BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang H, Linden SB, Wang J, Yu J, Nelson DC, Wei H. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci Rep 2015;5:17257. [PMID: 26607832 DOI: 10.1038/srep17257] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Linden SB, Alreja AB, Nelson DC. Application of bacteriophage-derived endolysins to combat streptococcal disease: current state and perspectives. Curr Opin Biotechnol 2021;68:213-20. [PMID: 33529969 DOI: 10.1016/j.copbio.2021.01.012] [Reference Citation Analysis]
2 Nizamudeen ZA, Xerri R, Parmenter C, Suain K, Markus R, Chakrabarti L, Sottile V. Low-Power Sonication Can Alter Extracellular Vesicle Size and Properties. Cells 2021;10:2413. [PMID: 34572062 DOI: 10.3390/cells10092413] [Reference Citation Analysis]
3 Khan FM, Gondil VS, Li C, Jiang M, Li J, Yu J, Wei H, Yang H. A Novel Acinetobacter baumannii Bacteriophage Endolysin LysAB54 With High Antibacterial Activity Against Multiple Gram-Negative Microbes. Front Cell Infect Microbiol 2021;11:637313. [PMID: 33738267 DOI: 10.3389/fcimb.2021.637313] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Yang H, Gong Y, Zhang H, Etobayeva I, Miernikiewicz P, Luo D, Li X, Zhang X, Dąbrowska K, Nelson DC, He J, Wei H. ClyJ Is a Novel Pneumococcal Chimeric Lysin with a Cysteine- and Histidine-Dependent Amidohydrolase/Peptidase Catalytic Domain. Antimicrob Agents Chemother 2019;63:e02043-18. [PMID: 30642930 DOI: 10.1128/AAC.02043-18] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
5 Vázquez R, Domenech M, Iglesias-Bexiga M, Menéndez M, García P. Csl2, a novel chimeric bacteriophage lysin to fight infections caused by Streptococcus suis, an emerging zoonotic pathogen. Sci Rep 2017;7:16506. [PMID: 29184097 DOI: 10.1038/s41598-017-16736-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 3.2] [Reference Citation Analysis]
6 Shang X, Nelson DC. Contributions of Net Charge on the PlyC Endolysin CHAP Domain. Antibiotics (Basel) 2019;8:E70. [PMID: 31142020 DOI: 10.3390/antibiotics8020070] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li W, Yang H, Gong Y, Wang S, Li Y, Wei H. Effects of a Chimeric Lysin against Planktonic and Sessile Enterococcus faecalis Hint at Potential Application in Endodontic Therapy. Viruses 2018;10:E290. [PMID: 29844267 DOI: 10.3390/v10060290] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
8 Li X, Wang S, Nyaruaba R, Liu H, Yang H, Wei H. A Highly Active Chimeric Lysin with a Calcium-Enhanced Bactericidal Activity against Staphylococcus aureus In Vitro and In Vivo. Antibiotics (Basel) 2021;10:461. [PMID: 33921682 DOI: 10.3390/antibiotics10040461] [Reference Citation Analysis]
9 Murray E, Draper LA, Ross RP, Hill C. The Advantages and Challenges of Using Endolysins in a Clinical Setting. Viruses 2021;13:680. [PMID: 33920965 DOI: 10.3390/v13040680] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zha J, Liu Z, Sun R, Gong G, Dordick JS, Wu X. Endolysin-Based Autolytic E. coli System for Facile Recovery of Recombinant Proteins. J Agric Food Chem 2021;69:3134-43. [PMID: 33656890 DOI: 10.1021/acs.jafc.1c00059] [Reference Citation Analysis]
11 Yang H, Xu J, Gong Y, Tang Y, Li W, Zheng Z, Li Y, He J, Wei H. Internal cell-penetrating peptide-mediated internalization enables a chimeric lysin to target intracellular pathogens. Int J Pharm 2021;599:120449. [PMID: 33711472 DOI: 10.1016/j.ijpharm.2021.120449] [Reference Citation Analysis]
12 Yang H, Luo D, Etobayeva I, Li X, Gong Y, Wang S, Li Q, Xu P, Yin W, He J, Nelson DC, Wei H. Linker Editing of Pneumococcal Lysin ClyJ Conveys Improved Bactericidal Activity. Antimicrob Agents Chemother 2020;64:e01610-19. [PMID: 31767724 DOI: 10.1128/AAC.01610-19] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
13 Zhu Y, Yan J, Mujtaba BM, Li Y, Wei H, Huang S. The dual anti-caries effect of carboxymethyl chitosan nanogel loaded with chimeric lysin ClyR and amorphous calcium phosphate. Eur J Oral Sci 2021;129:e12784. [PMID: 33786916 DOI: 10.1111/eos.12784] [Reference Citation Analysis]
14 Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, Sanmukh S, El-Shibiny A. Phage-Encoded Endolysins. Antibiotics (Basel) 2021;10:124. [PMID: 33525684 DOI: 10.3390/antibiotics10020124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
15 Gerstmans H, Criel B, Briers Y. Synthetic biology of modular endolysins. Biotechnology Advances 2018;36:624-40. [DOI: 10.1016/j.biotechadv.2017.12.009] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 16.5] [Reference Citation Analysis]
16 Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents 2020;55:105844. [PMID: 31715257 DOI: 10.1016/j.ijantimicag.2019.11.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
17 Huang L, Luo D, Gondil VS, Gong Y, Jia M, Yan D, He J, Hu S, Yang H, Wei H. Construction and characterization of a chimeric lysin ClyV with improved bactericidal activity against Streptococcus agalactiae in vitro and in vivo. Appl Microbiol Biotechnol 2020;104:1609-19. [PMID: 31900556 DOI: 10.1007/s00253-019-10325-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
18 Chang Y. Bacteriophage-Derived Endolysins Applied as Potent Biocontrol Agents to Enhance Food Safety. Microorganisms 2020;8:E724. [PMID: 32413991 DOI: 10.3390/microorganisms8050724] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
19 Rahimzadeh G, Gill P, Rezai MS. Endolysins of Bacteriophages as an Anti-Methicillin Resistant Staphylococcus aureus Infection in Children: A Narrative Review. J Pediatr Rev 2017;6. [DOI: 10.5812/jpr.11562] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
20 Ning HQ, Lin H, Wang JX. Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms. Int J Food Microbiol 2021;343:109112. [PMID: 33640572 DOI: 10.1016/j.ijfoodmicro.2021.109112] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Lee C, Kim J, Son B, Ryu S. Development of Advanced Chimeric Endolysin to Control Multidrug-Resistant Staphylococcus aureus through Domain Shuffling. ACS Infect Dis 2021;7:2081-92. [PMID: 34047546 DOI: 10.1021/acsinfecdis.0c00812] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Luo D, Huang L, Gondil VS, Zhou W, Yang W, Jia M, Hu S, He J, Yang H, Wei H. A Choline-Recognizing Monomeric Lysin, ClyJ-3m, Shows Elevated Activity against Streptococcus pneumoniae. Antimicrob Agents Chemother 2020;64:e00311-20. [PMID: 32958710 DOI: 10.1128/AAC.00311-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
23 Wu X, Liu J, Liu Z, Gong G, Zha J. Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnol Adv 2022;:107912. [PMID: 35041862 DOI: 10.1016/j.biotechadv.2022.107912] [Reference Citation Analysis]
24 Lee C, Kim H, Ryu S. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends. Critical Reviews in Food Science and Nutrition. [DOI: 10.1080/10408398.2022.2059442] [Reference Citation Analysis]
25 Hjelm LC, Nilvebrant J, Nygren PÅ, Nilsson AS, Seijsing J. Lysis of Staphylococcal Cells by Modular Lysin Domains Linked via a Non-covalent Barnase-Barstar Interaction Bridge. Front Microbiol 2019;10:558. [PMID: 30967850 DOI: 10.3389/fmicb.2019.00558] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
26 Xu J, Yang H, Bi Y, Li W, Wei H, Li Y. Activity of the Chimeric Lysin ClyR against Common Gram-Positive Oral Microbes and Its Anticaries Efficacy in Rat Models. Viruses 2018;10:E380. [PMID: 30036941 DOI: 10.3390/v10070380] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
27 Mondal SI, Draper LA, Ross RP, Hill C. Bacteriophage endolysins as a potential weapon to combat Clostridioides difficile infection. Gut Microbes 2020;12:1813533. [PMID: 32985336 DOI: 10.1080/19490976.2020.1813533] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
28 Grishin AV, Karyagina AS, Vasina DV, Vasina IV, Gushchin VA, Lunin VG. Resistance to peptidoglycan-degrading enzymes. Crit Rev Microbiol 2020;46:703-26. [PMID: 32985279 DOI: 10.1080/1040841X.2020.1825333] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, Sobieraj AM, Zinsli LV, Mairpady Shambat S, Leimer N, Keller AP, Eichenseher F, Shen Y, Korbsrisate S, Zinkernagel AS, Loessner MJ, Schmelcher M. Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus. mBio 2020;11:e00209-20. [PMID: 32291298 DOI: 10.1128/mBio.00209-20] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
30 Oliveira H, São-José C, Azeredo J. Phage-Derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for In Vivo Therapy. Viruses 2018;10:E292. [PMID: 29844287 DOI: 10.3390/v10060292] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 11.8] [Reference Citation Analysis]
31 Xu X, Zhang D, Zhou B, Zhen X, Ouyang S. Structural and biochemical analyses of the tetrameric cell binding domain of Lys170 from enterococcal phage F170/08. Eur Biophys J 2021;50:721-9. [PMID: 33609147 DOI: 10.1007/s00249-021-01511-x] [Reference Citation Analysis]
32 Krömker V, Leimbach S. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod Domest Anim 2017;52 Suppl 3:21-9. [PMID: 28815847 DOI: 10.1111/rda.13032] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 15.3] [Reference Citation Analysis]
33 São-José C. Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials. Antibiotics (Basel) 2018;7:E29. [PMID: 29565804 DOI: 10.3390/antibiotics7020029] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 13.8] [Reference Citation Analysis]
34 Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. Endolysin, a Promising Solution against Antimicrobial Resistance. Antibiotics (Basel) 2021;10:1277. [PMID: 34827215 DOI: 10.3390/antibiotics10111277] [Reference Citation Analysis]
35 Ning H, Lin H, Wang J, He X, Lv X, Ju L. Characterizations of the endolysin Lys84 and its domains from phage qdsa002 with high activities against Staphylococcus aureus and its biofilms. Enzyme Microb Technol 2021;148:109809. [PMID: 34116743 DOI: 10.1016/j.enzmictec.2021.109809] [Reference Citation Analysis]
36 Yang W, Gondil VS, Luo D, He J, Wei H, Yang H. Optimized Silica-Binding Peptide-Mediated Delivery of Bactericidal Lysin Efficiently Prevents Staphylococcus aureus from Adhering to Device Surfaces. Int J Mol Sci 2021;22:12544. [PMID: 34830425 DOI: 10.3390/ijms222212544] [Reference Citation Analysis]
37 Blázquez B, Fresco-Taboada A, Iglesias-Bexiga M, Menéndez M, García P. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species. Front Microbiol 2016;7:1156. [PMID: 27516758 DOI: 10.3389/fmicb.2016.01156] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
38 Tyagi JL, Sharma M, Gulati K, Kairamkonda M, Kumar D, Poluri KM. Engineering of a T7 Bacteriophage Endolysin Variant with Enhanced Amidase Activity. Biochemistry. [DOI: 10.1021/acs.biochem.1c00710] [Reference Citation Analysis]
39 Yang H, Bi Y, Shang X, Wang M, Linden SB, Li Y, Li Y, Nelson DC, Wei H. Antibiofilm Activities of a Novel Chimeolysin against Streptococcus mutans under Physiological and Cariogenic Conditions. Antimicrob Agents Chemother 2016;60:7436-43. [PMID: 27736755 DOI: 10.1128/AAC.01872-16] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
40 Son B, Kong M, Lee Y, Ryu S. Development of a Novel Chimeric Endolysin, Lys109 With Enhanced Lytic Activity Against Staphylococcus aureus. Front Microbiol 2020;11:615887. [PMID: 33519773 DOI: 10.3389/fmicb.2020.615887] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
41 Yang H, Zhang H, Wang J, Yu J, Wei H. A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm methicillin-resistant Staphylococcus aureus. Sci Rep 2017;7:40182. [PMID: 28067286 DOI: 10.1038/srep40182] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 6.2] [Reference Citation Analysis]