1 |
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. Biosensors (Basel) 2022;12:816. [PMID: 36290952 DOI: 10.3390/bios12100816] [Reference Citation Analysis]
|
2 |
Evtugyn G, Porfireva A, Tsekenis G, Oravczova V, Hianik T. Electrochemical Aptasensors for Antibiotics Detection: Recent Achievements and Applications for Monitoring Food Safety. Sensors (Basel) 2022;22:3684. [PMID: 35632093 DOI: 10.3390/s22103684] [Reference Citation Analysis]
|
3 |
Tang MQ, Xie J, Rao LM, Kan YJ, Luo P, Qing LS. Advances in aptamer-based sensing assays for C-reactive protein. Anal Bioanal Chem 2021. [PMID: 34581827 DOI: 10.1007/s00216-021-03674-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Trunzo NE, Hong KL. Recent Progress in the Identification of Aptamers Against Bacterial Origins and Their Diagnostic Applications. Int J Mol Sci 2020;21:E5074. [PMID: 32708376 DOI: 10.3390/ijms21145074] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
5 |
Zhang N, Zhang ZK, Yu Y, Zhuo Z, Zhang G, Zhang BT. Pros and Cons of Denosumab Treatment for Osteoporosis and Implication for RANKL Aptamer Therapy. Front Cell Dev Biol 2020;8:325. [PMID: 32478071 DOI: 10.3389/fcell.2020.00325] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
|
6 |
Zhou Z, Zhao L, Li W, Chen M, Feng H, Shi X, Liang J, Li G. Glypican-3 electrochemical aptamer nanobiosensor based on hemin/graphene nanohybrids peroxidase-like catalytic silver deposition. Mikrochim Acta 2020;187:305. [PMID: 32356075 DOI: 10.1007/s00604-020-04284-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
|
7 |
Minagawa H, Kataoka Y, Fujita H, Kuwahara M, Horii K, Shiratori I, Waga I. Modified DNA Aptamers for C-Reactive Protein and Lactate Dehydrogenase-5 with Sub-Nanomolar Affinities. Int J Mol Sci 2020;21:E2683. [PMID: 32294882 DOI: 10.3390/ijms21082683] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
8 |
Nosaz Z, Rasoulinejad S, Mousavi Gargari SL. Development of a DNA aptamer to detect Brucella abortus and Brucella melitensis through cell SELEX. Iran J Vet Res 2020;21:294-300. [PMID: 33584842] [Reference Citation Analysis]
|
9 |
Wu Y, Belmonte I, Sykes KS, Xiao Y, White RJ. Perspective on the Future Role of Aptamers in Analytical Chemistry. Anal Chem 2019;91:15335-44. [PMID: 31714748 DOI: 10.1021/acs.analchem.9b03853] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 14.8] [Reference Citation Analysis]
|
10 |
Komarova N, Kuznetsov A. Inside the Black Box: What Makes SELEX Better? Molecules 2019;24:E3598. [PMID: 31591283 DOI: 10.3390/molecules24193598] [Cited by in Crossref: 63] [Cited by in F6Publishing: 71] [Article Influence: 15.8] [Reference Citation Analysis]
|
11 |
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019;200:124-44. [DOI: 10.1016/j.talanta.2019.03.015] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 16.0] [Reference Citation Analysis]
|
12 |
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv. 2019;37:28-50. [PMID: 30408510 DOI: 10.1016/j.biotechadv.2018.11.001] [Cited by in Crossref: 205] [Cited by in F6Publishing: 215] [Article Influence: 41.0] [Reference Citation Analysis]
|
13 |
Jia W, Lu Z, Yang H, Li H, Xu D. Elimination terminal fixed region screening and high-throughput kinetic determination of aptamer for lipocalin-1 by surface plasmon resonance imaging. Anal Chim Acta 2018;1043:158-66. [PMID: 30392664 DOI: 10.1016/j.aca.2018.09.018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
|
14 |
Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK. Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity. Front Mol Biosci 2018;5:41. [PMID: 29868605 DOI: 10.3389/fmolb.2018.00041] [Cited by in Crossref: 73] [Cited by in F6Publishing: 79] [Article Influence: 14.6] [Reference Citation Analysis]
|
15 |
Vorobyeva MA, Davydova AS, Vorobjev PE, Venyaminova AG. Key Aspects of Nucleic Acid Library Design for in Vitro Selection. Int J Mol Sci 2018;19:E470. [PMID: 29401748 DOI: 10.3390/ijms19020470] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 7.4] [Reference Citation Analysis]
|
16 |
Lai JC, Horng HE, Hong CY. Multiplex Immunoassays Utilizing Differential Affinity Using Aptamers Generated by MARAS. Sci Rep 2017;7:6397. [PMID: 28743943 DOI: 10.1038/s41598-017-06950-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
17 |
Li H, Wen C, Hong C, Lai J. Evaluation of aptamer specificity with or without primers using clinical samples for C-reactive protein by magnetic-assisted rapid aptamer selection. RSC Adv 2017;7:42856-65. [DOI: 10.1039/c7ra07249j] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
|