BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Batlle C, de Groot NS, Iglesias V, Navarro S, Ventura S. Characterization of Soft Amyloid Cores in Human Prion-Like Proteins. Sci Rep 2017;7:12134. [PMID: 28935930 DOI: 10.1038/s41598-017-09714-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Wang W, Ventura S. Prion domains as a driving force for the assembly of functional nanomaterials. Prion 2020;14:170-9. [PMID: 32597308 DOI: 10.1080/19336896.2020.1785659] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
2 Díaz-Caballero M, Navarro S, Ventura S. Functionalized Prion-Inspired Amyloids for Biosensor Applications. Biomacromolecules 2021;22:2822-33. [PMID: 34196531 DOI: 10.1021/acs.biomac.1c00222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Gil-Garcia M, Iglesias V, Pallarès I, Ventura S. Prion-like proteins: from computational approaches to proteome-wide analysis. FEBS Open Bio 2021. [PMID: 34057308 DOI: 10.1002/2211-5463.13213] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
4 Batlle C, Calvo I, Iglesias V, J Lynch C, Gil-Garcia M, Serrano M, Ventura S. MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation. Commun Biol 2021;4:414. [PMID: 33772081 DOI: 10.1038/s42003-021-01930-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
5 Armaos A, Zacco E, Sanchez de Groot N, Tartaglia GG. RNA-protein interactions: Central players in coordination of regulatory networks. Bioessays 2021;43:e2000118. [PMID: 33284474 DOI: 10.1002/bies.202000118] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
6 Bianchi G, Longhi S, Grandori R, Brocca S. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci. 2020;21. [PMID: 32867340 DOI: 10.3390/ijms21176208] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
7 Cascarina SM, Ross ED. Natural and pathogenic protein sequence variation affecting prion-like domains within and across human proteomes. BMC Genomics 2020;21:23. [PMID: 31914925 DOI: 10.1186/s12864-019-6425-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Marassi V, Beretti F, Roda B, Alessandrini A, Facci P, Maraldi T, Zattoni A, Reschiglian P, Portolani M. A new approach for the separation, characterization and testing of potential prionoid protein aggregates through hollow-fiber flow field-flow fractionation and multi-angle light scattering. Anal Chim Acta 2019;1087:121-30. [PMID: 31585560 DOI: 10.1016/j.aca.2019.08.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
9 Wang W, Navarro S, Azizyan RA, Baño-Polo M, Esperante SA, Kajava AV, Ventura S. Prion soft amyloid core driven self-assembly of globular proteins into bioactive nanofibrils. Nanoscale 2019;11:12680-94. [PMID: 31237592 DOI: 10.1039/c9nr01755k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
10 Cascarina SM, Ross ED. Natural and Pathogenic Protein Sequence Variation Affecting Prion-Like Domains Within and Across Human Proteomes.. [DOI: 10.1101/626648] [Reference Citation Analysis]
11 Fernández MR, Pallarès I, Iglesias V, Santos J, Ventura S. Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization. Methods Mol Biol 2019;1958:237-61. [PMID: 30945222 DOI: 10.1007/978-1-4939-9161-7_12] [Reference Citation Analysis]
12 Iglesias V, Paladin L, Juan-Blanco T, Pallarès I, Aloy P, Tosatto SCE, Ventura S. In silico Characterization of Human Prion-Like Proteins: Beyond Neurological Diseases. Front Physiol 2019;10:314. [PMID: 30971948 DOI: 10.3389/fphys.2019.00314] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
13 Sarnataro D. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases. Int J Mol Sci 2018;19:E3081. [PMID: 30304819 DOI: 10.3390/ijms19103081] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
14 Kaur G, Kapoor S, Thakur KG. Bacillus subtilis HelD, an RNA Polymerase Interacting Helicase, Forms Amyloid-Like Fibrils. Front Microbiol 2018;9:1934. [PMID: 30186259 DOI: 10.3389/fmicb.2018.01934] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
15 Pallarès I, de Groot NS, Iglesias V, Sant'Anna R, Biosca A, Fernàndez-Busquets X, Ventura S. Discovering Putative Prion-Like Proteins in Plasmodium falciparum: A Computational and Experimental Analysis. Front Microbiol 2018;9:1737. [PMID: 30131778 DOI: 10.3389/fmicb.2018.01737] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
16 Duernberger Y, Liu S, Riemschoss K, Paulsen L, Bester R, Kuhn PH, Schölling M, Lichtenthaler SF, Vorberg I. Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance. Mol Cell Biol 2018;38:e00111-18. [PMID: 29784771 DOI: 10.1128/MCB.00111-18] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
17 Tetz G, Tetz V. Prion-like Domains in Eukaryotic Viruses. Sci Rep 2018;8:8931. [PMID: 29895872 DOI: 10.1038/s41598-018-27256-w] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]