BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Glynn C, Sawaya MR, Ge P, Gallagher-Jones M, Short CW, Bowman R, Apostol M, Zhou ZH, Eisenberg DS, Rodriguez JA. Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol 2020;27:417-23. [PMID: 32284600 DOI: 10.1038/s41594-020-0403-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 41] [Article Influence: 13.5] [Reference Citation Analysis]
Number Citing Articles
1 Li Q, Jaroniec CP, Surewicz WK. Cryo-EM structure of disease-related prion fibrils provides insights into seeding barriers. Nat Struct Mol Biol 2022. [PMID: 36097290 DOI: 10.1038/s41594-022-00833-4] [Reference Citation Analysis]
2 Yagita K, Noguchi H, Koyama S, Hamasaki H, Komori T, Aishima S, Kosaka T, Ueda M, Komohara Y, Watanabe A, Sasagasako N, Ninomiya T, Oda Y, Honda H. Chronological Changes in the Expression Pattern of Hippocampal Prion Proteins During Disease Progression in Sporadic Creutzfeldt-Jakob Disease MM1 Subtype. J Neuropathol Exp Neurol 2022:nlac078. [PMID: 36063412 DOI: 10.1093/jnen/nlac078] [Reference Citation Analysis]
3 Manka SW, Wenborn A, Collinge J, Wadsworth JDF. Prion strains viewed through the lens of cryo-EM. Cell Tissue Res 2022. [PMID: 36028585 DOI: 10.1007/s00441-022-03676-z] [Reference Citation Analysis]
4 Otaki H, Taguchi Y, Nishida N. Conformation-Dependent Influences of Hydrophobic Amino Acids in Two In-Register Parallel β-Sheet Amyloids, an α-Synuclein Amyloid and a Local Structural Model of PrP Sc. ACS Omega. [DOI: 10.1021/acsomega.2c03523] [Reference Citation Analysis]
5 Chen EH, Kao HW, Lee CH, Huang JYC, Wu KP, Chen RP. 2.2 Å Cryo-EM Tetra-Protofilament Structure of the Hamster Prion 108-144 Fibril Reveals an Ordered Water Channel in the Center. J Am Chem Soc 2022. [PMID: 35857020 DOI: 10.1021/jacs.2c05479] [Reference Citation Analysis]
6 Manka SW, Zhang W, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, Wadsworth JDF. 2.7 Å cryo-EM structure of ex vivo RML prion fibrils. Nat Commun 2022;13:4004. [PMID: 35831275 DOI: 10.1038/s41467-022-30457-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
7 Hoyt F, Standke HG, Artikis E, Schwartz CL, Hansen B, Li K, Hughson AG, Manca M, Thomas OR, Raymond GJ, Race B, Baron GS, Caughey B, Kraus A. Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains. Nat Commun 2022;13:4005. [PMID: 35831291 DOI: 10.1038/s41467-022-30458-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
8 Hallinan GI, Ozcan KA, Hoq MR, Cracco L, Vago FS, Bharath SR, Li D, Jacobsen M, Doud EH, Mosley AL, Fernandez A, Garringer HJ, Jiang W, Ghetti B, Vidal R. Cryo-EM structures of prion protein filaments from Gerstmann-Sträussler-Scheinker disease. Acta Neuropathol 2022. [PMID: 35819518 DOI: 10.1007/s00401-022-02461-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
9 Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022;:102181. [PMID: 35752366 DOI: 10.1016/j.jbc.2022.102181] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Taylor AIP, Staniforth RA. General Principles Underpinning Amyloid Structure. Front Neurosci 2022;16:878869. [PMID: 35720732 DOI: 10.3389/fnins.2022.878869] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Larsson JNK, Nyström S, Hammarström P. HSP10 as a Chaperone for Neurodegenerative Amyloid Fibrils. Front Neurosci 2022;16:902600. [DOI: 10.3389/fnins.2022.902600] [Reference Citation Analysis]
12 Li D, Liu C. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Nat Rev Neurosci. [DOI: 10.1038/s41583-022-00603-7] [Reference Citation Analysis]
13 Chu BK, Tsai R, Hung C, Kuo Y, Chen EH, Chiang Y, Chan SI, Chen RP. Location of the cross‐β structure in prion fibrils: A search by seeding and electron spin resonance spectroscopy. Protein Science 2022;31. [DOI: 10.1002/pro.4326] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Subedi S, Sasidharan S, Nag N, Saudagar P, Tripathi T. Amyloid Cross-Seeding: Mechanism, Implication, and Inhibition. Molecules 2022;27:1776. [PMID: 35335141 DOI: 10.3390/molecules27061776] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022;200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Reference Citation Analysis]
16 Uliassi E, Nikolic L, Bolognesi ML, Legname G. Therapeutic strategies for identifying small molecules against prion diseases. Cell Tissue Res 2022. [PMID: 34989851 DOI: 10.1007/s00441-021-03573-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Russo L, Salzano G, Corvino A, Bistaffa E, Moda F, Celauro L, D'abrosca G, Isernia C, Milardi D, Giachin G, Malgieri G, Legname G, Fattorusso R. Structural and dynamical determinants of a β-sheet-enriched intermediate involved in amyloid fibrillar assembly of human prion protein. Chem Sci . [DOI: 10.1039/d2sc00345g] [Reference Citation Analysis]
18 Roterman I, Stapor K, Gądek K, Gubała T, Nowakowski P, Fabian P, Konieczny L. On the Dependence of Prion and Amyloid Structure on the Folding Environment. Int J Mol Sci 2021;22:13494. [PMID: 34948291 DOI: 10.3390/ijms222413494] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Kraus A, Hoyt F, Schwartz CL, Hansen B, Artikis E, Hughson AG, Raymond GJ, Race B, Baron GS, Caughey B. High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell 2021;81:4540-4551.e6. [PMID: 34433091 DOI: 10.1016/j.molcel.2021.08.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 36] [Article Influence: 1.0] [Reference Citation Analysis]
20 Roterman I, Stapor K, Fabian P, Konieczny L. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Int J Mol Sci 2021;22:10587. [PMID: 34638925 DOI: 10.3390/ijms221910587] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
21 Roh IS, Kim YC, Kim HJ, Won SY, Jeong MJ, Hwang JY, Kang HE, Sohn HJ, Jeong BH. Polymorphisms of the prion-related protein gene are strongly associated with cervids' susceptibility to chronic wasting disease. Vet Rec 2021;:e940. [PMID: 34562285 DOI: 10.1002/vetr.940] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
22 Wang LQ, Zhao K, Yuan HY, Li XN, Dang HB, Ma Y, Wang Q, Wang C, Sun Y, Chen J, Li D, Zhang D, Yin P, Liu C, Liang Y. Genetic prion disease-related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM. Sci Adv 2021;7:eabg9676. [PMID: 34516876 DOI: 10.1126/sciadv.abg9676] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
23 Zhu C, Aguzzi A. Prion protein and prion disease at a glance. J Cell Sci 2021;134:jcs245605. [PMID: 34472604 DOI: 10.1242/jcs.245605] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Carta M, Aguzzi A. Molecular foundations of prion strain diversity. Curr Opin Neurobiol 2021;72:22-31. [PMID: 34416480 DOI: 10.1016/j.conb.2021.07.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
25 Willbold D, Strodel B, Schröder GF, Hoyer W, Heise H. Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids. Chem Rev 2021;121:8285-307. [PMID: 34137605 DOI: 10.1021/acs.chemrev.1c00196] [Cited by in Crossref: 5] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
26 Zielinski M, Röder C, Schröder GF. Challenges in sample preparation and structure determination of amyloids by cryo-EM. J Biol Chem 2021;297:100938. [PMID: 34224730 DOI: 10.1016/j.jbc.2021.100938] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
27 Lutter L, Aubrey LD, Xue WF. On the Structural Diversity and Individuality of Polymorphic Amyloid Protein Assemblies. J Mol Biol 2021;:167124. [PMID: 34224749 DOI: 10.1016/j.jmb.2021.167124] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
28 Singh S, Agarwal A, Avni A, Mukhopadhyay S. Ultrasensitive Characterization of the Prion Protein by Surface-Enhanced Raman Scattering: Selective Enhancement via Electrostatic Tethering of the Intrinsically Disordered Domain with Functionalized Silver Nanoparticles. J Phys Chem Lett 2021;12:3187-94. [PMID: 33759537 DOI: 10.1021/acs.jpclett.1c00240] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Sanz-Hernández M, Barritt JD, Sobek J, Hornemann S, Aguzzi A, De Simone A. Mechanism of misfolding of the human prion protein revealed by a pathological mutation. Proc Natl Acad Sci U S A 2021;118:e2019631118. [PMID: 33731477 DOI: 10.1073/pnas.2019631118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
30 König AS, Rösener NS, Gremer L, Tusche M, Flender D, Reinartz E, Hoyer W, Neudecker P, Willbold D, Heise H. Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. J Biol Chem 2021;296:100499. [PMID: 33667547 DOI: 10.1016/j.jbc.2021.100499] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
31 Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Front Bioeng Biotechnol 2021;9:641372. [PMID: 33748087 DOI: 10.3389/fbioe.2021.641372] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
32 Li D, Liu C. Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nat Chem Biol 2021;17:237-45. [PMID: 33432239 DOI: 10.1038/s41589-020-00708-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
33 Lee M, Ghosh U, Thurber KR, Kato M, Tycko R. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS. Nat Commun 2020;11:5735. [PMID: 33184287 DOI: 10.1038/s41467-020-19512-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
34 Yu KH, Lee CI. Quercetin Disaggregates Prion Fibrils and Decreases Fibril-Induced Cytotoxicity and Oxidative Stress. Pharmaceutics 2020;12:E1081. [PMID: 33187342 DOI: 10.3390/pharmaceutics12111081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Peccati F, Díaz-Caballero M, Navarro S, Rodríguez-Santiago L, Ventura S, Sodupe M. Atomistic fibrillar architectures of polar prion-inspired heptapeptides. Chem Sci 2020;11:13143-51. [PMID: 34094496 DOI: 10.1039/d0sc05638c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
36 Tittelmeier J, Nachman E, Nussbaum-Krammer C. Molecular Chaperones: A Double-Edged Sword in Neurodegenerative Diseases. Front Aging Neurosci 2020;12:581374. [PMID: 33132902 DOI: 10.3389/fnagi.2020.581374] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
37 Ghosh R, Kishore N. Physicochemical Insights into the Role of Drug Functionality in Fibrillation Inhibition of Bovine Serum Albumin. J Phys Chem B 2020;124:8989-9008. [DOI: 10.1021/acs.jpcb.0c06167] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
38 Gallardo R, Iadanza MG, Xu Y, Heath GR, Foster R, Radford SE, Ranson NA. Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Nat Struct Mol Biol 2020;27:1048-56. [PMID: 32929282 DOI: 10.1038/s41594-020-0496-3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 30] [Article Influence: 10.5] [Reference Citation Analysis]
39 Bianchi G, Longhi S, Grandori R, Brocca S. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci. 2020;21. [PMID: 32867340 DOI: 10.3390/ijms21176208] [Cited by in Crossref: 12] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
40 Kreutzer AG, Samdin TD, Guaglianone G, Spencer RK, Nowick JS. X-ray Crystallography Reveals Parallel and Antiparallel β-Sheet Dimers of a β-Hairpin Derived from Aβ16-36 that Assemble to Form Different Tetramers. ACS Chem Neurosci 2020;11:2340-7. [PMID: 32584538 DOI: 10.1021/acschemneuro.0c00290] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
41 Requena JR. The protean prion protein. PLoS Biol 2020;18:e3000754. [PMID: 32584805 DOI: 10.1371/journal.pbio.3000754] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
42 [DOI: 10.1101/2021.02.14.431014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Reference Citation Analysis]