BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Faria M, Ziv T, Gómez-Canela C, Ben-Lulu S, Prats E, Novoa-Luna KA, Admon A, Piña B, Tauler R, Gómez-Oliván LM, Raldúa D. Acrylamide acute neurotoxicity in adult zebrafish. Sci Rep 2018;8:7918. [PMID: 29784925 DOI: 10.1038/s41598-018-26343-2] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Khabib MNH, Sivasanku Y, Lee HB, Kumar S, Kue CS. Alternative animal models in predictive toxicology. Toxicology 2022;465:153053. [PMID: 34838596 DOI: 10.1016/j.tox.2021.153053] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Palus K, Bulc M, Całka J. Changes in VIP-, SP- and CGRP- like immunoreactivity in intramural neurons within the pig stomach following supplementation with low and high doses of acrylamide. Neurotoxicology 2018;69:47-59. [PMID: 30222996 DOI: 10.1016/j.neuro.2018.09.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
3 Tang YQ, Li ZR, Zhang SZ, Mi P, Chen DY, Feng XZ. Venlafaxine plus melatonin ameliorate reserpine-induced depression-like behavior in zebrafish. Neurotoxicol Teratol 2019;76:106835. [PMID: 31518687 DOI: 10.1016/j.ntt.2019.106835] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
4 Hamdy SM, El-Khayat Z, Farrag AR, Sayed ON, El-Sayed MM, Massoud D. Hepatoprotective effect of Raspberry ketone and white tea against acrylamide-induced toxicity in rats. Drug Chem Toxicol 2020;:1-9. [PMID: 32482111 DOI: 10.1080/01480545.2020.1772279] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
5 Ma DD, Jiang YX, Zhang JG, Fang GZ, Huang GY, Shi WJ, Ying GG. Transgenerational effects of androstadienedione and androstenedione at environmentally relevant concentrations in zebrafish (Danio rerio). J Hazard Mater 2022;423:127261. [PMID: 34844370 DOI: 10.1016/j.jhazmat.2021.127261] [Reference Citation Analysis]
6 Bedrossiantz J, Bellot M, Dominguez-García P, Faria M, Prats E, Gómez-Canela C, López-Arnau R, Escubedo E, Raldúa D. A Zebrafish Model of Neurotoxicity by Binge-Like Methamphetamine Exposure. Front Pharmacol 2021;12:770319. [PMID: 34880760 DOI: 10.3389/fphar.2021.770319] [Reference Citation Analysis]
7 Oellig C, Gottstein E, Granvogl M. Analysis of acrylamide in vegetable chips after derivatization with 2-mercaptobenzoic acid by liquid chromatography–mass spectrometry. Eur Food Res Technol. [DOI: 10.1007/s00217-021-03898-5] [Reference Citation Analysis]
8 Liang X, Martyniuk CJ, Simmons DBD. Are we forgetting the "proteomics" in multi-omics ecotoxicology? Comp Biochem Physiol Part D Genomics Proteomics 2020;36:100751. [PMID: 33142247 DOI: 10.1016/j.cbd.2020.100751] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Devidas SB, Rahmatkar SN, Singh R, Sendri N, Purohit R, Singh D, Bhandari P. Amelioration of cognitive deficit in zebrafish by an undescribed anthraquinone from Juglans regia L.: An in-silico, in-vitro and in-vivo approach. Eur J Pharmacol 2021;906:174234. [PMID: 34090895 DOI: 10.1016/j.ejphar.2021.174234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 von Hellfeld R, Pannetier P, Braunbeck T. Specificity of time- and dose-dependent morphological endpoints in the fish embryo acute toxicity (FET) test for substances with diverse modes of action: the search for a "fingerprint". Environ Sci Pollut Res Int 2021. [PMID: 34643865 DOI: 10.1007/s11356-021-16354-4] [Reference Citation Analysis]
11 Krishnan M, Kang SC. Vitexin inhibits acrylamide-induced neuroinflammation and improves behavioral changes in zebrafish larvae. Neurotoxicol Teratol 2019;74:106811. [PMID: 31158445 DOI: 10.1016/j.ntt.2019.106811] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
12 Tomaszewska E, Dobrowolski P, Puzio I, Donaldson J, Muszyński S. Acrylamide-Induced Prenatal Programming of Bone Structure in Mammal Model. Annals of Animal Science 2020;20:1257-87. [DOI: 10.2478/aoas-2020-0044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
13 Ning W, Li S, Tsering J, Ma Y, Li H, Ma Y, Ogbuehi AC, Pan H, Li H, Hu S, Liu X, Deng Y, Zhang J, Hu X. Protective Effect of Triphala against Oxidative Stress-Induced Neurotoxicity. Biomed Res Int 2021;2021:6674988. [PMID: 33898626 DOI: 10.1155/2021/6674988] [Reference Citation Analysis]
14 Zhao S, Zhong H, Geng C, Xue H, Wang C, Sun W, Dang R, Han W, Jiang P. Comprehensive analysis of metabolic changes in rats exposed to acrylamide. Environ Pollut 2021;287:117591. [PMID: 34153608 DOI: 10.1016/j.envpol.2021.117591] [Reference Citation Analysis]
15 Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. Environ Toxicol Chem 2021;40:989-1006. [PMID: 33270929 DOI: 10.1002/etc.4951] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
16 Gómez-canela C, Rovira García X, Martínez-jerónimo F, Marcé RM, Barata C. Analysis of neurotransmitters in Daphnia magna affected by neuroactive pharmaceuticals using liquid chromatography-high resolution mass spectrometry. Environmental Pollution 2019;254:113029. [DOI: 10.1016/j.envpol.2019.113029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
17 Sharma C, Kang SC. Garcinol pacifies acrylamide induced cognitive impairments, neuroinflammation and neuronal apoptosis by modulating GSK signaling and activation of pCREB by regulating cathepsin B in the brain of zebrafish larvae. Food Chem Toxicol 2020;138:111246. [PMID: 32156567 DOI: 10.1016/j.fct.2020.111246] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
18 Biswas S, Bellare J. Adaptive mechanisms induced by sparingly soluble mercury sulfide (HgS) in zebrafish: Behavioural and proteomics analysis. Chemosphere 2021;270:129438. [PMID: 33429232 DOI: 10.1016/j.chemosphere.2020.129438] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Pullaguri N, Nema S, Bhargava Y, Bhargava A. Triclosan alters adult zebrafish behavior and targets acetylcholinesterase activity and expression. Environmental Toxicology and Pharmacology 2020;75:103311. [DOI: 10.1016/j.etap.2019.103311] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
20 Biswas S, Bellare J. Ayurvedic processing of α-HgS gives novel physicochemistry and distinct toxicokinetics in zebrafish. Chemosphere 2020;251:126295. [PMID: 32143074 DOI: 10.1016/j.chemosphere.2020.126295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Faria M, Valls A, Prats E, Bedrossiantz J, Orozco M, Porta JM, Gómez-Oliván LM, Raldúa D. Further characterization of the zebrafish model of acrylamide acute neurotoxicity: gait abnormalities and oxidative stress. Sci Rep 2019;9:7075. [PMID: 31068653 DOI: 10.1038/s41598-019-43647-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
22 Li Z, Sun J, Zhang D. Association between Acrylamide Hemoglobin Adduct Levels and Depressive Symptoms in US Adults: NHANES 2013-2016. J Agric Food Chem 2021;69:13762-71. [PMID: 34751566 DOI: 10.1021/acs.jafc.1c04647] [Reference Citation Analysis]
23 Deng L, Zhao M, Cui Y, Xia Q, Jiang L, Yin H, Zhao L. Acrylamide induces intrinsic apoptosis and inhibits protective autophagy via the ROS mediated mitochondrial dysfunction pathway in U87-MG cells. Drug Chem Toxicol 2021;:1-12. [PMID: 34551652 DOI: 10.1080/01480545.2021.1979030] [Reference Citation Analysis]
24 Mayol-Cabré M, Prats E, Raldúa D, Gómez-Canela C. Characterization of monoaminergic neurochemicals in the different brain regions of adult zebrafish. Sci Total Environ 2020;745:141205. [PMID: 32758735 DOI: 10.1016/j.scitotenv.2020.141205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Lu D, Ma R, Xie Q, Xu Z, Yuan J, Ren M, Li J, Li Y, Wang J. Application and advantages of zebrafish model in the study of neurovascular unit. Eur J Pharmacol 2021;910:174483. [PMID: 34481878 DOI: 10.1016/j.ejphar.2021.174483] [Reference Citation Analysis]
26 Meador JP. The fish early-life stage sublethal toxicity syndrome - A high-dose baseline toxicity response. Environ Pollut 2021;291:118201. [PMID: 34740289 DOI: 10.1016/j.envpol.2021.118201] [Reference Citation Analysis]
27 Park JS, Samanta P, Lee S, Lee J, Cho JW, Chun HS, Yoon S, Kim WK. Developmental and Neurotoxicity of Acrylamide to Zebrafish. Int J Mol Sci 2021;22:3518. [PMID: 33805345 DOI: 10.3390/ijms22073518] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Piña B, Raldúa D, Barata C, Portugal J, Navarro-martín L, Martínez R, Fuertes I, Casado M. Functional Data Analysis: Omics for Environmental Risk Assessment. Data Analysis for Omic Sciences: Methods and Applications. Elsevier; 2018. pp. 583-611. [DOI: 10.1016/bs.coac.2018.07.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Faria M, Prats E, Gómez-Canela C, Hsu CY, Arick MA 2nd, Bedrossiantz J, Orozco M, Garcia-Reyero N, Ziv T, Ben-Lulu S, Admon A, Gómez-Oliván LM, Raldúa D. Therapeutic potential of N-acetylcysteine in acrylamide acute neurotoxicity in adult zebrafish. Sci Rep 2019;9:16467. [PMID: 31712630 DOI: 10.1038/s41598-019-53154-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
30 Faria M, Bedrossiantz J, Ramírez JRR, Mayol M, García GH, Bellot M, Prats E, Garcia-reyero N, Gómez-canela C, Gómez-oliván LM, Raldúa D. Glyphosate targets fish monoaminergic systems leading to oxidative stress and anxiety. Environment International 2021;146:106253. [DOI: 10.1016/j.envint.2020.106253] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]