy A, Nethi SK, Madhusudana K, Kumar JM, Sistla R, Patra CR. Acute Toxicity, Biodistribution, and Pharmacokinetics Studies of Pegylated Platinum Nanoparticles in Mouse Model. Adv NanoBio Res 2021;1:2000082. [DOI: 10.1002/anbr.202000082] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
71 Marková P, Uchman M. Synthesis and self-assembly of polyzwitterionic phenylboronic acid-containing double hydrophilic block copolymers. European Polymer Journal 2021;151:110439. [DOI: 10.1016/j.eurpolymj.2021.110439] [Reference Citation Analysis]
72 Wang L, Sun Y. Engineering organophosphate hydrolase for enhanced biocatalytic performance: A review. Biochemical Engineering Journal 2021;168:107945. [DOI: 10.1016/j.bej.2021.107945] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
73 Ma C, Li B, Zhang J, Sun Y, Li J, Zhou H, Shen J, Gu R, Qian J, Fan C, Zhang H, Liu K. Significantly Improving the Bioefficacy for Rheumatoid Arthritis with Supramolecular Nanoformulations. Adv Mater 2021;33:e2100098. [PMID: 33733490 DOI: 10.1002/adma.202100098] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
74 Guo LL, Cheng YF, Ren X, Gopinath K, Lu ZS, Li CM, Xu LQ. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on Titanium surface. Colloids and Surfaces B: Biointerfaces 2021;200:111592. [DOI: 10.1016/j.colsurfb.2021.111592] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
75 Kaupbayeva B, Boye S, Munasinghe A, Murata H, Matyjaszewski K, Lederer A, Colina CM, Russell AJ. Molecular Dynamics-Guided Design of a Functional Protein-ATRP Conjugate That Eliminates Protein-Protein Interactions. Bioconjug Chem 2021;32:821-32. [PMID: 33784809 DOI: 10.1021/acs.bioconjchem.1c00098] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
76 Shi J, Hu J, Yuan Y, Zhang B, Guo W, Wu Y, Jiang L. Genetic Fusion of Transacting Activator of Transcription Peptide to Cyclized Green Fluorescence Protein Improves Stability, Intracellular Delivery, and Tumor Retention. ACS Omega 2021;6:7931-40. [PMID: 33778304 DOI: 10.1021/acsomega.1c00532] [Reference Citation Analysis]
77 Zheng Y, Pokorski JK. Hot melt extrusion: An emerging manufacturing method for slow and sustained protein delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1712. [PMID: 33691347 DOI: 10.1002/wnan.1712] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
78 Monge P, Søgaard AB, Andersen DG, Chandrawati R, Zelikin AN. Synthetic chemical ligands and cognate antibodies for biorthogonal drug targeting and cell engineering. Adv Drug Deliv Rev 2021;170:281-93. [PMID: 33486005 DOI: 10.1016/j.addr.2021.01.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
79 Yu C, Zhao M, Pan Z, Bo Y, Zhao W, He X, Zhang J. Butyrylcholinesterase nanodepots with enhanced prophylactic and therapeutic performance for acute organophosphorus poisoning management. J Mater Chem B 2021;9:1877-87. [PMID: 33533366 DOI: 10.1039/d0tb02478c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021;50:2839-91. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Cited by in Crossref: 118] [Cited by in F6Publishing: 132] [Article Influence: 59.0] [Reference Citation Analysis]
81 Ibrahim MA, Saleh TA. Synthesis of efficient stable dendrimer-modified carbon for cleaner drilling shale inhibition. Journal of Environmental Chemical Engineering 2021;9:104792. [DOI: 10.1016/j.jece.2020.104792] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
82 Zhang F, Niu Y, Li Y, Yao Q, Chen X, Zhou H, Zhou M, Xiao J. Fabrication and characterization of structurally stable pH-responsive polymeric vesicles by polymerization-induced self-assembly. RSC Adv 2021;11:29042-29051. [DOI: 10.1039/d1ra05555k] [Reference Citation Analysis]
83 Theodorou A, Mandriotis P, Anastasaki A, Velonia K. Oxygen tolerant, photoinduced controlled radical polymerization approach for the synthesis of giant amphiphiles. Polym Chem 2021;12:2228-35. [DOI: 10.1039/d0py01608j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
84 Abid MA, Rizwan M, Azeem MK. Recent advancement and developments in biomaterial-based nanomedicines, imaging, and cures. Nanomedicine Manufacturing and Applications 2021. [DOI: 10.1016/b978-0-12-820773-4.00013-5] [Reference Citation Analysis]
85 Klemm P, Huschke S, Rodewald M, Ehteshamzad N, Behnke M, Wang X, Cinar G, Nischang I, Hoeppener S, Weber C, Press AT, Höppener C, Meyer T, Deckert V, Schmitt M, Popp J, Bauer M, Schubert S. Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polym Chem 2021;12:911-25. [DOI: 10.1039/d0py01626h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
86 Sardella E, Gristina R, Fanelli F, Veronico V, Da Ponte G, Kroth J, Fracassi F, Favia P. How to Confer a Permanent Bio-Repelling and Bio-Adhesive Character to Biomedical Materials through Cold Plasmas. Applied Sciences 2020;10:9101. [DOI: 10.3390/app10249101] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
87 Nutan B, Kumar A, Jewrajka SK. Library of Derivatizable Multiblock Copolymers by Nucleophilic Substitution Polymerization and Targeting Specific Properties. Biomacromolecules 2020;21:5029-43. [PMID: 33211470 DOI: 10.1021/acs.biomac.0c01195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
88 Kumar S, Singh D, Kumari P, Malik RS, Poonam, Parang K, Tiwari RK. PEGylation and Cell-Penetrating Peptides: Glimpse into the Past and Prospects in the Future. Curr Top Med Chem 2020;20:337-48. [PMID: 31994461 DOI: 10.2174/1568026620666200128142603] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
89 Burridge KM, Page RC, Konkolewicz D. Bioconjugates – From a specialized past to a diverse future. Polymer 2020;211:123062. [DOI: 10.1016/j.polymer.2020.123062] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
90 Lin Q, Lim JYC, Xue K, Su X, Loh XJ. Polymeric hydrogels as a vitreous replacement strategy in the eye. Biomaterials 2021;268:120547. [PMID: 33307366 DOI: 10.1016/j.biomaterials.2020.120547] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
91 Shi S, Yao C, Cen J, Li L, Liu G, Hu J, Liu S. High-Fidelity End-Functionalization of Poly(ethylene glycol) Using Stable and Potent Carbamate Linkages. Angew Chem Int Ed Engl 2020;59:18172-8. [PMID: 32643249 DOI: 10.1002/anie.202006687] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
92 Thakor P, Bhavana V, Sharma R, Srivastava S, Singh SB, Mehra NK. Polymer–drug conjugates: recent advances and future perspectives. Drug Discovery Today 2020;25:1718-26. [DOI: 10.1016/j.drudis.2020.06.028] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
93 Shi S, Yao C, Cen J, Li L, Liu G, Hu J, Liu S. High‐Fidelity End‐Functionalization of Poly(ethylene glycol) Using Stable and Potent Carbamate Linkages. Angew Chem 2020;132:18329-35. [DOI: 10.1002/ange.202006687] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
94 Vazquez-munoz R, Lopez-ribot JL. Nanotechnology as an Alternative to Reduce the Spread of COVID-19. Challenges 2020;11:15. [DOI: 10.3390/challe11020015] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
95 Ilochonwu BC, Urtti A, Hennink WE, Vermonden T. Intravitreal hydrogels for sustained release of therapeutic proteins. J Control Release 2020;326:419-41. [PMID: 32717302 DOI: 10.1016/j.jconrel.2020.07.031] [Cited by in Crossref: 32] [Cited by in F6Publishing: 39] [Article Influence: 10.7] [Reference Citation Analysis]
96 Nguyen LTB, Hsu CC, Ye H, Cui Z. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration. Biomed Mater 2020;15:055005. [PMID: 32324167 DOI: 10.1088/1748-605X/ab8c43] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
97 Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020;9:1534-62. [PMID: 32526139 DOI: 10.1021/acssynbio.0c00210] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
98 Seaberg J, Flynn N, Cai A, Ramsey JD. Effect of redox‐responsive DTSSP crosslinking on poly( l ‐lysine)‐grafted‐poly(ethylene glycol) nanoparticles for delivery of proteins. Biotechnology and Bioengineering 2020;117:2504-15. [DOI: 10.1002/bit.27369] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
99 Subedi D, Ashley AK, Chavez MV, Smirnov SN. Mixed Silane Monolayers Reveal the Disparity of Biotin and Folate in Targeting Cancer Cells. ACS Appl Nano Mater 2020;3:5372-80. [DOI: 10.1021/acsanm.0c00731] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
100 Zhang Q, Zhang Y, Li X. Ortho-Phthalaldehyde (OPA)-based chemoselective protein bioconjugation and peptide cyclization. Methods Enzymol 2020;639:237-61. [PMID: 32475404 DOI: 10.1016/bs.mie.2020.04.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
101 Sanoj Rejinold N, Choi G, Choy J. Recent trends in nano photo-chemo therapy approaches and future scopes. Coordination Chemistry Reviews 2020;411:213252. [DOI: 10.1016/j.ccr.2020.213252] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
102 Rheinberger T, Wolf T, Wurm FR. Nonionic surfactants based on amphiphilic polyphosphonate copolymers prepared via anionic ring-opening copolymerization. European Polymer Journal 2020;131:109700. [DOI: 10.1016/j.eurpolymj.2020.109700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
103 Kumar S, Hause G, Binder WH. Thio-Bromo "Click" Reaction Derived Polymer-Peptide Conjugates for Their Self-Assembled Fibrillar Nanostructures. Macromol Biosci 2020;20:e2000048. [PMID: 32285651 DOI: 10.1002/mabi.202000048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
104 Chariou PL, Ortega-Rivera OA, Steinmetz NF. Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano 2020;14:2678-701. [PMID: 32125825 DOI: 10.1021/acsnano.0c00173] [Cited by in Crossref: 73] [Cited by in F6Publishing: 75] [Article Influence: 24.3] [Reference Citation Analysis]
105 Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1630. [PMID: 32202079 DOI: 10.1002/wnan.1630] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
106 Cai Q, Li X, Zhu W. High Molecular Weight Biodegradable Poly(ethylene glycol) via Carboxyl-Ester Transesterification. Macromolecules 2020;53:2177-86. [DOI: 10.1021/acs.macromol.9b02177] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
107 Bisso S, Leroux J. Nanopharmaceuticals: A focus on their clinical translatability. International Journal of Pharmaceutics 2020;578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
108 Mushtaq I, Mushtaq I, Akhter Z, Murtaza I, Qamar S, Ayub S, Mirza B, Butt TM, Janjua NK, Shah FU, Zaman F. Engineering electroactive and biocompatible tetra(aniline)-based terpolymers with tunable intrinsic antioxidant properties in vivo. Materials Science and Engineering: C 2020;108:110456. [DOI: 10.1016/j.msec.2019.110456] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
109 Perdue LA, Do P, David C, Chyong A, Kellner A, Ruggieri A, Kim HR, Salaita K, Lesinski GB, Porter CC, Dreaden EC. Optical Control of Cytokine Signaling via Bioinspired, Polymer-Induced Latency.. [DOI: 10.1101/2020.02.13.948240] [Reference Citation Analysis]
110 Kaupbayeva B, Russell AJ. Polymer-enhanced biomacromolecules. Progress in Polymer Science 2020;101:101194. [DOI: 10.1016/j.progpolymsci.2019.101194] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
111 Alksne M, Kalvaityte M, Simoliunas E, Rinkunaite I, Gendviliene I, Locs J, Rutkunas V, Bukelskiene V. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater 2020;104:103641. [PMID: 32174399 DOI: 10.1016/j.jmbbm.2020.103641] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 10.7] [Reference Citation Analysis]
112 Mahmood N, Nasir SB, Hefferon K. Conjugated Recombinant Proteins as Emerging New Drugs. Bioeconomy for Sustainable Development 2020. [DOI: 10.1007/978-981-13-9431-7_18] [Reference Citation Analysis]
113 Böker A. Biopolymers – Function Carriers in Materials Research. Biological Transformation 2020. [DOI: 10.1007/978-3-662-59659-3_8] [Reference Citation Analysis]
114 Nairn NW, Grabstein K, Shanebeck KD, Li G, Wang A. Site-specific PEGylation of interferon beta-1b. Polymer-Protein Conjugates 2020. [DOI: 10.1016/b978-0-444-64081-9.00015-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
115 de Vries R, Stell A, Mohammed S, Hermanns C, Martinez AH, Jetten M, van Apeldoorn A. Bioengineering, biomaterials, and β-cell replacement therapy. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas 2020. [DOI: 10.1016/b978-0-12-814831-0.00033-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
116 Alhallak K, Sun J, Muz B, Azab AK. Biomaterials for cancer immunotherapy. Biomaterials for Cancer Therapeutics 2020. [DOI: 10.1016/b978-0-08-102983-1.00018-1] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
117 Guo X, Chan L, Chen T. Biodegradable and Functional Synthetic Polymers in Nanomedicine: Controlled and Targeted Bioactive Molecule Release. Reactive and Functional Polymers Volume One 2020. [DOI: 10.1007/978-3-030-43403-8_2] [Reference Citation Analysis]
118 Steiert E, Ewald J, Wagner A, Hellmich UA, Frey H, Wich PR. pH-Responsive protein nanoparticles via conjugation of degradable PEG to the surface of cytochrome c. Polym Chem 2020;11:551-9. [DOI: 10.1039/c9py01162e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
119 Nielsen T, Märcher A, Drobňáková Z, Hučko M, Štengl M, Balšánek V, Wiberg C, Nielsen PF, Nielsen TE, Gothelf KV, Cló E. Disulphide-mediated site-directed modification of proteins. Org Biomol Chem 2020;18:4717-22. [DOI: 10.1039/d0ob00861c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
120 Haseeb Q, Hamdani SDA, Akram A, Khan DA, Rajput TA, Babar MM. Nanobiotechnology: Paving the Way to Personalized Medicine. NanoBioMedicine 2020. [DOI: 10.1007/978-981-32-9898-9_2] [Reference Citation Analysis]
121 Chen X, Yang D. Functional zwitterionic biomaterials for administration of insulin. Biomater Sci 2020;8:4906-19. [DOI: 10.1039/d0bm00986e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
122 Munasinghe A, Baker SL, Lin P, Russell AJ, Colina CM. Structure–function–dynamics of α-chymotrypsin based conjugates as a function of polymer charge. Soft Matter 2020;16:456-65. [DOI: 10.1039/c9sm01842e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
123 Miura Y. Controlled polymerization for the development of bioconjugate polymers and materials. J Mater Chem B 2020;8:2010-9. [DOI: 10.1039/c9tb02418b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
124 Brandenburg G, Poppenborg S, Radcke C, Wittmann J, Krähmer R, Pasut G, Leenders F. Challenges in the analytical characterization of PEGylated asparaginase. Polymer-Protein Conjugates 2020. [DOI: 10.1016/b978-0-444-64081-9.00010-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
125 Rasines Mazo A, Tran TN, Zhang W, Meng Y, Reyhani A, Pascual S, Fontaine L, Qiao GG, Piogé S. Blue LED light-activated RAFT polymerization of PEG acrylate with high chain-end fidelity for efficient PEGylation. Polym Chem 2020;11:5238-48. [DOI: 10.1039/d0py00838a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
126 Tram Nguyen TN, Nguyen-tran D, Bach LG, Du Truong TH, Trang Le NT, Nguyen DH. Surface PEGylation of hollow mesoporous silica nanoparticles via aminated intermediate. Progress in Natural Science: Materials International 2019;29:612-6. [DOI: 10.1016/j.pnsc.2019.10.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
127 Qian Q, Zhu L, Zhu X, Sun M, Yan D. Drug-Polymer Hybrid Macromolecular Engineering: Degradable PEG Integrated by Platinum(IV) for Cancer Therapy. Matter 2019;1:1618-30. [DOI: 10.1016/j.matt.2019.09.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
128 Koh LB, Zuo K, Kumar GP, Ding X, Leo HL, Cui F, Charles CJ, Yang YY, Yim EKF, Ho P. Optimization of a Novel Preferential Covered Stent through Bench Experiments and in Vitro Platelet Activation Studies. ACS Biomater Sci Eng 2019;5:6216-30. [PMID: 33405529 DOI: 10.1021/acsbiomaterials.9b00763] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
129 Malafronte A, Auriemma F, Santillo C, Di Girolamo R, Barker R, Gerelli Y, De Rosa C. Block Copolymers‐Based Nanoporous Thin Films with Tailored Morphology for Biomolecules Adsorption. Adv Mater Interfaces 2020;7:1901580. [DOI: 10.1002/admi.201901580] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
130 Sasaki Y, Tsuchido Y, Yoshimura T, Akiyoshi K. Nanogelation and Thermal Stabilization of Enzyme by Vitamin B6-Bearing Polysaccharide as Biocrosslinker. ACS Biomater Sci Eng 2019;5:5752-8. [PMID: 33405708 DOI: 10.1021/acsbiomaterials.9b00026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
131 Shahzadi SK, Qadir MA, Mahmood N, Ahmed M. Pegylation and Cell Based Bioassay of Human Interferon-α2b Along its Docking Studies and Effect on Plasma Half-Life. Protein Pept Lett 2020;27:219-24. [PMID: 31612813 DOI: 10.2174/0929866526666191014124026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
132 Ng WL, Chua CK, Shen Y. Print Me An Organ! Why We Are Not There Yet. Progress in Polymer Science 2019;97:101145. [DOI: 10.1016/j.progpolymsci.2019.101145] [Cited by in Crossref: 129] [Cited by in F6Publishing: 79] [Article Influence: 32.3] [Reference Citation Analysis]
133 Gong Y, Soleymani Abyaneh H, Drossis N, Niederquell A, Kuentz M, Leroux JC, de Haan HW, Gauthier MA. Ultra-sub-stoichiometric "Dynamic" Bioconjugation Reduces Viscosity by Disrupting Immunoglobulin Oligomerization. Biomacromolecules 2019;20:3557-65. [PMID: 31398010 DOI: 10.1021/acs.biomac.9b00867] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
134 Koirala N, Das D, Fayazzadeh E, Sen S, McClain A, Puskas JE, Drazba JA, McLennan G. Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma. J Biomed Mater Res A 2019;107:2522-35. [PMID: 31334591 DOI: 10.1002/jbm.a.36758] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
135 Wang S, Li J, Ye Z, Li J, Wang A, Hu J, Bai S, Yin J. Self-assembly of photosensitive and chemotherapeutic drugs for combined photodynamic-chemo cancer therapy with real-time tracing property. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;574:44-51. [DOI: 10.1016/j.colsurfa.2019.04.060] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
136 Pokorski JK, Hore MJ. Structural characterization of protein–polymer conjugates for biomedical applications with small-angle scattering. Current Opinion in Colloid & Interface Science 2019;42:157-68. [DOI: 10.1016/j.cocis.2019.08.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
137 Tao A, Huang GL, Igarashi K, Hong T, Liao S, Stellacci F, Matsumoto Y, Yamasoba T, Kataoka K, Cabral H. Polymeric Micelles Loading Proteins through Concurrent Ion Complexation and pH-Cleavable Covalent Bonding for In Vivo Delivery. Macromol Biosci 2020;20:e1900161. [PMID: 31310454 DOI: 10.1002/mabi.201900161] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
138 Khandelwal P, Zhang L, Chimalakonda A, Caceres-cortes J, Huang C, Marathe P, Reily MD. Pharmacokinetics of 40 kDa PEG in rodents using high-field NMR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 2019;171:30-4. [DOI: 10.1016/j.jpba.2019.03.066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
139 Villamil JC, Parra-giraldo CM, Pérez LD. Enhancing the performance of PEG-b-PCL copolymers as precursors of micellar vehicles for amphotericin B through its conjugation with cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;572:79-87. [DOI: 10.1016/j.colsurfa.2019.03.086] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
140 Cheng F, Yang J, Schwaneberg U, Zhu L. Rational surface engineering of an arginine deiminase (an antitumor enzyme) for increased PEGylation efficiency. Biotechnology and Bioengineering 2019;116:2156-66. [DOI: 10.1002/bit.27011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
141 Ayubi M, Karimi M, Abdpour S, Rostamizadeh K, Parsa M, Zamani M, Saedi A. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Mater Sci Eng C Mater Biol Appl 2019;104:109810. [PMID: 31499939 DOI: 10.1016/j.msec.2019.109810] [Cited by in Crossref: 62] [Cited by in F6Publishing: 66] [Article Influence: 15.5] [Reference Citation Analysis]
142 Phua SZF, Yang G, Lim WQ, Verma A, Chen H, Thanabalu T, Zhao Y. Catalase-Integrated Hyaluronic Acid as Nanocarriers for Enhanced Photodynamic Therapy in Solid Tumor. ACS Nano 2019;13:4742-51. [PMID: 30964974 DOI: 10.1021/acsnano.9b01087] [Cited by in Crossref: 203] [Cited by in F6Publishing: 222] [Article Influence: 50.8] [Reference Citation Analysis]
143 Rickman J, Tronci G, Liang H, Russell SJ. Rotation-assisted wet-spinning of UV-cured gelatin fibres and nonwovens. J Mater Sci 2019;54:10529-47. [DOI: 10.1007/s10853-019-03498-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
144 Iyengar ARS, Pande AH. Is Human Paraoxonase 1 the Saviour Against the Persistent Threat of Organophosphorus Nerve Agents? Protein Pept Lett 2019;26:471-8. [PMID: 30942142 DOI: 10.2174/0929866526666190403120259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
145 Silindir-gunay M, Karpuz M, Ozturk N, Yekta Ozer A, Erdogan S, Tuncel M. Radiolabeled, folate-conjugated liposomes as tumor imaging agents: Formulation and in vitro evaluation. Journal of Drug Delivery Science and Technology 2019;50:321-8. [DOI: 10.1016/j.jddst.2019.02.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
146 Danner A, Schöttler S, Alexandrino E, Hammer S, Landfester K, Mailänder V, Morsbach S, Frey H, Wurm FR. Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol‐Modified Nanocarriers. Macromol Biosci 2019;19:1800468. [DOI: 10.1002/mabi.201800468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
147 Sun F, Wang Z, Yang Z, Li Y, Cui H, Liu C, Gao D, Wang F, Tan H. Characterization, bioactivity and pharmacokinetic study of a novel carbohydrate-peptide polymer: Glycol-split heparin-endostatin2 (GSHP-ES2). Carbohydrate Polymers 2019;207:79-90. [DOI: 10.1016/j.carbpol.2018.11.043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
148 Dougherty A, Nasution EL, Iskandar F, Dougherty G. Facile solvothermal synthesis and functionalization of polyethylene glycol-coated paramagnetic Gd2(CO3)3 particles and corresponding Gd2O3 nanoparticles for use as MRI contrast agents. Journal of Science: Advanced Materials and Devices 2019;4:72-9. [DOI: 10.1016/j.jsamd.2018.12.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
149 Noree S, Iwasaki Y. Thermally Assisted Generation of Protein-Poly(ethylene sodium phosphate) Conjugates with High Mineral Affinity. ACS Omega 2019;4:3398-404. [PMID: 31459555 DOI: 10.1021/acsomega.8b03585] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
150 Zhang P, Jain P, Tsao C, Wu K, Jiang S. Proactively Reducing Anti‐Drug Antibodies via Immunomodulatory Bioconjugation. Angew Chem 2019;131:2455-2458. [DOI: 10.1002/ange.201814275] [Reference Citation Analysis]
151 Mittal R, Jhaveri VM, Kay SS, Greer A, Sutherland KJ, Mcmurry HS, Lin N, Mittal J, Malhotra AK, Patel AP. Recent Advances in Understanding the Pathogenesis of Cardiovascular Diseases and Development of Treatment Modalities. CHDDT 2019;19:19-32. [DOI: 10.2174/1871529x18666180508111353] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
152 Zhang P, Jain P, Tsao C, Wu K, Jiang S. Proactively Reducing Anti-Drug Antibodies via Immunomodulatory Bioconjugation. Angew Chem Int Ed Engl 2019;58:2433-6. [PMID: 30632270 DOI: 10.1002/anie.201814275] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
153 Husband JT, Hill AC, O'reilly RK. Utilizing functionalized bromomaleimides for fluorogenic conjugation and PEGylation of enzymes. Polym Int 2019;68:1247-54. [DOI: 10.1002/pi.5740] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
154 Vasile C. Polymeric Nanomaterials. Polymeric Nanomaterials in Nanotherapeutics 2019. [DOI: 10.1016/b978-0-12-813932-5.00001-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
155 Abed SN, Deb PK, Surchi HS, Kokaz SF, Jamal SM, Bandopadhyay S, Tekade RK. Nanocarriers in Different Preclinical and Clinical Stages. Basic Fundamentals of Drug Delivery 2019. [DOI: 10.1016/b978-0-12-817909-3.00017-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
156 Paredes KO, Ruiz-cabello J, Alarcón DI, Filice M. The State of the Art of Investigational and Approved Nanomedicine Products for Nucleic Acid Delivery. Nucleic Acid Nanotheranostics 2019. [DOI: 10.1016/b978-0-12-814470-1.00015-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
157 Böker A. Biopolymere – Funktionsträger in der Materialforschung. Biologische Transformation 2019. [DOI: 10.1007/978-3-662-58243-5_8] [Reference Citation Analysis]
158 Guo Y, Wang T, Qiu H, Han M, Dong Z, Wang X, Wang Y. Hydroxycamptothecin nanoparticles based on poly/oligo (ethylene glycol): Architecture effects of nanocarriers on antitumor efficacy. European Journal of Pharmaceutics and Biopharmaceutics 2019;134:178-84. [DOI: 10.1016/j.ejpb.2018.12.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
159 Molina BG, Cianga L, Bendrea A, Cianga I, Alemán C, Armelin E. An amphiphilic, heterografted polythiophene copolymer containing biocompatible/biodegradable side chains for use as an (electro)active surface in biomedical applications. Polym Chem 2019;10:5010-22. [DOI: 10.1039/c9py00926d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
160 Pelosi C, Saitta F, Wurm FR, Fessas D, Tinè MR, Duce C. Thermodynamic stability of myoglobin-poly(ethylene glycol) bioconjugates: A calorimetric study. Thermochimica Acta 2019;671:26-31. [DOI: 10.1016/j.tca.2018.11.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
161 Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 2019;18:273-94. [DOI: 10.1038/s41573-018-0005-0] [Cited by in Crossref: 394] [Cited by in F6Publishing: 409] [Article Influence: 78.8] [Reference Citation Analysis]
162 Crooke SN, Zheng J, Ganewatta MS, Guldberg SM, Reineke TM, Finn M. Immunological Properties of Protein–Polymer Nanoparticles. ACS Appl Bio Mater 2019;2:93-103. [DOI: 10.1021/acsabm.8b00418] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
163 Englert C, Brendel JC, Majdanski TC, Yildirim T, Schubert S, Gottschaldt M, Windhab N, Schubert US. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in Polymer Science 2018;87:107-64. [DOI: 10.1016/j.progpolymsci.2018.07.005] [Cited by in Crossref: 113] [Cited by in F6Publishing: 70] [Article Influence: 22.6] [Reference Citation Analysis]
164 Banskota S, Yousefpour P, Kirmani N, Li X, Chilkoti A. Long circulating genetically encoded intrinsically disordered zwitterionic polypeptides for drug delivery. Biomaterials 2019;192:475-85. [PMID: 30504081 DOI: 10.1016/j.biomaterials.2018.11.012] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 9.0] [Reference Citation Analysis]
165 Liu X, Wu F, Ji Y, Yin L. Recent Advances in Anti-cancer Protein/Peptide Delivery. Bioconjugate Chem 2019;30:305-24. [DOI: 10.1021/acs.bioconjchem.8b00750] [Cited by in Crossref: 79] [Cited by in F6Publishing: 83] [Article Influence: 15.8] [Reference Citation Analysis]
166 Guo Y, Wang T, Zhao S, Qiu H, Han M, Dong Z, Wang X. Effect of alkyl chain on cellular uptake and antitumor activity of hydroxycamptothecin nanoparticles based on amphiphilic linear molecules. Eur J Pharm Sci 2018;124:266-72. [PMID: 30189259 DOI: 10.1016/j.ejps.2018.08.043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
167 Zhao D, Tang Q, Zhou Q, Peng K, Yang H, Zhang X. A photo-degradable injectable self-healing hydrogel based on star poly(ethylene glycol)-b-polypeptide as a potential pharmaceuticals delivery carrier. Soft Matter 2018;14:7420-8. [PMID: 30187054 DOI: 10.1039/c8sm01575a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
168 Pelegri-o’day EM, Matsumoto NM, Tamshen K, Raftery ED, Lau UY, Maynard HD. PEG Analogs Synthesized by Ring-Opening Metathesis Polymerization for Reversible Bioconjugation. Bioconjugate Chem 2018;29:3739-45. [DOI: 10.1021/acs.bioconjchem.8b00635] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
169 Wu D, Daly HC, Conroy E, Li B, Gallagher WM, Cahill RA, O'Shea DF. PEGylated BF2-Azadipyrromethene (NIR-AZA) fluorophores, for intraoperative imaging. Eur J Med Chem. 2019;161:343-353. [PMID: 30368132 DOI: 10.1016/j.ejmech.2018.10.046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
170 Castelletto V, Hamley IW, Seitsonen J, Ruokolainen J, Harris G, Bellmann-sickert K, Beck-sickinger AG. Conformation and Aggregation of Selectively PEGylated and Lipidated Gastric Peptide Hormone Human PYY 3–36. Biomacromolecules 2018;19:4320-32. [DOI: 10.1021/acs.biomac.8b01209] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
171 Liu X, Sun J, Gao W. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018;178:413-34. [DOI: 10.1016/j.biomaterials.2018.04.050] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 9.0] [Reference Citation Analysis]
172 Jiang Y, Lodge TP, Reineke TM. Packaging pDNA by Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability and Structural Control. J Am Chem Soc 2018;140:11101-11. [DOI: 10.1021/jacs.8b06309] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 6.0] [Reference Citation Analysis]
173 Su S, Du F, Li Z. Facile Synthesis of a Degradable Poly(ethylene glycol) Platform with Tunable Acid Sensitivity at Physiologically Relevant pH. Macromolecules 2018;51:6571-9. [DOI: 10.1021/acs.macromol.8b01053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
174 Ramezanghorbani F, Lin P, Colina CM. Optimizing Protein–Polymer Interactions in a Poly(ethylene glycol) Coarse-Grained Model. J Phys Chem B 2018;122:7997-8005. [DOI: 10.1021/acs.jpcb.8b05359] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
175 Liu G, Hu J, Liu S. Emerging Applications of Fluorogenic and Non-fluorogenic Bifunctional Linkers. Chemistry 2018;24:16484-505. [PMID: 29893499 DOI: 10.1002/chem.201801290] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
176 Liu X, Sun M, Sun J, Hu J, Wang Z, Guo J, Gao W. Polymerization Induced Self-Assembly of a Site-Specific Interferon α-Block Copolymer Conjugate into Micelles with Remarkably Enhanced Pharmacology. J Am Chem Soc 2018;140:10435-8. [DOI: 10.1021/jacs.8b06013] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 9.4] [Reference Citation Analysis]
177 Synthesis and evaluation of pH dependent hydrogels for controlled release of Venlafaxine HCl. British Journal of Pharmacy 2018;2. [DOI: 10.5920/bjpharm.2017.30] [Reference Citation Analysis]
178 Yu KM, Yiu-Nam Lau J, Fok M, Yeung YK, Fok SP, Hu TL, Tsai YJ, Choo QL. Pharmacokinetic and Pharmacodynamic Evaluation of Different PEGylated Human Interleukin-11 Preparations in Animal Models. J Pharm Sci 2018;107:2755-63. [PMID: 30005986 DOI: 10.1016/j.xphs.2018.06.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
179 Russell AJ, Baker SL, Colina CM, Figg CA, Kaar JL, Matyjaszewski K, Simakova A, Sumerlin BS. Next generation protein-polymer conjugates. AIChE J 2018;64:3230-45. [DOI: 10.1002/aic.16338] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 8.6] [Reference Citation Analysis]
180 Moriarty N, Parish CL, Dowd E. Primary tissue for cellular brain repair in Parkinson's disease: Promise, problems and the potential of biomaterials. Eur J Neurosci 2019;49:472-86. [PMID: 29923311 DOI: 10.1111/ejn.14051] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
181 Seneca S, Simon J, Weber C, Ghazaryan A, Ethirajan A, Mailaender V, Morsbach S, Landfester K. How Low Can You Go? Low Densities of Poly(ethylene glycol) Surfactants Attract Stealth Proteins. Macromol Biosci 2018;18:e1800075. [PMID: 29943446 DOI: 10.1002/mabi.201800075] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
182 Ding K, Li R, Ma Y, Li N, Zhang T, Cheng-mei X, Jiang H, Gong Y. Folate Ligand Orientation Optimized during Cell Membrane Mimetic Micelle Formation for Enhanced Tumor Cell Targeting. Langmuir 2019;35:1257-65. [DOI: 10.1021/acs.langmuir.8b00744] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
183 Guo J, Mei T, Li Y, Ren S, Hafezi M, Lu H, Li Y, Dong G. Sustained-release application of PCEC hydrogel on laser-textured surface lubrication. Mater Res Express 2018;5:065315. [DOI: 10.1088/2053-1591/aacac7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
184 Guo J, Mei T, Li Y, Hafezi M, Lu H, Li J, Dong G. One-pot synthesis and lubricity of fluorescent carbon dots applied on PCL-PEG-PCL hydrogel. J Biomater Sci Polym Ed 2018;29:1549-65. [PMID: 29862896 DOI: 10.1080/09205063.2018.1470736] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
185 Kinbara K. Monodisperse engineered PEGs for bio-related applications. Polym J 2018;50:689-97. [DOI: 10.1038/s41428-018-0074-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
186 Kuo Y, Rajesh R. Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. Journal of the Taiwan Institute of Chemical Engineers 2018;87:15-25. [DOI: 10.1016/j.jtice.2018.03.028] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
187 Braun AC, Gutmann M, Mueller TD, Lühmann T, Meinel L. Bioresponsive release of insulin-like growth factor-I from its PEGylated conjugate. Journal of Controlled Release 2018;279:17-28. [DOI: 10.1016/j.jconrel.2018.04.009] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
188 Zhang P, Jain P, Tsao C, Yuan Z, Li W, Li B, Wu K, Hung H, Lin X, Jiang S. Polypeptides with High Zwitterion Density for Safe and Effective Therapeutics. Angew Chem 2018;130:7869-73. [DOI: 10.1002/ange.201802452] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
189 Zhang P, Jain P, Tsao C, Yuan Z, Li W, Li B, Wu K, Hung H, Lin X, Jiang S. Polypeptides with High Zwitterion Density for Safe and Effective Therapeutics. Angew Chem Int Ed 2018;57:7743-7. [DOI: 10.1002/anie.201802452] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 9.6] [Reference Citation Analysis]
190 Houston ZH, Bell CA, Thurecht KJ. Hyperbranched Polymers as Nanocarriers. Encyclopedia of Polymer Science and Technology 2018. [DOI: 10.1002/0471440264.pst159.pub2] [Reference Citation Analysis]
191 Shen H, Wang G. Ethylene Oxide Polymers: Synthesis, Modification, Topology, and Applications. Encyclopedia of Polymer Science and Technology 2018. [DOI: 10.1002/0471440264.pst528.pub2] [Reference Citation Analysis]
192 Simpson MJ, Corbett B, Arezina A, Hoare T. Narrowly Dispersed, Degradable, and Scalable Poly(oligoethylene glycol methacrylate)-Based Nanogels via Thermal Self-Assembly. Ind Eng Chem Res 2018;57:7495-506. [DOI: 10.1021/acs.iecr.8b00793] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
193 Wang Y, Wu C. Site-Specific Conjugation of Polymers to Proteins. Biomacromolecules 2018;19:1804-25. [DOI: 10.1021/acs.biomac.8b00248] [Cited by in Crossref: 62] [Cited by in F6Publishing: 66] [Article Influence: 12.4] [Reference Citation Analysis]
194 Parhiz H, Khoshnejad M, Myerson JW, Hood E, Patel PN, Brenner JS, Muzykantov VR. Unintended effects of drug carriers: Big issues of small particles. Adv Drug Deliv Rev 2018;130:90-112. [PMID: 30149885 DOI: 10.1016/j.addr.2018.06.023] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
195 Meshram JV, Koli VB, Kumbhar SG, Borde LC, Phadatare MR, Pawar SH. Structural, spectroscopic and anti-microbial inspection of PEG capped ZnO nanoparticles for biomedical applications. Mater Res Express 2018;5:045016. [DOI: 10.1088/2053-1591/aab917] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
196 Bao C, Yin Y, Zhang Q. Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry. Biomacromolecules 2018;19:1539-51. [PMID: 29562131 DOI: 10.1021/acs.biomac.8b00087] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
197 Behi J, Hassiki R, Said NB, Bouhaouala-zahar B, Benkhoud ML. Optimization of PEGylation reaction time and molar ratio of rhG-CSF toward increasing bioactive potency of monoPEGylated protein. International Journal of Biological Macromolecules 2018;109:888-95. [DOI: 10.1016/j.ijbiomac.2017.11.070] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
198 Greish K, Mathur A, Bakhiet M, Taurin S. Nanomedicine: is it lost in translation? Ther Deliv 2018;9:269-85. [PMID: 29495928 DOI: 10.4155/tde-2017-0118] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 8.8] [Reference Citation Analysis]
199 White CJ, Bode JW. PEGylation and Dimerization of Expressed Proteins under Near Equimolar Conditions with Potassium 2-Pyridyl Acyltrifluoroborates. ACS Cent Sci 2018;4:197-206. [PMID: 29532019 DOI: 10.1021/acscentsci.7b00432] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 8.2] [Reference Citation Analysis]
200 Gao Y, Dong C. Triple redox/temperature responsive diselenide-containing homopolypeptide micelles and supramolecular hydrogels thereof. J Polym Sci Part A: Polym Chem 2018;56:1067-77. [DOI: 10.1002/pola.28984] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
201 Guo J, Li Y, Lu H, Li Y, Li X, Qin L, Dong G. PCEC hydrogel used on sustained-release hyaluronic acid delivery with lubrication effect: Research Article. J Appl Polym Sci 2018;135:46228. [DOI: 10.1002/app.46228] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
202 Ramos-tomillero I, Perez-chacon G, Somovilla-crespo B, Sanchez-madrid F, Domínguez JM, Cuevas C, Zapata JM, Rodríguez H, Albericio F. Bioconjugation through Mesitylene Thiol Alkylation. Bioconjugate Chem 2018;29:1199-208. [DOI: 10.1021/acs.bioconjchem.7b00828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
203 Ijaz QA, Abbas N, Arshad MS, Hussain A, Shahiq-uz-zaman, Javaid Z. Synthesis and evaluation of pH dependent polyethylene glycol- co -acrylic acid hydrogels for controlled release of venlafaxine HCl. Journal of Drug Delivery Science and Technology 2018;43:221-32. [DOI: 10.1016/j.jddst.2017.10.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
204 Xie YQ, Wei L, Tang L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018;10:e1506. [PMID: 29333729 DOI: 10.1002/wnan.1506] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
205 Vázquez-ríos AJ, Alonso-nocelo M, Bouzo BL, Ruiz-bañobre J, de la Fuente M. Nanotheranostics and Their Potential in the Management of Metastatic Cancer. Handbook of Nanomaterials for Cancer Theranostics 2018. [DOI: 10.1016/b978-0-12-813339-2.00008-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
206 Abbina S, Parambath A. PEGylation and its alternatives. Engineering of Biomaterials for Drug Delivery Systems 2018. [DOI: 10.1016/b978-0-08-101750-0.00014-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
207 Martens S, Holloway JO, Du Prez FE. Click and Click-Inspired Chemistry for the Design of Sequence-Controlled Polymers. Sequence-Controlled Polymers 2017. [DOI: 10.1002/9783527806096.ch13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
208 Ibau C, Md Arshad M, Gopinath SC. Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosensors and Bioelectronics 2017;98:267-84. [DOI: 10.1016/j.bios.2017.06.049] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
209 Sun H, Chang MYZ, Cheng WI, Wang Q, Commisso A, Capeling M, Wu Y, Cheng C. Biodegradable zwitterionic sulfobetaine polymer and its conjugate with paclitaxel for sustained drug delivery. Acta Biomater 2017;64:290-300. [PMID: 29030301 DOI: 10.1016/j.actbio.2017.10.016] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 7.7] [Reference Citation Analysis]
210 Huang X. Bioresorbable Materials and Their Application in Electronics. 2017. [DOI: 10.1017/9781108290685] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
211 Celasun S, Du Prez FE, Börner HG. PEGylated Precision Segments Based on Sequence-Defined Thiolactone Oligomers. Macromol Rapid Commun 2017;38:1700688. [DOI: 10.1002/marc.201700688] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
212 Yang H, Wang Z, Lan Q, Wang Y. Antifouling ultrafiltration membranes by selective swelling of polystyrene/poly(ethylene oxide) block copolymers. Journal of Membrane Science 2017;542:226-32. [DOI: 10.1016/j.memsci.2017.08.015] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]
213 Martens S, Holloway JO, Du Prez FE. Click and Click-Inspired Chemistry for the Design of Sequence-Controlled Polymers. Macromol Rapid Commun 2017;38. [PMID: 28990247 DOI: 10.1002/marc.201700469] [Cited by in Crossref: 71] [Cited by in F6Publishing: 71] [Article Influence: 11.8] [Reference Citation Analysis]
214 Riber CF, Zelikin AN. Recent advances in macromolecular prodrugs. Current Opinion in Colloid & Interface Science 2017;31:1-9. [DOI: 10.1016/j.cocis.2017.06.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
215 Kurinomaru T, Kuwada K, Tomita S, Kameda T, Shiraki K. Noncovalent PEGylation through Protein–Polyelectrolyte Interaction: Kinetic Experiment and Molecular Dynamics Simulation. J Phys Chem B 2017;121:6785-91. [DOI: 10.1021/acs.jpcb.7b02741] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
216 Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, Leong KW. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery. Chem Rev 2017;117:9874-906. [PMID: 28640612 DOI: 10.1021/acs.chemrev.6b00799] [Cited by in Crossref: 306] [Cited by in F6Publishing: 324] [Article Influence: 51.0] [Reference Citation Analysis]
217 Nutan B, Singh chandel AK, Jewrajka SK. Synthesis and Multi-Responsive Self-Assembly of Cationic Poly(caprolactone)-Poly(ethylene glycol) Multiblock Copolymers. Chem Eur J 2017;23:8166-70. [DOI: 10.1002/chem.201701900] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
218 Mohammadi MR, Nojoomi A, Mozafari M, Dubnika A, Inayathullah M, Rajadas J. Nanomaterials engineering for drug delivery: a hybridization approach. J Mater Chem B 2017;5:3995-4018. [PMID: 32264132 DOI: 10.1039/c6tb03247h] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 13.2] [Reference Citation Analysis]
219 Mejía-manzano LA, Lienqueo ME, Escalante-vázquez EJ, Rito-palomares M, Asenjo JA. Optimized purification of mono-PEGylated lysozyme by heparin affinity chromatography using response surface methodology: Optimized heparin chromatography of lysozyme PEGylation reaction. J Chem Technol Biotechnol 2017;92:2554-62. [DOI: 10.1002/jctb.5269] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
220 Tucker BS, Coughlin ML, Figg CA, Sumerlin BS. Grafting-From Proteins Using Metal-Free PET-RAFT Polymerizations under Mild Visible-Light Irradiation. ACS Macro Lett 2017;6:452-7. [PMID: 35610863 DOI: 10.1021/acsmacrolett.7b00140] [Cited by in Crossref: 116] [Cited by in F6Publishing: 118] [Article Influence: 19.3] [Reference Citation Analysis]
221 Li T, Li X. Development of Serine/Threonine Ligation and Its Applications. Chemical Ligation 2017. [DOI: 10.1002/9781119044116.ch3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
222 Wu L, Chen J, Wu Y, Zhang B, Cai X, Zhang Z, Wang Y, Si L, Xu H, Zheng Y, Zhang C, Liang C, Li J, Zhang L, Zhang Q, Zhou D. Precise and combinatorial PEGylation generates a low-immunogenic and stable form of human growth hormone. Journal of Controlled Release 2017;249:84-93. [DOI: 10.1016/j.jconrel.2017.01.029] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 4.8] [Reference Citation Analysis]
223 Wilson P. Synthesis and Applications of Protein/Peptide-Polymer Conjugates. Macromol Chem Phys 2017;218:1600595. [DOI: 10.1002/macp.201600595] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
224 Willemse T, Schepens W, Vlijmen H, Maes B, Ballet S. The Suzuki–Miyaura Cross-Coupling as a Versatile Tool for Peptide Diversification and Cyclization. Catalysts 2017;7:74. [DOI: 10.3390/catal7030074] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 8.2] [Reference Citation Analysis]
225 Carmali S, Murata H, Cummings C, Matyjaszewski K, Russell AJ. Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates. Methods Enzymol 2017;590:347-80. [PMID: 28411645 DOI: 10.1016/bs.mie.2016.12.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
226 Deller RC, Diamanti P, Morrison G, Reilly J, Ede BC, Richardson R, Le Vay K, Collins AM, Blair A, Perriman AW. Functionalized Triblock Copolymer Vectors for the Treatment of Acute Lymphoblastic Leukemia. Mol Pharmaceutics 2017;14:722-32. [DOI: 10.1021/acs.molpharmaceut.6b01008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
227 Sharma M, Hire RS, Hadapad AB, Gupta GD, Kumar V. PEGylation Enhances Mosquito-Larvicidal Activity of Lysinibacillus sphaericus Binary Toxin. Bioconjug Chem 2017;28:410-8. [PMID: 28118708 DOI: 10.1021/acs.bioconjchem.6b00565] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
228 Qin X, Li J, Li Y, Gan Y, Huang H, Liang C. Isoform separation and structural identification of mono-PEGylated recombinant human growth hormone (PEG-rhGH) with pH gradient chromatography. Journal of Chromatography B 2017;1044-1045:206-13. [DOI: 10.1016/j.jchromb.2016.12.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
229 Fytianos K, Chortarea S, Rodriguez-Lorenzo L, Blank F, von Garnier C, Petri-Fink A, Rothen-Rutishauser B. Aerosol Delivery of Functionalized Gold Nanoparticles Target and Activate Dendritic Cells in a 3D Lung Cellular Model. ACS Nano 2017;11:375-83. [PMID: 27973764 DOI: 10.1021/acsnano.6b06061] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
230 Wieczorek S, Remmler D, Masini T, Kochovski Z, Hirsch AKH, Börner HG. Fine-tuning Nanocarriers Specifically toward Cargo: A Competitive Study on Solubilizing Related Photosensitizers for Photodynamic Therapy. Bioconjugate Chem 2017;28:760-7. [DOI: 10.1021/acs.bioconjchem.6b00549] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
231 Lühmann T, Schmidt M, Leiske MN, Spieler V, Majdanski TC, Grube M, Hartlieb M, Nischang I, Schubert S, Schubert US, Meinel L. Site-Specific POxylation of Interleukin-4. ACS Biomater Sci Eng 2017;3:304-12. [DOI: 10.1021/acsbiomaterials.6b00578] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 5.5] [Reference Citation Analysis]
232 Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35:217-239. [PMID: 28057483 DOI: 10.1016/j.biotechadv.2016.12.006] [Cited by in Crossref: 562] [Cited by in F6Publishing: 581] [Article Influence: 93.7] [Reference Citation Analysis]
233 Ozbolat IT. The Bioink ∗ ∗With contributions by Monika Hospodiuk and Madhuri Dey, The Pennsylvania State University. 3D Bioprinting. Elsevier; 2017. pp. 41-92. [DOI: 10.1016/b978-0-12-803010-3.00003-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
234 Wilke P, Kunde T, Chattopadhyay S, ten Brummelhuis N, Du Prez FE, Börner HG. Easy access to triazolinedione-endcapped peptides for chemical ligation. Chem Commun 2017;53:593-6. [DOI: 10.1039/c6cc08683g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
235 Herzberger J, Leibig D, Langhanki J, Moers C, Opatz T, Frey H. “Clickable PEG” via anionic copolymerization of ethylene oxide and glycidyl propargyl ether. Polym Chem 2017;8:1882-7. [DOI: 10.1039/c7py00173h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
236 Wang Q, Sun X. Recent advances in nanomedicines for the treatment of rheumatoid arthritis. Biomater Sci 2017;5:1407-20. [DOI: 10.1039/c7bm00254h] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 11.8] [Reference Citation Analysis]
237 Liu X, Hu J, Wang Z, Xu Z, Gao W. Polypeptides and Engineered Proteins. ACS Symposium Series 2017. [DOI: 10.1021/bk-2017-1252.ch006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
238 Sasai Y, Kanno H, Doi N, Yamauchi Y, Kuzuya M, Kondo S. Synthesis and Characterization of Highly Stabilized Polymer–Trypsin Conjugates with Autolysis Resistance. Catalysts 2017;7:4. [DOI: 10.3390/catal7010004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
239 Worm M, Leibig D, Dingels C, Frey H. Cleavable Polyethylene Glycol: 3,4-Epoxy-1-butene as a Comonomer to Establish Degradability at Physiologically Relevant pH. ACS Macro Lett 2016;5:1357-63. [PMID: 35651218 DOI: 10.1021/acsmacrolett.6b00735] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
240 Steinbach T, Becker G, Spiegel A, Figueiredo T, Russo D, Wurm FR. Reversible Bioconjugation: Biodegradable Poly(phosphate)-Protein Conjugates. Macromol Biosci 2017;17. [PMID: 27943530 DOI: 10.1002/mabi.201600377] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
241 Collins J, Wallis SJ, Simula A, Whittaker MR, Mcintosh MP, Wilson P, Davis TP, Haddleton DM, Kempe K. Comb Poly(Oligo(2-Ethyl-2-Oxazoline)Methacrylate)-Peptide Conjugates Prepared by Aqueous Cu(0)-Mediated Polymerization and Reductive Amination. Macromol Rapid Commun 2017;38:1600534. [DOI: 10.1002/marc.201600534] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
242 Müller J, Bauer KN, Prozeller D, Simon J, Mailänder V, Wurm FR, Winzen S, Landfester K. Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials 2017;115:1-8. [PMID: 27871002 DOI: 10.1016/j.biomaterials.2016.11.015] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 11.3] [Reference Citation Analysis]
243 Xiaojiao S, Corbett B, Macdonald B, Mhaskar P, Ghosh R. Modeling and Optimization of Protein PEGylation. Ind Eng Chem Res 2016;55:11785-94. [DOI: 10.1021/acs.iecr.6b03122] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
244 Chen BM, Su YC, Chang CJ, Burnouf PA, Chuang KH, Chen CH, Cheng TL, Chen YT, Wu JY, Roffler SR. Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals. Anal Chem 2016;88:10661-6. [PMID: 27726379 DOI: 10.1021/acs.analchem.6b03109] [Cited by in Crossref: 90] [Cited by in F6Publishing: 95] [Article Influence: 12.9] [Reference Citation Analysis]
245 Huo S, Chen S, Gong N, Liu J, Li X, Zhao Y, Liang X. Ultrasmall Gold Nanoparticles Behavior in Vivo Modulated by Surface Polyethylene Glycol (PEG) Grafting. Bioconjugate Chem 2017;28:239-43. [DOI: 10.1021/acs.bioconjchem.6b00488] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
246 Smith AAA, Zuwala K, Pilgram O, Johansen KS, Tolstrup M, Dagnæs-Hansen F, Zelikin AN. Albumin-Polymer-Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles. ACS Macro Lett 2016;5:1089-94. [PMID: 35658186 DOI: 10.1021/acsmacrolett.6b00544] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
247 Wagner HJ, Sprenger A, Rebmann B, Weber W. Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv Drug Deliv Rev 2016;105:77-95. [PMID: 27179764 DOI: 10.1016/j.addr.2016.05.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
248 Steinbach T, Wurm FR. Degradable Polyphosphoester-Protein Conjugates: "PPEylation" of Proteins. Biomacromolecules 2016;17:3338-46. [PMID: 27618845 DOI: 10.1021/acs.biomac.6b01107] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
249 Pelegri-O'Day EM, Maynard HD. Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates. Acc Chem Res 2016;49:1777-85. [PMID: 27588677 DOI: 10.1021/acs.accounts.6b00258] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 8.9] [Reference Citation Analysis]
250 Liu D, Bielawski CW. Synthesis of Degradable Poly[(Ethylene Glycol)-co-(Glycolic Acid)] via the Post-Polymerization Oxyfunctionalization of Poly(Ethylene Glycol). Macromol Rapid Commun 2016;37:1587-92. [PMID: 27461401 DOI: 10.1002/marc.201600336] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
251 Yang H, Guo L, Wang Z, Yan N, Wang Y. Nanoporous Films with Superior Resistance to Protein Adsorption by Selective Swelling of Polystyrene- block -poly(ethylene oxide). Ind Eng Chem Res 2016;55:8133-40. [DOI: 10.1021/acs.iecr.6b02008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
252 Oh Y, Park O, Swierczewska M, Hamilton JP, Park JS, Kim TH, Lim SM, Eom H, Jo DG, Lee CE, Kechrid R, Mastorakos P, Zhang C, Hahn SK, Jeon OC, Byun Y, Kim K, Hanes J, Lee KC, Pomper MG, Gao B, Lee S. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology 2016;64:209-23. [PMID: 26710118 DOI: 10.1002/hep.28432] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 6.1] [Reference Citation Analysis]
253 Ahab A, Rohman F, Iskandar F, Haryanto F, Arif I. A simple straightforward thermal decomposition synthesis of PEG-covered Gd 2 O 3 (Gd 2 O 3 @PEG) nanoparticles. Advanced Powder Technology 2016;27:1800-5. [DOI: 10.1016/j.apt.2016.06.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
254 Yang W, Zhu L, Cui Y, Wang H, Wang Y, Yuan L, Chen H. Improvement of Site-Directed Protein–Polymer Conjugates: High Bioactivity and Stability Using a Soft Chain-Transfer Agent. ACS Appl Mater Interfaces 2016;8:15967-74. [DOI: 10.1021/acsami.6b05408] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
255 Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res 2016;33:2373-87. [DOI: 10.1007/s11095-016-1958-5] [Cited by in Crossref: 1506] [Cited by in F6Publishing: 1282] [Article Influence: 215.1] [Reference Citation Analysis]
256 Tung CL, Wong CTT, Fung EYM, Li X. Traceless and Chemoselective Amine Bioconjugation via Phthalimidine Formation in Native Protein Modification. Org Lett 2016;18:2600-3. [DOI: 10.1021/acs.orglett.6b00983] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
257 Tian J, Chen J, Ge C, Liu X, He J, Ni P, Pan Y. Synthesis of PEGylated Ferrocene Nanoconjugates as the Radiosensitizer of Cancer Cells. Bioconjugate Chem 2016;27:1518-24. [DOI: 10.1021/acs.bioconjchem.6b00168] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
258 Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016;116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Cited by in Crossref: 1086] [Cited by in F6Publishing: 1120] [Article Influence: 155.1] [Reference Citation Analysis]
259 Dong H, Tang M, Li Y, Li Y, Qian D, Shi D. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine (Lond) 2015;10:1941-58. [PMID: 26139127 DOI: 10.2217/nnm.15.38] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.6] [Reference Citation Analysis]
260 Spears BR, Marin MA, Montenegro-burke JR, Evans BC, Mclean J, Harth E. Aqueous Epoxide Ring-Opening Polymerization (AEROP): Green Synthesis of Polyglycidol with Ultralow Branching. Macromolecules 2016;49:2022-7. [DOI: 10.1021/acs.macromol.6b00305] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
261 Niederer K, Schüll C, Leibig D, Johann T, Frey H. Catechol Acetonide Glycidyl Ether (CAGE): A Functional Epoxide Monomer for Linear and Hyperbranched Multi-Catechol Functional Polyether Architectures. Macromolecules 2016;49:1655-65. [DOI: 10.1021/acs.macromol.5b02441] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
262 Kaur H, Singh J, Kumar R. Conjugates, Polymer–Drug: Polymer–Protein Drug Delivery. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2016. [DOI: 10.1081/e-ebpp-120050043] [Reference Citation Analysis]
263 Isarov SA, Lee PW, Pokorski JK. “Graft-to” Protein/Polymer Conjugates Using Polynorbornene Block Copolymers. Biomacromolecules 2016;17:641-8. [DOI: 10.1021/acs.biomac.5b01582] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
264 Carter NA, Geng X, Grove TZ. Design of Self-Assembling Protein-Polymer Conjugates. Adv Exp Med Biol 2016;940:179-214. [PMID: 27677514 DOI: 10.1007/978-3-319-39196-0_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
265 Gao L, Chen Y, Luo Q, Wang Y, Li X, Shen Z, Zhu W. Injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation. RSC Adv 2016;6:94661-8. [DOI: 10.1039/c6ra20691c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
266 Rother M, Nussbaumer MG, Renggli K, Bruns N. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem Soc Rev 2016;45:6213-49. [DOI: 10.1039/c6cs00177g] [Cited by in Crossref: 111] [Cited by in F6Publishing: 115] [Article Influence: 15.9] [Reference Citation Analysis]
267 Liang H, Pei Y, Li J, Xiong W, He Y, Liu S, Li Y, Li B. pH-Degradable antioxidant nanoparticles based on hydrogen-bonded tannic acid assembly. RSC Adv 2016;6:31374-85. [DOI: 10.1039/c6ra02527g] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
268 Zhang Q, Zhao Y, Yang B, Fu C, Zhao L, Wang X, Wei Y, Tao L. Lighting up the PEGylation agents via the Hantzsch reaction. Polym Chem 2016;7:523-8. [DOI: 10.1039/c5py01624j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
269 Radi L, Fach M, Montigny M, Berger-nicoletti E, Tremel W, Wich PR. Methods of protein surface PEGylation under structure preservation for the emulsion-based formation of stable nanoparticles. Med Chem Commun 2016;7:1738-44. [DOI: 10.1039/c5md00475f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
270 Du H, Wang Y, Yao X, Luo Q, Zhu W, Li X, Shen Z. Injectable cationic hydrogels with high antibacterial activity and low toxicity. Polym Chem 2016;7:5620-4. [DOI: 10.1039/c6py01346e] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 5.4] [Reference Citation Analysis]
271 Koda Y, Terashima T, Maynard HD, Sawamoto M. Protein storage with perfluorinated PEG compartments in a hydrofluorocarbon solvent. Polym Chem 2016;7:6694-8. [DOI: 10.1039/c6py01333c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 35] [Article Influence: 2.6] [Reference Citation Analysis]
272 Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem Rev 2016;116:2170-243. [PMID: 26713458 DOI: 10.1021/acs.chemrev.5b00441] [Cited by in Crossref: 434] [Cited by in F6Publishing: 445] [Article Influence: 54.3] [Reference Citation Analysis]
273 Cho S, Heo GS, Khan S, Gonzalez AM, Elsabahy M, Wooley KL. Functionalizable Hydrophilic Polycarbonate, Poly(5-methyl-5-(2-hydroxypropyl)aminocarbonyl-1,3-dioxan-2-one), Designed as a Degradable Alternative for PHPMA and PEG. Macromolecules 2015;48:8797-805. [DOI: 10.1021/acs.macromol.5b01974] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
274 Russo D, Plazanet M, Teixeira J, Moulin M, Härtlein M, Wurm FR, Steinbach T. Investigation into the Relaxation Dynamics of Polymer-Protein Conjugates Reveals Surprising Role of Polymer Solvation on Inherent Protein Flexibility. Biomacromolecules 2016;17:141-7. [PMID: 26568153 DOI: 10.1021/acs.biomac.5b01269] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
275 Herzberger J, Frey H. Epicyanohydrin: Polymerization by Monomer Activation Gives Access to Nitrile-, Amino-, and Carboxyl-Functional Poly(ethylene glycol). Macromolecules 2015;48:8144-53. [DOI: 10.1021/acs.macromol.5b02178] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
276 Li S, Beringer LT, Chen S, Averick S. Combination of AGET ATRP and SuFEx for post-polymerization chain-end modifications. Polymer 2015;78:37-41. [DOI: 10.1016/j.polymer.2015.09.055] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.6] [Reference Citation Analysis]
277 Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. [PMID: 26561931 DOI: 10.1016/j.biomaterials.2015.10.076] [Cited by in Crossref: 812] [Cited by in F6Publishing: 671] [Article Influence: 101.5] [Reference Citation Analysis]
278 Maynard H. Protein modification in a trice. Nature 2015;526:646-7. [DOI: 10.1038/526646b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
279 Han T, Petrus R, Bykowski D, Jerzykiewicz L, Sobota P. Synthesis and Structural Characterization of Magnesium Drug Complexes: Efficient Initiators for Forming Polylactide–Drug Conjugates. Organometallics 2015;34:4871-80. [DOI: 10.1021/acs.organomet.5b00146] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
280 Isarov SA, Pokorski JK. Protein ROMP: Aqueous Graft-from Ring-Opening Metathesis Polymerization. ACS Macro Lett 2015;4:969-73. [PMID: 35596466 DOI: 10.1021/acsmacrolett.5b00497] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 6.4] [Reference Citation Analysis]
281 Chen C, Chen S, Shalumon K, Chen J. Prevention of peritendinous adhesions with electrospun polyethylene glycol/polycaprolactone nanofibrous membranes. Colloids and Surfaces B: Biointerfaces 2015;133:221-30. [DOI: 10.1016/j.colsurfb.2015.06.012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 5.3] [Reference Citation Analysis]
282 Hsieh Y, Lin S. Effect of PEGylation on the activity and stability of horseradish peroxidase and l-N-carbamoylase in aqueous phases. Process Biochemistry 2015;50:1372-8. [DOI: 10.1016/j.procbio.2015.04.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
283 d'Arcy R, Tirelli N. Mitsunobu Reaction: A Versatile Tool for PEG End Functionalization. Macromol Rapid Commun 2015;36:1829-35. [DOI: 10.1002/marc.201500380] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
284 Zhang Q, Li M, Zhu C, Nurumbetov G, Li Z, Wilson P, Kempe K, Haddleton DM. Well-Defined Protein/Peptide–Polymer Conjugates by Aqueous Cu-LRP: Synthesis and Controlled Self-Assembly. J Am Chem Soc 2015;137:9344-53. [DOI: 10.1021/jacs.5b04139] [Cited by in Crossref: 68] [Cited by in F6Publishing: 68] [Article Influence: 8.5] [Reference Citation Analysis]
285 González M, Vaillard VA, Vaillard SE. Reagents for the Covalent Attachment of mPEG to Peptides and Proteins. Handbook of Polymers for Pharmaceutical Technologies 2015. [DOI: 10.1002/9781119041375.ch3] [Reference Citation Analysis]
286 Hamid Akash MS, Rehman K, Chen S. Natural and Synthetic Polymers as Drug Carriers for Delivery of Therapeutic Proteins. Polymer Reviews 2015;55:371-406. [DOI: 10.1080/15583724.2014.995806] [Cited by in Crossref: 72] [Cited by in F6Publishing: 45] [Article Influence: 9.0] [Reference Citation Analysis]
287 Powell JS. Longer-acting clotting factor concentrates for hemophilia. J Thromb Haemost 2015;13:S167-75. [DOI: 10.1111/jth.12912] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
288 Zhao W, Liu F, Chen Y, Bai J, Gao W. Synthesis of well-defined protein–polymer conjugates for biomedicine. Polymer 2015;66:A1-A10. [DOI: 10.1016/j.polymer.2015.03.054] [Cited by in Crossref: 49] [Cited by in F6Publishing: 38] [Article Influence: 6.1] [Reference Citation Analysis]
289 Klein R, Wurm FR. Aliphatic Polyethers: Classical Polymers for the 21st Century. Macromol Rapid Commun 2015;36:1147-65. [PMID: 25967116 DOI: 10.1002/marc.201500013] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 8.0] [Reference Citation Analysis]
290 Du J, Bandara HMHN, Du P, Huang H, Hoang K, Nguyen D, Mogarala SV, Smyth HDC. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms. Mol Pharmaceutics 2015;12:1544-53. [DOI: 10.1021/mp500846u] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 6.6] [Reference Citation Analysis]
291 Hu J, Zhao W, Gao Y, Sun M, Wei Y, Deng H, Gao W. Site-specific in situ growth of a cyclized protein-polymer conjugate with improved stability and tumor retention. Biomaterials 2015;47:13-9. [DOI: 10.1016/j.biomaterials.2015.01.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
292 Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015;93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Cited by in Crossref: 864] [Cited by in F6Publishing: 927] [Article Influence: 108.0] [Reference Citation Analysis]
293 Wilson P, Anastasaki A, Owen MR, Kempe K, Haddleton DM, Mann SK, Johnston APR, Quinn JF, Whittaker MR, Hogg PJ, Davis TP. Organic Arsenicals As Efficient and Highly Specific Linkers for Protein/Peptide–Polymer Conjugation. J Am Chem Soc 2015;137:4215-22. [DOI: 10.1021/jacs.5b01140] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 8.0] [Reference Citation Analysis]
294 Kurinomaru T, Shiraki K. Noncovalent PEGylation of l-Asparaginase Using PEGylated Polyelectrolyte. Journal of Pharmaceutical Sciences 2015;104:587-92. [DOI: 10.1002/jps.24217] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
295 Obermeyer AC, Olsen BD. Synthesis and Application of Protein-Containing Block Copolymers. ACS Macro Lett 2015;4:101-10. [PMID: 35596389 DOI: 10.1021/mz500732e] [Cited by in Crossref: 78] [Cited by in F6Publishing: 77] [Article Influence: 9.8] [Reference Citation Analysis]
296 Zuwala K, Smith AA, Postma A, Guerrero-Sanchez C, Ruiz-Sanchis P, Melchjorsen J, Tolstrup M, Zelikin AN. Polymers fight HIV: potent (pro)drugs identified through parallel automated synthesis. Adv Healthc Mater 2015;4:46-50. [PMID: 24811313 DOI: 10.1002/adhm.201400148] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
297 Kang B, Opatz T, Landfester K, Wurm FR. Carbohydrate nanocarriers in biomedical applications: functionalization and construction. Chem Soc Rev 2015;44:8301-25. [DOI: 10.1039/c5cs00092k] [Cited by in Crossref: 156] [Cited by in F6Publishing: 159] [Article Influence: 19.5] [Reference Citation Analysis]
298 Wu X, Zhou L, Su Y, Dong C. Comb-like poly( l -cysteine) derivatives with different side groups: synthesis via photochemistry and click chemistry, multi-responsive nanostructures, triggered drug release and cytotoxicity. Polym Chem 2015;6:6857-69. [DOI: 10.1039/c5py01113b] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
299 Li X, Li H, Zhao Y, Tang X, Ma S, Gong B, Li M. Facile synthesis of well-defined hydrophilic polyesters as degradable poly(ethylene glycol)-like biomaterials. Polym Chem 2015;6:6452-6. [DOI: 10.1039/c5py00762c] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
300 Hu J, He J, Zhang M, Ni P. Precise modular synthesis and a structure–property study of acid-cleavable star-block copolymers for pH-triggered drug delivery. Polym Chem 2015;6:1553-66. [DOI: 10.1039/c4py01391c] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
301 Mohamed MG, Lu F, Hong J, Kuo S. Strong emission of 2,4,6-triphenylpyridine-functionalized polytyrosine and hydrogen-bonding interactions with poly(4-vinylpyridine). Polym Chem 2015;6:6340-50. [DOI: 10.1039/c5py00938c] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 4.4] [Reference Citation Analysis]
302 Maddala SP, Mastroianni G, Velluto D, Sullivan AC. Intracellular delivery of BSA by phosphonate@silica nanoparticles. J Mater Chem B 2015;3:6057-70. [DOI: 10.1039/c5tb00555h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
303 Tang Z, Li D, Luan Y, Zhu L, Du H, Tao Y, Wang Y, Haddleton DM, Chen H. Conjugation of polymers to proteins through an inhibitor-derived peptide: taking up the inhibitor “berth”. Chem Commun 2015;51:10099-102. [DOI: 10.1039/c5cc02659h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
304 Aroua S, Tiu EGV, Ayer M, Ishikawa T, Yamakoshi Y. RAFT synthesis of poly(vinylpyrrolidone) amine and preparation of a water-soluble C 60 -PVP conjugate. Polym Chem 2015;6:2616-9. [DOI: 10.1039/c4py01333f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
305 Cheng TC, Chuang KH, Chen M, Wang HE, Tzou SC, Su YC, Chuang CH, Kao CH, Chen BM, Chang LS, Roffler SR, Cheng TL. Sensitivity of PEGylated interferon detection by anti-polyethylene glycol (PEG) antibodies depends on PEG length. Bioconjug Chem 2013;24:1408-13. [PMID: 23837865 DOI: 10.1021/bc3006144] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
306 Kaufman RJ, Powell JS. Molecular approaches for improved clotting factors for hemophilia. Hematology Am Soc Hematol Educ Program 2013;2013:30-6. [PMID: 24319159 DOI: 10.1182/asheducation-2013.1.30] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
307 Averick S, Mehl RA, Das SR, Matyjaszewski K. Well-defined biohybrids using reversible-deactivation radical polymerization procedures. J Control Release 2015;205:45-57. [PMID: 25483427 DOI: 10.1016/j.jconrel.2014.11.030] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 5.7] [Reference Citation Analysis]
308 Lawrence PB, Gavrilov Y, Matthews SS, Langlois MI, Shental-bechor D, Greenblatt HM, Pandey BK, Smith MS, Paxman R, Torgerson CD, Merrell JP, Ritz CC, Prigozhin MB, Levy Y, Price JL. Criteria for Selecting PEGylation Sites on Proteins for Higher Thermodynamic and Proteolytic Stability. J Am Chem Soc 2014;136:17547-60. [DOI: 10.1021/ja5095183] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 5.0] [Reference Citation Analysis]
309 Jin Q, Chen Y, Wang Y, Ji J. Zwitterionic drug nanocarriers: A biomimetic strategy for drug delivery. Colloids and Surfaces B: Biointerfaces 2014;124:80-6. [DOI: 10.1016/j.colsurfb.2014.07.013] [Cited by in Crossref: 107] [Cited by in F6Publishing: 109] [Article Influence: 11.9] [Reference Citation Analysis]
310 Espeel P, Du Prez FE. “Click”-Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations. Macromolecules 2015;48:2-14. [DOI: 10.1021/ma501386v] [Cited by in Crossref: 207] [Cited by in F6Publishing: 207] [Article Influence: 23.0] [Reference Citation Analysis]
311 Liu M, Johansen P, Zabel F, Leroux J, Gauthier MA. Semi-permeable coatings fabricated from comb-polymers efficiently protect proteins in vivo. Nat Commun 2014;5. [DOI: 10.1038/ncomms6526] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 6.0] [Reference Citation Analysis]
312 Powell JS. Lasting power of new clotting proteins. Hematology Am Soc Hematol Educ Program 2014;2014:355-63. [PMID: 25696879 DOI: 10.1182/asheducation-2014.1.355] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
313 Stefan N, Zimmermann M, Simon M, Zangemeister-wittke U, Plückthun A. Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting. Bioconjugate Chem 2014;25:2144-56. [DOI: 10.1021/bc500468s] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
314 Zhang C, Liu Y, Feng C, Wang Q, Shi H, Zhao D, Yu R, Su Z. Loss of PEG chain in routine SDS-PAGE analysis of PEG-maleimide modified protein. Electrophoresis 2015;36:371-4. [PMID: 25265901 DOI: 10.1002/elps.201400373] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
315 Mekhail M, Tabrizian M. Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater 2014;3:1529-45. [PMID: 24616443 DOI: 10.1002/adhm.201300586] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.7] [Reference Citation Analysis]
316 Holm LS, Mcumber A, Rasmussen JE, Obiols‐rabasa M, Thulstrup PW, Kasimova MR, Randolph TW, van de Weert M. The Effect of Protein PEGylation on Physical Stability in Liquid Formulation. Journal of Pharmaceutical Sciences 2014;103:3043-54. [DOI: 10.1002/jps.24094] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
317 Pelegri-O'Day EM, Lin EW, Maynard HD. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J Am Chem Soc 2014;136:14323-32. [PMID: 25216406 DOI: 10.1021/ja504390x] [Cited by in Crossref: 438] [Cited by in F6Publishing: 448] [Article Influence: 48.7] [Reference Citation Analysis]
318 Liu CY, Li X, Chen WY, Chang LC, Chen YF, Chen HL, Sun YS, Lai HY, Huang EW. PEGylation site-dependent structural heterogeneity study of monoPEGylated human parathyroid hormone fragment hPTH(1-34). Langmuir 2014;30:11421-7. [PMID: 25168862 DOI: 10.1021/la501689d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
319 Ducore JM, Miguelino MG, Powell JS. Alprolix (recombinant Factor IX Fc fusion protein): extended half-life product for the prophylaxis and treatment of hemophilia B. Expert Review of Hematology 2014;7:559-71. [DOI: 10.1586/17474086.2014.951322] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
320 Nguyen DT, Cavazos RJ, Harris AN, Petros RA. Werner Complexes Viewed Anew: Utilizing Cobalt Coordination Chemistry for ‘Traceless’ Stimuli-Responsive Bioconjugation Involving Therapeutic Nanoparticles, Protein PEGylation, and Drug-(Bio)polymer Conjugates. Comments on Inorganic Chemistry 2014;34:59-77. [DOI: 10.1080/02603594.2014.940103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
321 Smith AAA, Kryger MBL, Wohl BM, Ruiz-sanchis P, Zuwala K, Tolstrup M, Zelikin AN. Macromolecular (pro)drugs in antiviral research. Polym Chem 2014;5:6407-25. [DOI: 10.1039/c4py00624k] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
322 Murata H, Cummings CS, Koepsel RR, Russell AJ. Rational Tailoring of Substrate and Inhibitor Affinity via ATRP Polymer-Based Protein Engineering. Biomacromolecules 2014;15:2817-23. [DOI: 10.1021/bm5008629] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 5.7] [Reference Citation Analysis]
323 Chang X, Liu L, Guan Y, Dong C. Disulfide-centered star-shaped polypeptide-PEO block copolymers for reduction-triggered drug release. J Polym Sci Part A: Polym Chem 2014;52:2000-10. [DOI: 10.1002/pola.27207] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
324 Bogart LK, Pourroy G, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, Peer D, Lévy R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 2014;8:3107-22. [PMID: 24641589 DOI: 10.1021/nn500962q] [Cited by in Crossref: 212] [Cited by in F6Publishing: 218] [Article Influence: 23.6] [Reference Citation Analysis]
325 Hamley IW. PEG-peptide conjugates. Biomacromolecules 2014;15:1543-59. [PMID: 24720400 DOI: 10.1021/bm500246w] [Cited by in Crossref: 200] [Cited by in F6Publishing: 202] [Article Influence: 22.2] [Reference Citation Analysis]
326 Howley A, Kremenchutzky M. Pegylated Interferons: A Nurses’ Review of a Novel Multiple Sclerosis Therapy. Journal of Neuroscience Nursing 2014;46:88-96. [DOI: 10.1097/jnn.0000000000000039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
327 Anastasaki A, Haddleton AJ, Zhang Q, Simula A, Droesbeke M, Wilson P, Haddleton DM. Aqueous Copper-Mediated Living Radical Polymerisation of N -Acryloylmorpholine, SET-LRP in Water. Macromol Rapid Commun 2014;35:965-70. [DOI: 10.1002/marc.201400024] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 6.3] [Reference Citation Analysis]
328 Duro-castano A, Conejos-sánchez I, Vicent M. Peptide-Based Polymer Therapeutics. Polymers 2014;6:515-51. [DOI: 10.3390/polym6020515] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 8.6] [Reference Citation Analysis]
329 Cummings C, Murata H, Koepsel R, Russell AJ. Dramatically Increased pH and Temperature Stability of Chymotrypsin Using Dual Block Polymer-Based Protein Engineering. Biomacromolecules 2014;15:763-71. [DOI: 10.1021/bm401575k] [Cited by in Crossref: 93] [Cited by in F6Publishing: 93] [Article Influence: 10.3] [Reference Citation Analysis]
330 Badescu G, Bryant P, Swierkosz J, Khayrzad F, Pawlisz E, Farys M, Cong Y, Muroni M, Rumpf N, Brocchini S, Godwin A. A new reagent for stable thiol-specific conjugation. Bioconjug Chem 2014;25:460-9. [PMID: 24512057 DOI: 10.1021/bc400245v] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 5.0] [Reference Citation Analysis]
331 Liu Z, Dong C, Wang X, Wang H, Li W, Tan J, Chang J. Self-assembled biodegradable protein-polymer vesicle as a tumor-targeted nanocarrier. ACS Appl Mater Interfaces. 2014;6:2393-2400. [PMID: 24456410 DOI: 10.1021/am404734c] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 7.7] [Reference Citation Analysis]
332 Shang X, Ghosh R. Membrane reactor for continuous and selective protein mono-PEGylation. Journal of Membrane Science 2014;451:177-84. [DOI: 10.1016/j.memsci.2013.09.044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
333 Lim TC, Spector M. Biomaterials for CNS Injury. Vascular Mechanisms in CNS Trauma 2014. [DOI: 10.1007/978-1-4614-8690-9_18] [Reference Citation Analysis]
334 Dunlop IE, Ryan MP, Goode AE, Schuster C, Terrill NJ, Weaver JVM. Direct synthesis of PEG-encapsulated gold nanoparticles using branched copolymer nanoreactors. RSC Adv 2014;4:27702-7. [DOI: 10.1039/c4ra03500c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
335 Dai L, Li D, Cheng J, Liu J, Deng L, Wang L, Lei J, He J. Water soluble multiarm-polyethylene glycol–betulinic acid prodrugs: design, synthesis, and in vivo effectiveness. Polym Chem 2014;5:5775-83. [DOI: 10.1039/c4py00648h] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
336 Mcdowall L, Stenzel MH. Disulfide bridge based conjugation of peptides to RAFT polymers. Polym Chem 2014;5:1772-1781. [DOI: 10.1039/c3py01412f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
337 Levine PM, Craven TW, Bonneau R, Kirshenbaum K. Intrinsic bioconjugation for site-specific protein PEGylation at N-terminal serine. Chem Commun 2014;50:6909-12. [DOI: 10.1039/c4cc01928h] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
338 Wallat JD, Rose KA, Pokorski JK. Proteins as substrates for controlled radical polymerization. Polym Chem 2014;5:1545-58. [DOI: 10.1039/c3py01193c] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 5.1] [Reference Citation Analysis]
339 Tan M, Luo J, Tian Y. Delivering curcumin and gemcitabine in one nanoparticle platform for colon cancer therapy. RSC Adv 2014;4:61948-59. [DOI: 10.1039/c4ra10431e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
340 Borchmann DE, Carberry TP, Weck M. "Bio"-macromolecules: polymer-protein conjugates as emerging scaffolds for therapeutics. Macromol Rapid Commun 2014;35:27-43. [PMID: 24323623 DOI: 10.1002/marc.201300792] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
341 Vllasaliu D, Fowler R, Stolnik S. PEGylated nanomedicines: recent progress and remaining concerns. Expert Opinion on Drug Delivery 2013;11:139-54. [DOI: 10.1517/17425247.2014.866651] [Cited by in Crossref: 83] [Cited by in F6Publishing: 85] [Article Influence: 8.3] [Reference Citation Analysis]
342 Chaudhari PN, Chincholkar SB, Chaudhari BL. Biodegradation of feather keratin with a PEGylated protease of Chryseobacterium gleum. Process Biochemistry 2013;48:1952-63. [DOI: 10.1016/j.procbio.2013.09.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
343 Castelletto V, Gouveia RJ, Connon CJ, Hamley IW. Self-assembly and bioactivity of a polymer/peptide conjugate containing the RGD cell adhesion motif and PEG. European Polymer Journal 2013;49:2961-7. [DOI: 10.1016/j.eurpolymj.2013.02.016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
344 Janeček E, Rauwald U, del Barrio J, Cziferszky M, Scherman OA. A Facile Route to Viologen Functional Macromolecules through Azide-Alkyne [3+2] Cycloaddition. Macromol Rapid Commun 2013;34:1547-53. [DOI: 10.1002/marc.201300453] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
345 Lin P, Lin C, Mansour R, Gu F. Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosensors and Bioelectronics 2013;47:451-60. [DOI: 10.1016/j.bios.2013.01.071] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
346 Bondar O, Sagitova A, Badeev Y, Shtyrlin Y, Abdullin T. Conjugation of succinic acid to non-ionogenic amphiphilic polymers modulates their interaction with cell plasma membrane and reduces cytotoxic activity. Colloids and Surfaces B: Biointerfaces 2013;109:204-11. [DOI: 10.1016/j.colsurfb.2013.03.051] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
347 Spears BR, Waksal J, McQuade C, Lanier L, Harth E. Controlled branching of polyglycidol and formation of protein-glycidol bioconjugates via a graft-from approach with "PEG-like" arms. Chem Commun (Camb) 2013;49:2394-6. [PMID: 23370543 DOI: 10.1039/c3cc38369e] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 3.3] [Reference Citation Analysis]
348 Kim SJ, Ramsey DM, Boyer C, Davis TP, McAlpine SR. Effectively delivering a unique hsp90 inhibitor using star polymers. ACS Med Chem Lett 2013;4. [PMID: 24379910 DOI: 10.1021/ml400082b] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
349 Wurm FR, Klok HA. Be squared: expanding the horizon of squaric acid-mediated conjugations. Chem Soc Rev 2013;42:8220-36. [PMID: 23873344 DOI: 10.1039/c3cs60153f] [Cited by in Crossref: 101] [Cited by in F6Publishing: 105] [Article Influence: 10.1] [Reference Citation Analysis]
350 Maynard HD. Proteins in a pill. Nature Chem 2013;5:557-8. [DOI: 10.1038/nchem.1691] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
351 Dhal PK, Polomoscanik SC, Gianolio DA, Starremans PG, Busch M, Alving K, Chen B, Miller RJ. Well-Defined Aminooxy Terminated N -(2-Hydroxypropyl) Methacrylamide Macromers for Site Specific Bioconjugation of Glycoproteins. Bioconjugate Chem 2013;24:865-77. [DOI: 10.1021/bc300472e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
352 Marcano DC, Bitner BR, Berlin JM, Jarjour J, Lee JM, Jacob A, Fabian RH, Kent TA, Tour JM. Design of Poly(ethylene Glycol)-Functionalized Hydrophilic Carbon Clusters for Targeted Therapy of Cerebrovascular Dysfunction in Mild Traumatic Brain Injury. Journal of Neurotrauma 2013;30:789-96. [DOI: 10.1089/neu.2011.2301] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.0] [Reference Citation Analysis]
353 Pandey BK, Smith MS, Torgerson C, Lawrence PB, Matthews SS, Watkins E, Groves ML, Prigozhin MB, Price JL. Impact of site-specific PEGylation on the conformational stability and folding rate of the Pin WW domain depends strongly on PEG oligomer length. Bioconjug Chem 2013;24:796-802. [PMID: 23578107 DOI: 10.1021/bc3006122] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
354 Congdon T, Notman R, Gibson MI. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromolecules 2013;14:1578-86. [PMID: 23534826 DOI: 10.1021/bm400217j] [Cited by in Crossref: 150] [Cited by in F6Publishing: 156] [Article Influence: 15.0] [Reference Citation Analysis]
355 Dumas A, Spicer CD, Gao Z, Takehana T, Lin YA, Yasukohchi T, Davis BG. Self-Liganded Suzuki-Miyaura Coupling for Site-Selective Protein PEGylation. Angew Chem 2013;125:4008-13. [DOI: 10.1002/ange.201208626] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
356 Dumas A, Spicer CD, Gao Z, Takehana T, Lin YA, Yasukohchi T, Davis BG. Self-Liganded Suzuki-Miyaura Coupling for Site-Selective Protein PEGylation. Angew Chem Int Ed 2013;52:3916-21. [DOI: 10.1002/anie.201208626] [Cited by in Crossref: 90] [Cited by in F6Publishing: 91] [Article Influence: 9.0] [Reference Citation Analysis]
357 Dingels C, Müller SS, Steinbach T, Tonhauser C, Frey H. Universal Concept for the Implementation of a Single Cleavable Unit at Tunable Position in Functional Poly(ethylene glycol)s. Biomacromolecules 2013;14:448-59. [DOI: 10.1021/bm3016797] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 4.1] [Reference Citation Analysis]
358 Pak RH, Finn RF. Formulation Approaches and Strategies for PEGylated Biotherapeutics. Sterile Product Development 2013. [DOI: 10.1007/978-1-4614-7978-9_4] [Reference Citation Analysis]
359 Brown LR. Biomaterials in Their Role in Creating New Approaches for the Delivery of Drugs, Proteins, Nucleic Acids, and Mammalian Cells. Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays 2013. [DOI: 10.1007/978-3-642-25240-2_25] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
360 Dingels C, Frey H. From Biocompatible to Biodegradable: Poly(Ethylene Glycol)s with Predetermined Breaking Points. Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II 2013. [DOI: 10.1007/12_2013_235] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.1] [Reference Citation Analysis]
361 Wang H, He J, Zhang M, Tao Y, Li F, Tam KC, Ni P. Biocompatible and acid-cleavable poly(ε-caprolactone)-acetal-poly(ethylene glycol)-acetal-poly(ε-caprolactone) triblock copolymers: synthesis, characterization and pH-triggered doxorubicin delivery. J Mater Chem B 2013;1:6596. [DOI: 10.1039/c3tb21170c] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 5.5] [Reference Citation Analysis]
362 Dong C, Liu G. Linear–dendritic biodegradable block copolymers: from synthesis to application in bionanotechnology. Polym Chem 2013;4:46-52. [DOI: 10.1039/c2py20441j] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 4.4] [Reference Citation Analysis]
363 Mohamed-ahmed AHA, Ginn C, Croft SL, Brocchini S. Anti-infectives. Fundamentals of Pharmaceutical Nanoscience 2013. [DOI: 10.1007/978-1-4614-9164-4_16] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
364 Devadasu VR, Bhardwaj V, Kumar MN. Can controversial nanotechnology promise drug delivery? Chem Rev 2013;113:1686-735. [PMID: 23276295 DOI: 10.1021/cr300047q] [Cited by in Crossref: 155] [Cited by in F6Publishing: 159] [Article Influence: 14.1] [Reference Citation Analysis]
365 Chong S, Smith AAA, Zelikin AN. Microstructured, Functional PVA Hydrogels through Bioconjugation with Oligopeptides under Physiological Conditions. Small 2013;9:942-50. [DOI: 10.1002/smll.201201774] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 4.2] [Reference Citation Analysis]
366 Lundberg P, Lee BF, van den Berg SA, Pressly ED, Lee A, Hawker CJ, Lynd NA. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform. ACS Macro Lett 2012;1:1240-3. [PMID: 23205320 DOI: 10.1021/mz300477t] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
367 Dingels C, Wurm F, Wagner M, Klok H, Frey H. Squaric Acid Mediated Chemoselective PEGylation of Proteins: Reactivity of Single-Step-Activated α-Amino Poly(ethylene glycol)s. Chem Eur J 2012;18:16828-35. [DOI: 10.1002/chem.201200182] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
368 Ivens IA, Baumann A, Mcdonald TA, Humphries TJ, Michaels LA, Mathew P. PEGylated therapeutic proteins for haemophilia treatment: a review for haemophilia caregivers. Haemophilia 2013;19:11-20. [DOI: 10.1111/j.1365-2516.2012.02931.x] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 7.5] [Reference Citation Analysis]
369 Ahrens VM, Bellmann-sickert K, Beck-sickinger AG. Peptides and peptide conjugates: therapeutics on the upward path. Future Medicinal Chemistry 2012;4:1567-86. [DOI: 10.4155/fmc.12.76] [Cited by in Crossref: 99] [Cited by in F6Publishing: 108] [Article Influence: 9.0] [Reference Citation Analysis]
370 Shu JY, Lund R, Xu T. Solution Structural Characterization of Coiled-Coil Peptide–Polymer Side-Conjugates. Biomacromolecules 2012;13:1945-55. [DOI: 10.1021/bm300561y] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 2.8] [Reference Citation Analysis]
371 Mancini RJ, Lee J, Maynard HD. Trehalose Glycopolymers for Stabilization of Protein Conjugates to Environmental Stressors. J Am Chem Soc 2012;134:8474-9. [DOI: 10.1021/ja2120234] [Cited by in Crossref: 174] [Cited by in F6Publishing: 178] [Article Influence: 15.8] [Reference Citation Analysis]
372 Liu G, Dong C. Photoresponsive Poly( S -( o -nitrobenzyl)- l -cysteine)- b -PEO from a l -Cysteine N -Carboxyanhydride Monomer: Synthesis, Self-Assembly, and Phototriggered Drug Release. Biomacromolecules 2012;13:1573-83. [DOI: 10.1021/bm300304t] [Cited by in Crossref: 181] [Cited by in F6Publishing: 182] [Article Influence: 16.5] [Reference Citation Analysis]
373 Reinert ZE, Musselman ED, Elcock AH, Horne WS. A PEG-Based Oligomer as a Backbone Replacement for Surface-Exposed Loops in a Protein Tertiary Structure. ChemBioChem 2012;13:1107-11. [DOI: 10.1002/cbic.201200200] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
374 Wurm F, Dingels C, Frey H, Klok H. Squaric Acid Mediated Synthesis and Biological Activity of a Library of Linear and Hyperbranched Poly(Glycerol)–Protein Conjugates. Biomacromolecules 2012;13:1161-71. [DOI: 10.1021/bm300103u] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 5.4] [Reference Citation Analysis]
375 Saaka Y, Deller RC, Rodger A, Gibson MI. Exploiting Thermoresponsive Polymers to Modulate Lipophilicity: Interactions With Model Membranes. Macromol Rapid Commun 2012;33:779-84. [DOI: 10.1002/marc.201100873] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
376 Liao Y, Dong C. Synthesis, conformation transition, liquid crystal phase, and self-assembled morphology of thermosensitive homopolypeptide. J Polym Sci A Polym Chem 2012;50:1834-43. [DOI: 10.1002/pola.25953] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
377 Kontos S, Hubbell JA. Drug development: longer-lived proteins. Chem Soc Rev 2012;41:2686-95. [PMID: 22310725 DOI: 10.1039/c2cs15289d] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 4.8] [Reference Citation Analysis]
378 Houde D, Berkowitz SA. Conformational comparability of factor IX-Fc fusion protein, factor IX, and purified Fc fragment in the absence and presence of calcium. J Pharm Sci 2012;101:1688-700. [PMID: 22271461 DOI: 10.1002/jps.23064] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
379 Schwemmer T, Baumgartner J, Faivre D, Börner HG. Peptide-mediated nanoengineering of inorganic particle surfaces: a general route toward surface functionalization via peptide adhesion domains. J Am Chem Soc 2012;134:2385-91. [PMID: 22239472 DOI: 10.1021/ja2104944] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 4.2] [Reference Citation Analysis]
380 Farrell RA, Marta M, Gaeguta AJ, Souslova V, Giovannoni G, Creeke PI. Development of resistance to biologic therapies with reference to IFN-β. Rheumatology (Oxford) 2012;51:590-9. [PMID: 22258390 DOI: 10.1093/rheumatology/ker445] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.6] [Reference Citation Analysis]
381 Sumerlin BS. Proteins as Initiators of Controlled Radical Polymerization: Grafting-from via ATRP and RAFT. ACS Macro Lett 2012;1:141-5. [PMID: 35578469 DOI: 10.1021/mz200176g] [Cited by in Crossref: 172] [Cited by in F6Publishing: 170] [Article Influence: 15.6] [Reference Citation Analysis]
382 Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, Haddleton DM. Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents. J Am Chem Soc 2012;134:1847-52. [DOI: 10.1021/ja210335f] [Cited by in Crossref: 125] [Cited by in F6Publishing: 125] [Article Influence: 11.4] [Reference Citation Analysis]
383 Xu Y, Dong C. Dendron-like poly(ε-benzyloxycarbonyl- L -lysine)/linear PEO block copolymers: Synthesis, physical characterization, self-assembly, and drug-release behavior. J Polym Sci A Polym Chem 2012;50:1216-25. [DOI: 10.1002/pola.25886] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
384 Jung B, Theato P. Chemical Strategies for the Synthesis of Protein–Polymer Conjugates. Bio-synthetic Polymer Conjugates 2012. [DOI: 10.1007/12_2012_169] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 4.2] [Reference Citation Analysis]
385 Young RA, Malins EL, Becer CR. Investigations on the Combination of Cationic Ring Opening Polymerization and Single Electron Transfer Living Radical Polymerization to Synthesize 2-Ethyl-2-Oxazoline Block Copolymers. Aust J Chem 2012;65:1132. [DOI: 10.1071/ch12247] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
386 Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, Haddleton DM. Highly efficient disulfide bridging polymers for bioconjugates from radical-compatible dithiophenol maleimides. Chem Commun 2012;48:4064. [DOI: 10.1039/c2cc30259d] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 4.8] [Reference Citation Analysis]
387 Wilke P, Brooks WLA, Kühnle R, Sumerlin B, Börner HG. Activity Control of Mussel Glue Derived Enzymes: A Study on Thermoresponsive Tyrosinase-PNIPAM Conjugates. ACS Symposium Series 2012. [DOI: 10.1021/bk-2012-1101.ch018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
388 Zhang Q, Slavin S, Jones MW, Haddleton AJ, Haddleton DM. Terminal functional glycopolymers via a combination of catalytic chain transfer polymerisation (CCTP) followed by three consecutive click reactions. Polym Chem 2012;3:1016. [DOI: 10.1039/c2py20013a] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 4.4] [Reference Citation Analysis]
389 Zhao J, Schlaad H, Weidner S, Antonietti M. Synthesis of terpene–poly(ethylene oxide)s by t-BuP 4 -promoted anionic ring-opening polymerization. Polym Chem 2012;3:1763-8. [DOI: 10.1039/c1py00388g] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 3.4] [Reference Citation Analysis]
390 Cheng Y, He C, Xiao C, Ding J, Zhuang X, Chen X. Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). Polym Chem 2011;2:2627. [DOI: 10.1039/c1py00281c] [Cited by in Crossref: 80] [Cited by in F6Publishing: 80] [Article Influence: 6.7] [Reference Citation Analysis]