BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allué-Guardia A, Olmo-Fontánez A, Gautam S, Garcia-Vilanova A, Ye C, Chiem K, Headley C, Dwivedi V, Parodi LM, Alfson KJ, Staples HM, Schami A, Garcia JI, Whigham A, Platt RN 2nd, Gazi M, Martinez J, Chuba C, Earley S, Rodriguez OH, Mdaki SD, Kavelish KN, Escalona R, Hallam CRA, Christie C, Patterson JL, Anderson TJC, Carrion R Jr, Dick EJ Jr, Hall-Ursone S, Schlesinger LS, Alvarez X, Kaushal D, Giavedoni LD, Turner J, Martinez-Sobrido L, Torrelles JB. Lethality of SARS-CoV-2 infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun 2020;11:6122. [PMID: 33257679 DOI: 10.1038/s41467-020-19891-7] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 32.5] [Reference Citation Analysis]
Number Citing Articles
1 Noy-Porat T, Edri A, Alcalay R, Makdasi E, Gur D, Aftalion M, Evgy Y, Beth-Din A, Levy Y, Epstein E, Radinsky O, Zauberman A, Lazar S, Yitzhaki S, Marcus H, Porgador A, Rosenfeld R, Mazor O. Fc-Independent Protection from SARS-CoV-2 Infection by Recombinant Human Monoclonal Antibodies. Antibodies (Basel) 2021;10:45. [PMID: 34842604 DOI: 10.3390/antib10040045] [Reference Citation Analysis]
2 Winkler MS, Skirecki T, Brunkhorst FM, Cajander S, Cavaillon JM, Ferrer R, Flohé SB, García-Salido A, Giamarellos-Bourboulis EJ, Girardis M, Kox M, Lachmann G, Martin-Loeches I, Netea MG, Spinetti T, Schefold JC, Torres A, Uhle F, Venet F, Weis S, Scherag A, Rubio I, Osuchowski MF. Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine 2021;66:103291. [PMID: 33813139 DOI: 10.1016/j.ebiom.2021.103291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Colunga Biancatelli RML, Solopov PA, Sharlow ER, Lazo JS, Marik PE, Catravas JD. The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. Am J Physiol Lung Cell Mol Physiol 2021;321:L477-84. [PMID: 34156871 DOI: 10.1152/ajplung.00223.2021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
4 Qin Z, Liu F, Blair R, Wang C, Yang H, Mudd J, Currey JM, Iwanaga N, He J, Mi R, Han K, Midkiff CC, Alam MA, Aktas BH, Heide RSV, Veazey R, Piedimonte G, Maness NJ, Ergün S, Mauvais-Jarvis F, Rappaport J, Kolls JK, Qin X. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics 2021;11:8076-91. [PMID: 34335981 DOI: 10.7150/thno.61810] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
5 Bastard P, Zhang Q, Zhang S, Jouanguy E, Casanova J. Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology 2022. [DOI: 10.1016/j.coi.2022.01.003] [Reference Citation Analysis]
6 Wong TY, Lee KS, Russ BP, Horspool AM, Kang J, Winters MT, Allison Wolf M, Rader NA, Miller OA, Shiflett M, Izac J, Varisco D, Sen-kilic E, Cunningham C, Cooper M, Cyphert HA, Barbier M, Martinez I, Bevere JR, Ernst RK, Damron FH. Intranasal administration of BReC-CoV-2 COVID-19 vaccine protects K18-hACE2 mice against lethal SARS-CoV-2 challenge. npj Vaccines 2022;7. [DOI: 10.1038/s41541-022-00451-7] [Reference Citation Analysis]
7 Quan BX, Shuai H, Xia AJ, Hou Y, Zeng R, Liu XL, Lin GF, Qiao JX, Li WP, Wang FL, Wang K, Zhou RJ, Yuen TT, Chen MX, Yoon C, Wu M, Zhang SY, Huang C, Wang YF, Yang W, Tian C, Li WM, Wei YQ, Yuen KY, Chan JF, Lei J, Chu H, Yang S. An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nat Microbiol 2022. [PMID: 35477751 DOI: 10.1038/s41564-022-01119-7] [Reference Citation Analysis]
8 Dampalla CS, Zheng J, Perera KD, Wong LR, Meyerholz DK, Nguyen HN, Kashipathy MM, Battaile KP, Lovell S, Kim Y, Perlman S, Groutas WC, Chang KO. Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2021;118:e2101555118. [PMID: 34210738 DOI: 10.1073/pnas.2101555118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Achdout H, Vitner EB, Politi B, Melamed S, Yahalom-Ronen Y, Tamir H, Erez N, Avraham R, Weiss S, Cherry L, Bar-Haim E, Makdasi E, Gur D, Aftalion M, Chitlaru T, Vagima Y, Paran N, Israely T. Increased lethality in influenza and SARS-CoV-2 coinfection is prevented by influenza immunity but not SARS-CoV-2 immunity. Nat Commun 2021;12:5819. [PMID: 34611155 DOI: 10.1038/s41467-021-26113-1] [Reference Citation Analysis]
10 Veenhuis RT, Zeiss CJ. Animal Models of COVID-19 II. Comparative Immunology. ILAR J 2021:ilab010. [PMID: 33914873 DOI: 10.1093/ilar/ilab010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
11 Zang J, Zhu Y, Zhou Y, Gu C, Yi Y, Wang S, Xu S, Hu G, Du S, Yin Y, Wang Y, Yang Y, Zhang X, Wang H, Yin F, Zhang C, Deng Q, Xie Y, Huang Z. Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discov 2021;7:71. [PMID: 34408130 DOI: 10.1038/s41421-021-00315-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
12 Cecon E, Izabelle C, Poder SL, Real F, Zhu A, Tu L, Ghigna MR, Klonjkowski B, Bomsel M, Jockers R, Dam J. Therapeutic potential of melatonin and melatonergic drugs on K18-hACE2 mice infected with SARS-CoV-2. J Pineal Res 2022;72:e12772. [PMID: 34586649 DOI: 10.1111/jpi.12772] [Reference Citation Analysis]
13 Ciurkiewicz M, Armando F, Schreiner T, de Buhr N, Pilchová V, Krupp-Buzimikic V, Gabriel G, von Köckritz-Blickwede M, Baumgärtner W, Schulz C, Gerhauser I. Ferrets are valuable models for SARS-CoV-2 research. Vet Pathol 2022;:3009858211071012. [PMID: 35001763 DOI: 10.1177/03009858211071012] [Reference Citation Analysis]
14 Badeti S, Tseng HC, Romanienko P, Yehia G, Liu D. Development of a Novel Human CD147 Transgenic NSG Mouse Model to test SARS-CoV-2 Infection and Immune Responses. Res Sq 2021:rs. [PMID: 33851148 DOI: 10.21203/rs.3.rs-396257/v1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Xiong S, Zhang L, Richner JM, Class J, Rehman J, Malik AB. Interleukin-1RA Mitigates SARS-CoV-2-Induced Inflammatory Lung Vascular Leakage and Mortality in Humanized K18-hACE-2 Mice. Arterioscler Thromb Vasc Biol 2021;41:2773-85. [PMID: 34496633 DOI: 10.1161/ATVBAHA.121.316925] [Reference Citation Analysis]
16 Butowt R, Meunier N, Bryche B, von Bartheld CS. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol 2021;141:809-22. [PMID: 33903954 DOI: 10.1007/s00401-021-02314-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 22] [Article Influence: 36.0] [Reference Citation Analysis]
17 Asaka MN, Utsumi D, Kamada H, Nagata S, Nakachi Y, Yamaguchi T, Kawaoka Y, Kuba K, Yasutomi Y. Highly susceptible SARS-CoV-2 model in CAG promoter-driven hACE2-transgenic mice. JCI Insight 2021;6:e152529. [PMID: 34463644 DOI: 10.1172/jci.insight.152529] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Bi Z, Hong W, Yang J, Lu S, Peng X. Animal models for SARS-CoV-2 infection and pathology. MedComm (2020) 2021. [PMID: 34909757 DOI: 10.1002/mco2.98] [Reference Citation Analysis]
19 Oladunni FS, Park JG, Chiem K, Ye C, Pipenbrink M, Walter MR, Kobie J, Martinez-Sobrido L. Selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants. J Virol Methods 2021;290:114084. [PMID: 33513380 DOI: 10.1016/j.jviromet.2021.114084] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Carossino M, Kenney D, O'Connell AK, Montanaro P, Tseng AE, Gertje HP, Grosz KA, Ericsson M, Huber BR, Kurnick SA, Subramaniam S, Kirkland TA, Walker JR, Francis KP, Klose AD, Paragas N, Bosmann M, Saeed M, Balasuriya UBR, Douam F, Crossland NA. Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression. Viruses 2022;14:535. [PMID: 35336942 DOI: 10.3390/v14030535] [Reference Citation Analysis]
21 Yang J, Kim E, Lee JS, Poo H. A Murine CD8+ T Cell Epitope Identified in the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2021;9:641. [PMID: 34208032 DOI: 10.3390/vaccines9060641] [Reference Citation Analysis]
22 Liu X, Mostafavi H, Ng WH, Freitas JR, King NJC, Zaid A, Taylor A, Mahalingam S. The Delta SARS-CoV-2 Variant of Concern Induces Distinct Pathogenic Patterns of Respiratory Disease in K18-hACE2 Transgenic Mice Compared to the Ancestral Strain from Wuhan. mBio 2022;:e0068322. [PMID: 35420469 DOI: 10.1128/mbio.00683-22] [Reference Citation Analysis]
23 [DOI: 10.1101/2021.02.05.429937] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol 2021;19:425-41. [PMID: 33824495 DOI: 10.1038/s41579-021-00542-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
25 Hassler L, Wysocki J, Gelarden I, Tomatsidou A, Gula H, Nicoleascu V, Randall G, Henkin J, Yeldandi A, Batlle D. A novel soluble ACE2 protein totally protects from lethal disease caused by SARS-CoV-2 infection. bioRxiv 2021:2021. [PMID: 33758841 DOI: 10.1101/2021.03.12.435191] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Michelitsch A, Wernike K, Ulrich L, Mettenleiter TC, Beer M. SARS-CoV-2 in animals: From potential hosts to animal models. Adv Virus Res 2021;110:59-102. [PMID: 34353482 DOI: 10.1016/bs.aivir.2021.03.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
27 Vidal E, López-Figueroa C, Rodon J, Pérez M, Brustolin M, Cantero G, Guallar V, Izquierdo-Useros N, Carrillo J, Blanco J, Clotet B, Vergara-Alert J, Segalés J. Chronological brain lesions after SARS-CoV-2 infection in hACE2-transgenic mice. Vet Pathol 2021;:3009858211066841. [PMID: 34955064 DOI: 10.1177/03009858211066841] [Reference Citation Analysis]
28 Yu P, Deng W, Bao L, Qu Y, Xu Y, Zhao W, Han Y, Qin C. Comparative pathology of the nasal epithelium in K18-hACE2 Tg mice, hACE2 Tg mice, and hamsters infected with SARS-CoV-2. Vet Pathol. [DOI: 10.1177/03009858211071016] [Reference Citation Analysis]
29 VanBlargan L, Adams L, Liu Z, Chen RE, Gilchuk P, Raju S, Smith B, Zhao H, Case JB, Winkler ES, Whitener B, Droit L, Aziati I, Shi PY, Creanga A, Pegu A, Handley S, Wang D, Boon A, Crowe JE, Whelan SPJ, Fremont D, Diamond M. A potently neutralizing anti-SARS-CoV-2 antibody inhibits variants of concern by binding a highly conserved epitope. bioRxiv 2021:2021. [PMID: 33907753 DOI: 10.1101/2021.04.26.441501] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
30 Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, Nargi RS, Sutton RE, Winkler ES, Chen EC, Fouch ME, Davidson E, Doranz BJ, Carnahan RH, Thackray LB, Diamond MS, Crowe JE. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. bioRxiv 2021:2021. [PMID: 33501445 DOI: 10.1101/2021.01.19.427324] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 17.0] [Reference Citation Analysis]
31 Seehusen F, Clark JJ, Sharma P, Bentley EG, Kirby A, Subramaniam K, Wunderlin-giuliani S, Hughes GL, Patterson EI, Michael BD, Owen A, Hiscox JA, Stewart JP, Kipar A. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses 2022;14:1020. [DOI: 10.3390/v14051020] [Reference Citation Analysis]
32 Borchers C, Thyagarajan A, Rapp CM, Travers JB, Sahu RP. Evaluation of SARS-CoV-2 Spike S1 Protein Response on PI3K-Mediated IL-8 Release. Med Sci (Basel) 2021;9:30. [PMID: 34069835 DOI: 10.3390/medsci9020030] [Reference Citation Analysis]
33 Chiem K, Morales Vasquez D, Silvas JA, Park JG, Piepenbrink MS, Sourimant J, Lin MJ, Greninger AL, Plemper RK, Torrelles JB, Walter MR, de la Torre JC, Kobie JK, Ye C, Martinez-Sobrido L. A Bifluorescent-Based Assay for the Identification of Neutralizing Antibodies against SARS-CoV-2 Variants of Concern In Vitro and In Vivo. J Virol 2021;95:e0112621. [PMID: 34495697 DOI: 10.1128/JVI.01126-21] [Reference Citation Analysis]
34 Silvas JA, Vasquez DM, Park JG, Chiem K, Allué-Guardia A, Garcia-Vilanova A, Platt RN, Miorin L, Kehrer T, Cupic A, Gonzalez-Reiche AS, Bakel HV, García-Sastre A, Anderson T, Torrelles JB, Ye C, Martinez-Sobrido L. Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. J Virol 2021;95:e0040221. [PMID: 34133899 DOI: 10.1128/JVI.00402-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, Jonsson CB, Kanneganti TD. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol 2021;22:829-38. [PMID: 33963333 DOI: 10.1038/s41590-021-00937-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
36 Dangi T, Class J, Palacio N, Richner JM, Penaloza MacMaster P. Combining spike- and nucleocapsid-based vaccines improves distal control of SARS-CoV-2. Cell Rep 2021;36:109664. [PMID: 34450033 DOI: 10.1016/j.celrep.2021.109664] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
37 [DOI: 10.1101/2021.03.09.434696] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
38 Ferrantelli F, Chiozzini C, Manfredi F, Leone P, Spada M, Di Virgilio A, Giovannelli A, Sanchez M, Cara A, Michelini Z, Federico M. Strong SARS-CoV-2 N-Specific CD8+ T Immunity Induced by Engineered Extracellular Vesicles Associates with Protection from Lethal Infection in Mice. Viruses 2022;14:329. [DOI: 10.3390/v14020329] [Reference Citation Analysis]
39 Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, Davis SL, Komm O, Powell JD, D'Alessio FR, Yolken RH, Jain SK, Jones-Brando L. Sulforaphane exhibits in vitro and in vivo antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses. bioRxiv 2021:2021. [PMID: 33791708 DOI: 10.1101/2021.03.25.437060] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Potter H, Kendall L, Boyd T, Sillau S, Bosco-Lauth A, Markham N, Fong D, Clarke P, Tyler K. GM-CSF Promotes Immune Response and Survival in a Mouse Model of COVID-19. Res Sq 2022:rs. [PMID: 35118463 DOI: 10.21203/rs.3.rs-1213395/v1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Peng L, Hu Y, Mankowski MC, Ren P, Chen RE, Wei J, Zhao M, Li T, Tripler T, Ye L, Chow RD, Fang Z, Wu C, Dong MB, Cook M, Wang G, Clark P, Nelson B, Klein D, Sutton R, Diamond MS, Wilen CB, Xiong Y, Chen S. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. bioRxiv 2021:2021. [PMID: 34981065 DOI: 10.1101/2021.12.21.473733] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
42 Mabrouk MT, Chiem K, Rujas E, Huang WC, Jahagirdar D, Quinn B, Surendran Nair M, Nissly RH, Cavener VS, Boyle NR, Sornberger TA, Kuchipudi SV, Ortega J, Julien JP, Martinez-Sobrido L, Lovell J. Lyophilized, thermostable Spike or RBD immunogenic liposomes induce protective immunity against SARS-CoV-2 in mice. Sci Adv 2021;7:eabj1476. [PMID: 34851667 DOI: 10.1126/sciadv.abj1476] [Reference Citation Analysis]
43 Hoffmann D, Corleis B, Rauch S, Roth N, Mühe J, Halwe NJ, Ulrich L, Fricke C, Schön J, Kraft A, Breithaupt A, Wernike K, Michelitsch A, Sick F, Wylezich C, Hoffmann B, Thran M, Thess A, Mueller SO, Mettenleiter TC, Petsch B, Dorhoi A, Beer M. CVnCoV and CV2CoV protect human ACE2 transgenic mice from ancestral B BavPat1 and emerging B.1.351 SARS-CoV-2. Nat Commun 2021;12:4048. [PMID: 34193869 DOI: 10.1038/s41467-021-24339-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
44 Baldwin J, Piplani S, Sakala IG, Honda-Okubo Y, Li L, Petrovsky N. Rapid development of analytical methods for evaluating pandemic vaccines: a COVID-19 perspective. Bioanalysis 2021;13:1805-26. [PMID: 34645288 DOI: 10.4155/bio-2021-0096] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 Callahan V, Hawks S, Crawford MA, Lehman CW, Morrison HA, Ivester HM, Akhrymuk I, Boghdeh N, Flor R, Finkielstein CV, Allen IC, Weger-Lucarelli J, Duggal N, Hughes MA, Kehn-Hall K. The Pro-Inflammatory Chemokines CXCL9, CXCL10 and CXCL11 Are Upregulated Following SARS-CoV-2 Infection in an AKT-Dependent Manner. Viruses 2021;13:1062. [PMID: 34205098 DOI: 10.3390/v13061062] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
46 Chong Z, Karl CE, Halfmann PJ, Kawaoka Y, Winkler ES, Keeler SP, Holtzman MJ, Yu J, Diamond MS. Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron. Cell Rep 2022;:110799. [PMID: 35523172 DOI: 10.1016/j.celrep.2022.110799] [Reference Citation Analysis]
47 Choudhary S, Kanevsky I, Tomlinson L. Animal models for studying covid-19, prevention, and therapy: Pathology and disease phenotypes. Vet Pathol 2022;:3009858221092015. [PMID: 35451341 DOI: 10.1177/03009858221092015] [Reference Citation Analysis]
48 Horspool AM, Ye C, Wong TY, Russ BP, Lee KS, Winters MT, Bevere JR, Kieffer T, Martinez I, Sourimant J, Greninger A, Plemper RK, Denvir J, Cyphert HA, Torrelles J, Martinez-Sobrido L, Damron FH. SARS-CoV-2 B.1.1.7 and B.1.351 variants of concern induce lethal disease in K18-hACE2 transgenic mice despite convalescent plasma therapy. bioRxiv 2021:2021. [PMID: 33972945 DOI: 10.1101/2021.05.05.442784] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Seibert B, Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Geiger G, Rajao DS, Ottesen E, Perez DR. Mild and Severe SARS-CoV-2 Infection Induces Respiratory and Intestinal Microbiome Changes in the K18-hACE2 Transgenic Mouse Model. Microbiol Spectr 2021;9:e0053621. [PMID: 34378965 DOI: 10.1128/Spectrum.00536-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Maurin M, Fenollar F, Mediannikov O, Davoust B, Devaux C, Raoult D. Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms 2021;9:868. [PMID: 33920724 DOI: 10.3390/microorganisms9040868] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
51 Rosenfeld R, Noy-Porat T, Mechaly A, Makdasi E, Levy Y, Alcalay R, Falach R, Aftalion M, Epstein E, Gur D, Chitlaru T, Vitner EB, Melamed S, Politi B, Zauberman A, Lazar S, Beth-Din A, Evgy Y, Yitzhaki S, Shapira SC, Israely T, Mazor O. Post-exposure protection of SARS-CoV-2 lethal infected K18-hACE2 transgenic mice by neutralizing human monoclonal antibody. Nat Commun 2021;12:944. [PMID: 33574228 DOI: 10.1038/s41467-021-21239-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 20.0] [Reference Citation Analysis]
52 Zarkoob H, Allué-Guardia A, Chen YC, Jung O, Garcia-Vilanova A, Song MJ, Park JG, Oladunni F, Miller J, Tung YT, Kosik I, Schultz D, Yewdell J, Torrelles JB, Martinez-Sobrido L, Cherry S, Ferrer M, Lee EM. Modeling SARS-CoV-2 and Influenza Infections and Antiviral Treatments in Human Lung Epithelial Tissue Equivalents. bioRxiv 2021:2021. [PMID: 34013274 DOI: 10.1101/2021.05.11.443693] [Reference Citation Analysis]
53 Rawle DJ, Le TT, Dumenil T, Yan K, Tang B, Nguyen W, Watterson D, Modhiran N, Hobson-Peters J, Bishop C, Suhrbier A. ACE2-lentiviral transduction enables mouse SARS-CoV-2 infection and mapping of receptor interactions. PLoS Pathog 2021;17:e1009723. [PMID: 34214142 DOI: 10.1371/journal.ppat.1009723] [Reference Citation Analysis]
54 Mills RJ, Humphrey SJ, Fortuna PRJ, Lor M, Foster SR, Quaife-Ryan GA, Johnston RL, Dumenil T, Bishop C, Rudraraju R, Rawle DJ, Le T, Zhao W, Lee L, Mackenzie-Kludas C, Mehdiabadi NR, Halliday C, Gilham D, Fu L, Nicholls SJ, Johansson J, Sweeney M, Wong NCW, Kulikowski E, Sokolowski KA, Tse BWC, Devilée L, Voges HK, Reynolds LT, Krumeich S, Mathieson E, Abu-Bonsrah D, Karavendzas K, Griffen B, Titmarsh D, Elliott DA, McMahon J, Suhrbier A, Subbarao K, Porrello ER, Smyth MJ, Engwerda CR, MacDonald KPA, Bald T, James DE, Hudson JE. BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell 2021;184:2167-2182.e22. [PMID: 33811809 DOI: 10.1016/j.cell.2021.03.026] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
55 Puhl AC, Gomes GF, Damasceno S, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Monakhova N, Riabova O, Lane TR, Makarov V, Veras FP, Batah SS, Fabro AT, Oliva G, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Pyronaridine Protects against SARS-CoV-2 Infection in Mouse. ACS Infect Dis 2022;8:1147-60. [PMID: 35609344 DOI: 10.1021/acsinfecdis.2c00091] [Reference Citation Analysis]
56 Stegmann KM, Dickmanns A, Heinen N, Blaurock C, Karrasch T, Breithaupt A, Klopfleisch R, Uhlig N, Eberlein V, Issmail L, Herrmann ST, Schreieck A, Peelen E, Kohlhof H, Sadeghi B, Riek A, Speakman JR, Groß U, Görlich D, Vitt D, Müller T, Grunwald T, Pfaender S, Balkema-Buschmann A, Dobbelstein M. Inhibitors of dihydroorotate dehydrogenase cooperate with Molnupiravir and N4-hydroxycytidine to suppress SARS-CoV-2 replication. iScience 2022;:104293. [PMID: 35492218 DOI: 10.1016/j.isci.2022.104293] [Reference Citation Analysis]
57 Joaquín Cáceres C, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. bioRxiv 2021:2021. [PMID: 33532776 DOI: 10.1101/2021.01.27.428428] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
58 Bilinska K, von Bartheld CS, Butowt R. Expression of the ACE2 Virus Entry Protein in the Nervus Terminalis Reveals the Potential for an Alternative Route to Brain Infection in COVID-19. Front Cell Neurosci 2021;15:674123. [PMID: 34290590 DOI: 10.3389/fncel.2021.674123] [Reference Citation Analysis]
59 Jessop F, Schwarz B, Scott D, Roberts LM, Bohrnsen E, Hoidal JR, Bosio CM. Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice. JCI Insight 2022;7:e155896. [DOI: 10.1172/jci.insight.155896] [Reference Citation Analysis]
60 Groß R, Dias Loiola LM, Issmail L, Uhlig N, Eberlein V, Conzelmann C, Olari LR, Rauch L, Lawrenz J, Weil T, Müller JA, Cardoso MB, Gilg A, Larsson O, Höglund U, Pålsson SA, Tvilum AS, Løvschall KB, Kristensen MM, Spetz AL, Hontonnou F, Galloux M, Grunwald T, Zelikin AN, Münch J. Macromolecular Viral Entry Inhibitors as Broad-Spectrum First-Line Antivirals with Activity against SARS-CoV-2. Adv Sci (Weinh) 2022;:e2201378. [PMID: 35543527 DOI: 10.1002/advs.202201378] [Reference Citation Analysis]
61 Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Sci Rep 2021;11:9609. [PMID: 33953295 DOI: 10.1038/s41598-021-89013-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
62 VanBlargan LA, Adams LJ, Liu Z, Chen RE, Gilchuk P, Raju S, Smith BK, Zhao H, Case JB, Winkler ES, Whitener BM, Droit L, Aziati ID, Bricker TL, Joshi A, Shi PY, Creanga A, Pegu A, Handley SA, Wang D, Boon ACM, Crowe JE Jr, Whelan SPJ, Fremont DH, Diamond MS. A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity 2021;54:2399-2416.e6. [PMID: 34481543 DOI: 10.1016/j.immuni.2021.08.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
63 Rathnasinghe R, Salvatore M, Zheng H, Jangra S, Kehrer T, Mena I, Schotsaert M, Muster T, Palese P, García-Sastre A. Interferon mediated prophylactic protection against respiratory viruses conferred by a prototype live attenuated influenza virus vaccine lacking non-structural protein 1. Sci Rep 2021;11:22164. [PMID: 34773048 DOI: 10.1038/s41598-021-01780-8] [Reference Citation Analysis]
64 Bilinska K, von Bartheld CS, Butowt R. Expression of the ACE2 virus entry protein in the nervus terminalis reveals the potential for an alternative route to brain infection in COVID-19. bioRxiv 2021:2021. [PMID: 33880469 DOI: 10.1101/2021.04.11.439398] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Tamir H, Melamed S, Erez N, Politi B, Yahalom-ronen Y, Achdout H, Lazar S, Gutman H, Avraham R, Weiss S, Paran N, Israely T. Induction of Innate Immune Response by TLR3 Agonist Protects Mice against SARS-CoV-2 Infection. Viruses 2022;14:189. [DOI: 10.3390/v14020189] [Reference Citation Analysis]
66 Zeiss CJ, Compton S, Veenhuis RT. Animal Models of COVID-19. I. Comparative Virology and Disease Pathogenesis. ILAR J 2021:ilab007. [PMID: 33836527 DOI: 10.1093/ilar/ilab007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
67 Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, Merino VF, Yan Y, Kim J, Davis SL, Komm O, Powell JD, D'Alessio FR, Yolken RH, Jain SK, Jones-Brando L. Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Commun Biol 2022;5:242. [PMID: 35304580 DOI: 10.1038/s42003-022-03189-z] [Reference Citation Analysis]
68 Dhakal S, Ruiz-Bedoya CA, Zhou R, Creisher PS, Villano JS, Littlefield K, Ruelas Castillo J, Marinho P, Jedlicka AE, Ordonez AA, Bahr M, Majewska N, Betenbaugh MJ, Flavahan K, Mueller ARL, Looney MM, Quijada D, Mota F, Beck SE, Brockhurst J, Braxton AM, Castell N, Stover M, D'Alessio FR, Metcalf Pate KA, Karakousis PC, Mankowski JL, Pekosz A, Jain SK, Klein SL; Johns Hopkins COVID-19 Hamster Study Group. Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. mBio 2021;12:e0097421. [PMID: 34253053 DOI: 10.1128/mBio.00974-21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
69 Levy Y, Alcalay R, Zvi A, Makdasi E, Peretz E, Noy-porat T, Chitlaru T, Mandelboim M, Mazor O, Rosenfeld R. Immunodominant Linear B-Cell Epitopes of SARS-CoV-2 Spike, Identified by Sera from K18-hACE2 Mice Infected with the WT or Variant Viruses. Vaccines 2022;10:251. [DOI: 10.3390/vaccines10020251] [Reference Citation Analysis]
70 Sefik E, Israelow B, Mirza H, Zhao J, Qu R, Kaffe E, Song E, Halene S, Meffre E, Kluger Y, Nussenzweig M, Wilen CB, Iwasaki A, Flavell RA. A humanized mouse model of chronic COVID-19. Nat Biotechnol. [DOI: 10.1038/s41587-021-01155-4] [Reference Citation Analysis]
71 Parker MFL, Blecha J, Rosenberg O, Ohliger M, Flavell RR, Wilson DM. Cyclic 68Ga-Labeled Peptides for Specific Detection of Human Angiotensin-Converting Enzyme 2. J Nucl Med 2021;62:1631-7. [PMID: 33637588 DOI: 10.2967/jnumed.120.261768] [Reference Citation Analysis]
72 Masemann D, Ludwig S, Boergeling Y. Advances in Transgenic Mouse Models to Study Infections by Human Pathogenic Viruses. Int J Mol Sci 2020;21:E9289. [PMID: 33291453 DOI: 10.3390/ijms21239289] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
73 Lowery SA, Sariol A, Perlman S. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe 2021;29:1052-62. [PMID: 34022154 DOI: 10.1016/j.chom.2021.05.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
74 Vignesh R, Swathirajan CR, Tun ZH, Rameshkumar MR, Solomon SS, Balakrishnan P. Could Perturbation of Gut Microbiota Possibly Exacerbate the Severity of COVID-19 via Cytokine Storm? Front Immunol 2020;11:607734. [PMID: 33569053 DOI: 10.3389/fimmu.2020.607734] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
75 Hassert M, Geerling E, Stone ET, Steffen TL, Feldman MS, Dickson AL, Class J, Richner JM, Brien JD, Pinto AK. mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2. PLoS Pathog 2020;16:e1009163. [PMID: 33326500 DOI: 10.1371/journal.ppat.1009163] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
76 Ekstrand K, Flanagan AJ, Lin IE, Vejseli B, Cole A, Lally AP, Morris RL, Morgan KN. Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic. Animals (Basel) 2021;11:2044. [PMID: 34359172 DOI: 10.3390/ani11072044] [Reference Citation Analysis]
77 Puhl AC, Gomes GF, Damasceno S, Fritch EJ, Levi JA, Johnson NJ, Scholle F, Premkumar L, Hurst BL, LeeMontiel F, Veras FP, Batah SS, Fabro AT, Moorman NJ, Yount BL, Dickmander R, Baric R, Pearce KH, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Vandetanib Reduces Inflammatory Cytokines and Ameliorates COVID-19 in Infected Mice. bioRxiv 2021:2021. [PMID: 34981062 DOI: 10.1101/2021.12.16.472155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Ye C, Chiem K, Park JG, Silvas JA, Morales Vasquez D, Sourimant J, Lin MJ, Greninger AL, Plemper RK, Torrelles JB, Kobie JJ, Walter MR, de la Torre JC, Martinez-Sobrido L. Analysis of SARS-CoV-2 infection dynamic in vivo using reporter-expressing viruses. Proc Natl Acad Sci U S A 2021;118:e2111593118. [PMID: 34561300 DOI: 10.1073/pnas.2111593118] [Reference Citation Analysis]
79 Zhang L, Zhou L, Bao L, Liu J, Zhu H, Lv Q, Liu R, Chen W, Tong W, Wei Q, Xu Y, Deng W, Gao H, Xue J, Song Z, Yu P, Han Y, Zhang Y, Sun X, Yu X, Qin C. SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 2021;6:337. [PMID: 34489403 DOI: 10.1038/s41392-021-00719-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021;136:111193. [PMID: 33461019 DOI: 10.1016/j.biopha.2020.111193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
81 Seo SH, Jang Y. Cold-Adapted Live Attenuated SARS-Cov-2 Vaccine Completely Protects Human ACE2 Transgenic Mice from SARS-Cov-2 Infection. Vaccines (Basel) 2020;8:E584. [PMID: 33022950 DOI: 10.3390/vaccines8040584] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
82 Dong W, Wang J, Tian L, Zhang J, Mead H, Jaramillo SA, Li A, Zumwalt RE, Whelan SPJ, Settles EW, Keim PS, Barker BM, Caligiuri MA, Yu J. FXa cleaves the SARS-CoV-2 spike protein and blocks cell entry to protect against infection with inferior effects in B.1.1.7 variant. bioRxiv 2021:2021. [PMID: 34127969 DOI: 10.1101/2021.06.07.447437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Meekins DA, Gaudreault NN, Richt JA. Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses 2021;13:1993. [PMID: 34696423 DOI: 10.3390/v13101993] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Walker FC, Sridhar PR, Baldridge MT. Differential roles of interferons in innate responses to mucosal viral infections. Trends Immunol 2021;42:1009-23. [PMID: 34629295 DOI: 10.1016/j.it.2021.09.003] [Reference Citation Analysis]
85 Gan ES, Syenina A, Linster M, Ng B, Zhang SL, Watanabe S, Rajarethinam R, Tan HC, Smith GJ, Ooi EE. A mouse model of lethal respiratory dysfunction for SARS-CoV-2 infection. Antiviral Res 2021;193:105138. [PMID: 34246735 DOI: 10.1016/j.antiviral.2021.105138] [Reference Citation Analysis]
86 Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, Nargi RS, Sutton RE, Winkler ES, Chen EC, Fouch ME, Davidson E, Doranz BJ, Chen RE, Shi PY, Carnahan RH, Thackray LB, Diamond MS, Crowe JE Jr. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 2021;184:2316-2331.e15. [PMID: 33773105 DOI: 10.1016/j.cell.2021.03.029] [Cited by in Crossref: 38] [Cited by in F6Publishing: 50] [Article Influence: 38.0] [Reference Citation Analysis]
87 Krut VG, Astrakhantseva IV, Chuvpilo SA, Efimov GA, Ambaryan SG, Drutskaya MS, Nedospasov SA. Antibodies to the N-Terminal Domain of Angiotensin-Converting Enzyme (ACE2) That Block Its Interaction with SARS-CoV-2 S Protein. Dokl Biochem Biophys 2021. [PMID: 34874527 DOI: 10.1134/S160767292201001X] [Reference Citation Analysis]
88 Wan D, Du T, Hong W, Chen L, Que H, Lu S, Peng X. Neurological complications and infection mechanism of SARS-COV-2. Signal Transduct Target Ther 2021;6:406. [PMID: 34815399 DOI: 10.1038/s41392-021-00818-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Sun CP, Jan JT, Wang IH, Ma HH, Ko HY, Wu PY, Kuo TJ, Liao HN, Lan YH, Sie ZL, Chen YH, Ko YA, Liao CC, Chen LY, Lee IJ, Tsung SI, Lai YJ, Chiang MT, Liang JJ, Liu WC, Wang JR, Yuan JP, Lin YS, Tsai YC, Hsieh SL, Li CW, Wu HC, Ko TM, Lin YL, Tao MH. Rapid generation of mouse model for emerging infectious disease with the case of severe COVID-19. PLoS Pathog 2021;17:e1009758. [PMID: 34379705 DOI: 10.1371/journal.ppat.1009758] [Reference Citation Analysis]
90 Dussupt V, Sankhala RS, Mendez-Rivera L, Townsley SM, Schmidt F, Wieczorek L, Lal KG, Donofrio GC, Tran U, Jackson ND, Zaky WI, Zemil M, Tritsch SR, Chen WH, Martinez EJ, Ahmed A, Choe M, Chang WC, Hajduczki A, Jian N, Peterson CE, Rees PA, Rutkowska M, Slike BM, Selverian CN, Swafford I, Teng IT, Thomas PV, Zhou T, Smith CJ, Currier JR, Kwong PD, Rolland M, Davidson E, Doranz BJ, Mores CN, Hatziioannou T, Reiley WW, Bieniasz PD, Paquin-Proulx D, Gromowski GD, Polonis VR, Michael NL, Modjarrad K, Joyce MG, Krebs SJ. Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nat Immunol 2021. [PMID: 34716452 DOI: 10.1038/s41590-021-01068-z] [Reference Citation Analysis]
91 Selvaraj P, Lien CZ, Liu S, Stauft CB, Nunez IA, Hernandez M, Nimako E, Ortega MA, Starost MF, Dennis JU, Wang TT. SARS-CoV-2 infection induces protective immunity and limits transmission in Syrian hamsters. Life Sci Alliance 2021;4:e202000886. [PMID: 33574037 DOI: 10.26508/lsa.202000886] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
92 Peng L, Hu Y, Mankowski MC, Ren P, Chen RE, Wei J, Zhao M, Li T, Tripler T, Ye L, Chow RD, Fang Z, Wu C, Dong MB, Cook M, Wang G, Clark P, Nelson B, Klein D, Sutton R, Diamond MS, Wilen CB, Xiong Y, Chen S. Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nat Commun 2022;13:1638. [PMID: 35347138 DOI: 10.1038/s41467-022-29288-3] [Reference Citation Analysis]
93 Du X, Guo Z, Fan W, Hai T, Gao F, Li P, Qin Y, Chen C, Han Z, Ren J, Jiao P, Liu W, Bi Y, Yu D, Wu S. Establishment of a humanized swine model for COVID-19. Cell Discov 2021;7:70. [PMID: 34404772 DOI: 10.1038/s41421-021-00313-x] [Reference Citation Analysis]
94 Khaddaj-Mallat R, Aldib N, Bernard M, Paquette AS, Ferreira A, Lecordier S, Saghatelyan A, Flamand L, ElAli A. SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein. Neurobiol Dis 2021;161:105561. [PMID: 34780863 DOI: 10.1016/j.nbd.2021.105561] [Reference Citation Analysis]