BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Osaki T, Sivathanu V, Kamm RD. Engineered 3D vascular and neuronal networks in a microfluidic platform. Sci Rep 2018;8:5168. [PMID: 29581463 DOI: 10.1038/s41598-018-23512-1] [Cited by in Crossref: 63] [Cited by in F6Publishing: 76] [Article Influence: 15.8] [Reference Citation Analysis]
Number Citing Articles
1 Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022. [PMID: 36070858 DOI: 10.1021/acs.chemrev.2c00212] [Reference Citation Analysis]
2 Peng B, Hao S, Tong Z, Bai H, Pan S, Lim KL, Li L, Voelcker NH, Huang W. Blood-brain barrier (BBB)-on-a-chip: a promising breakthrough in brain disease research. Lab Chip 2022. [PMID: 36004771 DOI: 10.1039/d2lc00305h] [Reference Citation Analysis]
3 Ma C, Seong H, Li X, Yu X, Xu S, Li Y, Chimenti I. Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells International 2022;2022:1-20. [DOI: 10.1155/2022/2150680] [Reference Citation Analysis]
4 Joddar B, Natividad-Diaz SL, Padilla AE, Esparza AA, Ramirez SP, Chambers DR, Ibaroudene H. Engineering Approaches for Cardiac Organoid formation and their characterization. Transl Res 2022:S1931-5244(22)00182-7. [PMID: 35995380 DOI: 10.1016/j.trsl.2022.08.009] [Reference Citation Analysis]
5 Malheiro A, Seijas-Gamardo A, Harichandan A, Mota C, Wieringa P, Moroni L. Development of an In Vitro Biomimetic Peripheral Neurovascular Platform. ACS Appl Mater Interfaces 2022;14:31567-85. [PMID: 35815638 DOI: 10.1021/acsami.2c03861] [Reference Citation Analysis]
6 Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Front Bioeng Biotechnol 2022;10:919646. [DOI: 10.3389/fbioe.2022.919646] [Reference Citation Analysis]
7 Neto E, Monteiro AC, Leite Pereira C, Simões M, Conde JP, Chu V, Sarmento B, Lamghari M. Micropathological Chip Modeling the Neurovascular Unit Response to Inflammatory Bone Condition. Adv Healthc Mater 2022;11:e2102305. [PMID: 35158409 DOI: 10.1002/adhm.202102305] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ning L, Shim J, Tomov ML, Liu R, Mehta R, Mingee A, Hwang B, Jin L, Mantalaris A, Xu C, Mahmoudi M, Goldsmith KC, Serpooshan V. A 3D Bioprinted in vitro Model of Neuroblastoma Recapitulates Dynamic Tumor-Endothelial Cell Interactions Contributing to Solid Tumor Aggressive Behavior. Adv Sci (Weinh) 2022;:e2200244. [PMID: 35644929 DOI: 10.1002/advs.202200244] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yin F, Su W, Wang L, Hu Q. Microfluidic strategies for the blood-brain barrier construction and assessment. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116689] [Reference Citation Analysis]
10 Kurosawa T, Sako D, Tega Y, Debori Y, Tomihara Y, Aoyama K, Kubo Y, Amano N, Deguchi Y. Construction and Functional Evaluation of a Three-Dimensional Blood–Brain Barrier Model Equipped With Human Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells. Pharm Res. [DOI: 10.1007/s11095-022-03249-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Wan Z, Zhong AX, Zhang S, Pavlou G, Coughlin MF, Shelton SE, Nguyen HT, Lorch JH, Barbie DA, Kamm RD. A Robust Method for Perfusable Microvascular Network Formation In Vitro. Small Methods. [DOI: 10.1002/smtd.202200143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kim G, Lee K, Choi J, An JH. Modified Industrial Three-Dimensional Polylactic Acid Scaffold Cell Chip Promotes the Proliferation and Differentiation of Human Neural Stem Cells. IJMS 2022;23:2204. [DOI: 10.3390/ijms23042204] [Reference Citation Analysis]
13 Hu Z, Cao Y, Galan EA, Hao L, Zhao H, Tang J, Sang G, Wang H, Xu B, Ma S. Vascularized Tumor Spheroid-on-a-Chip Model Verifies Synergistic Vasoprotective and Chemotherapeutic Effects. ACS Biomater Sci Eng 2022. [PMID: 35167260 DOI: 10.1021/acsbiomaterials.1c01099] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Kameda Y, Chuaychob S, Tanaka M, Liu Y, Okada R, Fujimoto K, Nakamura T, Yokokawa R. Three-dimensional tissue model in direct contact with an on-chip vascular bed enabled by removable membranes. Lab Chip 2022. [PMID: 35018934 DOI: 10.1039/d1lc00751c] [Reference Citation Analysis]
16 DePalma TJ, Sivakumar H, Skardal A. Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Adv Drug Deliv Rev 2022;180:114067. [PMID: 34822927 DOI: 10.1016/j.addr.2021.114067] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Kim BS, Cho WW, Gao G, Ahn M, Kim J, Cho DW. Construction of Tissue-Level Cancer-Vascular Model with High-Precision Position Control via In Situ 3D Cell Printing. Small Methods 2021;5:e2100072. [PMID: 34928000 DOI: 10.1002/smtd.202100072] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
18 Su C, Chuah YJ, Ong HB, Tay HM, Dalan R, Hou HW. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array. Biosensors (Basel) 2021;11:509. [PMID: 34940266 DOI: 10.3390/bios11120509] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Lauffer MC. Organ-on-a-chip technologies to study neuromuscular disorders: possibilities, limitations, and future hopes. Medizinische Genetik 2021;33:261-7. [DOI: 10.1515/medgen-2021-2085] [Reference Citation Analysis]
20 Mathur T, Tronolone JJ, Jain A. Comparative Analysis of Blood-Derived Endothelial Cells for Designing Next-Generation Personalized Organ-on-Chips. J Am Heart Assoc 2021;10:e022795. [PMID: 34743553 DOI: 10.1161/JAHA.121.022795] [Reference Citation Analysis]
21 Szklanny AA, Machour M, Redenski I, Chochola V, Goldfracht I, Kaplan B, Epshtein M, Simaan Yameen H, Merdler U, Feinberg A, Seliktar D, Korin N, Jaroš J, Levenberg S. 3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion. Adv Mater 2021;33:e2102661. [PMID: 34510579 DOI: 10.1002/adma.202102661] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
22 Sphabmixay P, Raredon MSB, Wang AJ, Lee H, Hammond PT, Fang NX, Griffith LG. High resolution stereolithography fabrication of perfusable scaffolds to enable long-term meso-scale hepatic culture for disease modeling. Biofabrication 2021;13. [PMID: 34479229 DOI: 10.1088/1758-5090/ac23aa] [Reference Citation Analysis]
23 Newman Frisch A, Debbi L, Shuhmaher M, Guo S, Levenberg S. Advances in vascularization and innervation of constructs for neural tissue engineering. Curr Opin Biotechnol 2021;73:188-97. [PMID: 34481245 DOI: 10.1016/j.copbio.2021.08.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, Greely HT, Bao Z, Paşca SP, Heilshorn SC. Advancing models of neural development with biomaterials. Nat Rev Neurosci 2021. [PMID: 34376834 DOI: 10.1038/s41583-021-00496-y] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
25 Ao Z, Cai H, Wu Z, Song S, Karahan H, Kim B, Lu HC, Kim J, Mackie K, Guo F. Tubular human brain organoids to model microglia-mediated neuroinflammation. Lab Chip 2021;21:2751-62. [PMID: 34021557 DOI: 10.1039/d1lc00030f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Jin Y, Cho SW. Bioengineering platforms for cell therapeutics derived from pluripotent and direct reprogramming. APL Bioeng 2021;5:031501. [PMID: 34258498 DOI: 10.1063/5.0040621] [Reference Citation Analysis]
27 Ching T, Toh YC, Hashimoto M, Zhang YS. Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment. Trends Pharmacol Sci 2021;42:715-28. [PMID: 34187693 DOI: 10.1016/j.tips.2021.05.007] [Reference Citation Analysis]
28 Malheiro A, Wieringa P, Moroni L. Peripheral neurovascular link: an overview of interactions and in vitro models. Trends Endocrinol Metab 2021;32:623-38. [PMID: 34127366 DOI: 10.1016/j.tem.2021.05.004] [Reference Citation Analysis]
29 Rimington RP, Fleming JW, Capel AJ, Wheeler PC, Lewis MP. Bioengineered model of the human motor unit with physiologically functional neuromuscular junctions. Sci Rep 2021;11:11695. [PMID: 34083648 DOI: 10.1038/s41598-021-91203-5] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
30 Fiorenzano A, Sozzi E, Parmar M, Storm P. Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing. Cells 2021;10:1366. [PMID: 34206038 DOI: 10.3390/cells10061366] [Reference Citation Analysis]
31 Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021;10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
32 Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. Biophysics Rev 2021;2:021305. [DOI: 10.1063/5.0048837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Kajtez J, Nilsson F, Fiorenzano A, Parmar M, Emnéus J. 3D biomaterial models of human brain disease. Neurochem Int 2021;147:105043. [PMID: 33887378 DOI: 10.1016/j.neuint.2021.105043] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Stoklund Dittlau K, Krasnow EN, Fumagalli L, Vandoorne T, Baatsen P, Kerstens A, Giacomazzi G, Pavie B, Rossaert E, Beckers J, Sampaolesi M, Van Damme P, Van Den Bosch L. Human motor units in microfluidic devices are impaired by FUS mutations and improved by HDAC6 inhibition. Stem Cell Reports 2021:S2213-6711(21)00160-0. [PMID: 33891869 DOI: 10.1016/j.stemcr.2021.03.029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Tronolone JJ, Jain A. Engineering new microvascular networks on-chip: ingredients, assembly, and best practices. Adv Funct Mater 2021;31:2007199. [PMID: 33994903 DOI: 10.1002/adfm.202007199] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
36 Lee J, Parthiban P, Jin G, Knowles JC, Kim H. Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science 2021;117:100732. [DOI: 10.1016/j.pmatsci.2020.100732] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
37 Russo K, Wharton KA. BMP/TGF-β signaling as a modulator of neurodegeneration in ALS. Dev Dyn 2021. [PMID: 33745185 DOI: 10.1002/dvdy.333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
38 Winkelman MA, Koppes AN, Koppes RA, Dai G. Bioengineering the neurovascular niche to study the interaction of neural stem cells and endothelial cells. APL Bioeng 2021;5:011507. [PMID: 33688617 DOI: 10.1063/5.0027211] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020;143:3181-213. [PMID: 33020798 DOI: 10.1093/brain/awaa268] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
40 Gupta S, You P, SenGupta T, Nilsen H, Sharma K. Crosstalk between Different DNA Repair Pathways Contributes to Neurodegenerative Diseases. Biology (Basel) 2021;10:163. [PMID: 33669593 DOI: 10.3390/biology10020163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Holloway PM, Willaime-Morawek S, Siow R, Barber M, Owens RM, Sharma AD, Rowan W, Hill E, Zagnoni M. Advances in microfluidic in vitro systems for neurological disease modeling. J Neurosci Res 2021;99:1276-307. [PMID: 33583054 DOI: 10.1002/jnr.24794] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
42 Wang H, Yang H, Shi Y, Xiao Y, Yin Y, Jiang B, Ren H, Chen W, Xue Q, Xu X. Reconstituting neurovascular unit with primary neural stem cells and brain microvascular endothelial cells in three-dimensional matrix. Brain Pathol 2021;31:e12940. [PMID: 33576166 DOI: 10.1111/bpa.12940] [Reference Citation Analysis]
43 Kannan S, Lee M, Muthusamy S, Blasiak A, Sriram G, Cao T. Peripheral sensory neurons promote angiogenesis in neurovascular models derived from hESCs. Stem Cell Res 2021;52:102231. [PMID: 33601097 DOI: 10.1016/j.scr.2021.102231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Amponsah AE, Guo R, Kong D, Feng B, He J, Zhang W, Liu X, Du X, Ma Z, Liu B, Ma J, Cui H. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer's disease. Rev Neurosci 2021;32:379-402. [PMID: 33550785 DOI: 10.1515/revneuro-2020-0065] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. Micromachines (Basel) 2021;12:124. [PMID: 33498905 DOI: 10.3390/mi12020124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
46 Caffrey TM, Button EB, Robert J. Toward three-dimensional in vitro models to study neurovascular unit functions in health and disease. Neural Regen Res 2021;16:2132-40. [PMID: 33818484 DOI: 10.4103/1673-5374.310671] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
47 Tan HY, Cho H, Lee LP. Human mini-brain models. Nat Biomed Eng 2021;5:11-25. [PMID: 33318650 DOI: 10.1038/s41551-020-00643-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
48 Lee J, Park D, Seo Y, Chung JJ, Jung Y, Kim SH. Organ-Level Functional 3D Tissue Constructs with Complex Compartments and their Preclinical Applications. Adv Mater 2020;32:e2002096. [PMID: 33103834 DOI: 10.1002/adma.202002096] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
49 Tenje M, Cantoni F, Porras Hernández AM, Searle SS, Johansson S, Barbe L, Antfolk M, Pohlit H. A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. Organs-on-a-Chip 2020;2:100003. [DOI: 10.1016/j.ooc.2020.100003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
50 Leroux A, Paiva Dos Santos B, Leng J, Oliveira H, Amédée J. Sensory neurons from dorsal root ganglia regulate endothelial cell function in extracellular matrix remodelling. Cell Commun Signal 2020;18:162. [PMID: 33076927 DOI: 10.1186/s12964-020-00656-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Jeon B, Lee G, Wufuer M, Huang Y, Choi Y, Kim S, Choi TH. Enhanced predictive capacity using dual-parameter chip model that simulates physiological skin irritation. Toxicology in Vitro 2020;68:104955. [DOI: 10.1016/j.tiv.2020.104955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Wang J, Wang H, Mo X, Wang H. Reduced Graphene Oxide-Encapsulated Microfiber Patterns Enable Controllable Formation of Neuronal-Like Networks. Adv Mater 2020;32:e2004555. [PMID: 32875631 DOI: 10.1002/adma.202004555] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
53 Nichols K, Koppes R, Koppes A. Recent advancements in microphysiological systems for neural development and disease. Current Opinion in Biomedical Engineering 2020;14:42-51. [DOI: 10.1016/j.cobme.2020.05.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020;9:e1901255. [PMID: 32100473 DOI: 10.1002/adhm.201901255] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
55 Pollet AMAO, den Toonder JMJ. Recapitulating the Vasculature Using Organ-On-Chip Technology. Bioengineering (Basel) 2020;7:E17. [PMID: 32085464 DOI: 10.3390/bioengineering7010017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
56 Rambøl MH, Han E, Niklason LE. Microvessel Network Formation and Interactions with Pancreatic Islets in Three-Dimensional Chip Cultures. Tissue Eng Part A 2020;26:556-68. [PMID: 31724494 DOI: 10.1089/ten.TEA.2019.0186] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
57 Chen LJ, Raut B, Nagai N, Abe T, Kaji H. Prototyping a Versatile Two-Layer Multi-Channel Microfluidic Device for Direct-Contact Cell-Vessel Co-Culture. Micromachines (Basel) 2020;11:E79. [PMID: 31936821 DOI: 10.3390/mi11010079] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
58 Germeys C, Vandoorne T, Bercier V, Van Den Bosch L. Existing and Emerging Metabolomic Tools for ALS Research. Genes (Basel) 2019;10:E1011. [PMID: 31817338 DOI: 10.3390/genes10121011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
59 Subramaniyan Parimalam S, Badilescu S, Sonenberg N, Bhat R, Packirisamy M. Lab-On-A-Chip for the Development of Pro-/Anti-Angiogenic Nanomedicines to Treat Brain Diseases. Int J Mol Sci 2019;20:E6126. [PMID: 31817343 DOI: 10.3390/ijms20246126] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
60 Jodat YA, Kang MG, Kiaee K, Kim GJ, Martinez AFH, Rosenkranz A, Bae H, Shin SR. Human-Derived Organ-on-a-Chip for Personalized Drug Development. Curr Pharm Des 2018;24:5471-86. [PMID: 30854951 DOI: 10.2174/1381612825666190308150055] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 11.7] [Reference Citation Analysis]
61 Roux GL, Jarray R, Guyot AC, Pavoni S, Costa N, Théodoro F, Nassor F, Pruvost A, Tournier N, Kiyan Y, Langer O, Yates F, Deslys JP, Mabondzo A. Proof-of-Concept Study of Drug Brain Permeability Between in Vivo Human Brain and an in Vitro iPSCs-Human Blood-Brain Barrier Model. Sci Rep 2019;9:16310. [PMID: 31690750 DOI: 10.1038/s41598-019-52213-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
62 Soucy JR, Bindas AJ, Koppes AN, Koppes RA. Instrumented Microphysiological Systems for Real-Time Measurement and Manipulation of Cellular Electrochemical Processes. iScience 2019;21:521-48. [PMID: 31715497 DOI: 10.1016/j.isci.2019.10.052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
63 Bang S, Jeong S, Choi N, Kim HN. Brain-on-a-chip: A history of development and future perspective. Biomicrofluidics 2019;13:051301. [PMID: 31616534 DOI: 10.1063/1.5120555] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
64 Herron LA, Hansen CS, Abaci HE. Engineering tissue-specific blood vessels. Bioeng Transl Med 2019;4:e10139. [PMID: 31572797 DOI: 10.1002/btm2.10139] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
65 Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019;56:8489-512. [PMID: 31264092 DOI: 10.1007/s12035-019-01653-2] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
66 Condina MR, Dilmetz BA, Razavi Bazaz S, Meneses J, Ebrahimi Warkiani M, Hoffmann P. Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry. Lab Chip 2019;19:1961-70. [PMID: 31099359 DOI: 10.1039/c9lc00152b] [Cited by in Crossref: 22] [Cited by in F6Publishing: 4] [Article Influence: 7.3] [Reference Citation Analysis]
67 Escribano J, Chen MB, Moeendarbary E, Cao X, Shenoy V, Garcia-Aznar JM, Kamm RD, Spill F. Balance of mechanical forces drives endothelial gap formation and may facilitate cancer and immune-cell extravasation. PLoS Comput Biol 2019;15:e1006395. [PMID: 31048903 DOI: 10.1371/journal.pcbi.1006395] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
68 Virumbrales-Muñoz M, Ayuso JM, Lacueva A, Randelovic T, Livingston MK, Beebe DJ, Oliván S, Pereboom D, Doblare M, Fernández L, Ochoa I. Enabling cell recovery from 3D cell culture microfluidic devices for tumour microenvironment biomarker profiling. Sci Rep 2019;9:6199. [PMID: 30996291 DOI: 10.1038/s41598-019-42529-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
69 Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X. Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 2019;9:565-611. [PMID: 30873582 DOI: 10.1002/cphy.c180025] [Cited by in Crossref: 34] [Cited by in F6Publishing: 48] [Article Influence: 11.3] [Reference Citation Analysis]
70 Little D, Ketteler R, Gissen P, Devine MJ. Using stem cell-derived neurons in drug screening for neurological diseases. Neurobiol Aging 2019;78:130-41. [PMID: 30925301 DOI: 10.1016/j.neurobiolaging.2019.02.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
71 Álvarez-García YR, Ramos-Cruz KP, Agostini-Infanzón RJ, Stallcop LE, Beebe DJ, Warrick JW, Domenech M. Open multi-culture platform for simple and flexible study of multi-cell type interactions. Lab Chip 2018;18:3184-95. [PMID: 30204194 DOI: 10.1039/c8lc00560e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
72 Hu C, Chen Y, Tan MJA, Ren K, Wu H. Microfluidic technologies for vasculature biomimicry. Analyst 2019;144:4461-71. [DOI: 10.1039/c9an00421a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 5.3] [Reference Citation Analysis]
73 Ueno H, Yamada K, Suzuki T. Integration Method of Microchannel and Vertical Micromesh Structure for Three-Dimensional Cell Culture Using Inclined Exposure and Inclined Oxygen Ashing. Micromachines (Basel) 2018;9:E681. [PMID: 30572685 DOI: 10.3390/mi9120681] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
74 Cekanaviciute E, Rosi S, Costes SV. Central Nervous System Responses to Simulated Galactic Cosmic Rays. Int J Mol Sci 2018;19:E3669. [PMID: 30463349 DOI: 10.3390/ijms19113669] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
75 Osaki T, Uzel SGM, Kamm RD. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci Adv 2018;4:eaat5847. [PMID: 30324134 DOI: 10.1126/sciadv.aat5847] [Cited by in Crossref: 120] [Cited by in F6Publishing: 158] [Article Influence: 30.0] [Reference Citation Analysis]
76 Korhonen P, Malm T, White AR. 3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int. 2018;120:191-199. [PMID: 30176269 DOI: 10.1016/j.neuint.2018.08.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]