BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zeming KK, Salafi T, Shikha S, Zhang Y. Fluorescent label-free quantitative detection of nano-sized bioparticles using a pillar array. Nat Commun 2018;9:1254. [PMID: 29593276 DOI: 10.1038/s41467-018-03596-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Gao ML, He F, Yin BC, Ye BC. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Analyst 2019;144:1995-2002. [PMID: 30698587 DOI: 10.1039/c8an02383b] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 10.7] [Reference Citation Analysis]
2 Cao Z, Zhu Y, Liu Y, Dong S, Zhao J, Wang Y, Yang S, Fu J. High-resolution separation of DNA/proteins through nanorod sieving matrix. Biosensors and Bioelectronics 2019;137:8-14. [DOI: 10.1016/j.bios.2019.04.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
3 Zhang P, Samuel G, Crow J, Godwin AK, Zeng Y. Molecular assessment of circulating exosomes toward liquid biopsy diagnosis of Ewing sarcoma family of tumors. Transl Res 2018;201:136-53. [PMID: 30031766 DOI: 10.1016/j.trsl.2018.05.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
4 Tottori N, Muramoto Y, Sakai H, Nisisako T. Nanoparticle Separation through Deterministic Lateral Displacement Arrays in Poly(dimethylsiloxane). J Chem Eng Japan / JCEJ 2020;53:414-21. [DOI: 10.1252/jcej.19we160] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Ebadi A, Farshchi Heydari MJ, Toutouni R, Chaichypour B, Fathipour M, Jafari K. Efficient paradigm to enhance particle separation in deterministic lateral displacement arrays. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-1064-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021;1636:461773. [PMID: 33316564 DOI: 10.1016/j.chroma.2020.461773] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
7 Wunsch BH, Hsieh KY, Kim S, Pereira M, Lukashov S, Scerbo C, Papalia JM, Duch EA, Stolovitzky G, Gifford SM, Smith JT. Advancements in Throughput, Lifetime, Purification, and Workflow for Integrated Nanoscale Deterministic Lateral Displacement. Adv Mater Technol 2021;6:2001083. [DOI: 10.1002/admt.202001083] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Salafi T, Zeming KK, Lim JW, Raman R, Seah AWR, Tan MP, Zhang Y. Portable Smartphone-Based Platform for Real-Time Particle Detection in Microfluidics. Adv Mater Technol 2019;4:1800359. [DOI: 10.1002/admt.201800359] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
9 Zeming KK, Vernekar R, Chua MT, Quek KY, Sutton G, Krüger T, Kuan WS, Han J. Label-Free Biophysical Markers from Whole Blood Microfluidic Immune Profiling Reveal Severe Immune Response Signatures. Small 2021;17:e2006123. [PMID: 33590620 DOI: 10.1002/smll.202006123] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Haward SJ, Hopkins CC, Varchanis S, Shen AQ. Bifurcations in flows of complex fluids around microfluidic cylinders. Lab Chip 2021;21:4041-59. [PMID: 34647558 DOI: 10.1039/d1lc00128k] [Reference Citation Analysis]
11 Ding L, Yang X, Gao Z, Effah CY, Zhang X, Wu Y, Qu L. A Holistic Review of the State-of-the-Art Microfluidics for Exosome Separation: An Overview of the Current Status, Existing Obstacles, and Future Outlook. Small 2021;17:e2007174. [PMID: 34047052 DOI: 10.1002/smll.202007174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Biagioni V, Balestrieri G, Adrover A, Cerbelli S. Combining Electrostatic, Hindrance and Diffusive Effects for Predicting Particle Transport and Separation Efficiency in Deterministic Lateral Displacement Microfluidic Devices. Biosensors (Basel) 2020;10:E126. [PMID: 32947949 DOI: 10.3390/bios10090126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tian F, Liu C, Lin L, Chen Q, Sun J. Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles. TrAC Trends in Analytical Chemistry 2019;117:128-45. [DOI: 10.1016/j.trac.2019.05.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
14 Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.02.020] [Reference Citation Analysis]
15 Beech JP, Keim K, Ho BD, Guiducci C, Tegenfeldt JO. Active Posts in Deterministic Lateral Displacement Devices. Adv Mater Technol 2019;4:1900339. [DOI: 10.1002/admt.201900339] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
16 Salafi T, Zhang Y, Zhang Y. A Review on Deterministic Lateral Displacement for Particle Separation and Detection. Nanomicro Lett 2019;11:77. [PMID: 34138050 DOI: 10.1007/s40820-019-0308-7] [Cited by in Crossref: 31] [Cited by in F6Publishing: 17] [Article Influence: 10.3] [Reference Citation Analysis]
17 Yang J, Liu X, Pan Y, Yang J, He B, Fu Y, Song Y. A self-powered microfluidic chip integrated with fluorescent microscopic counting for biomarkers assay. Sensors and Actuators B: Chemical 2019;291:192-9. [DOI: 10.1016/j.snb.2019.04.071] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
18 Choi JH, El-said WA, Choi J. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor. Applied Surface Science 2020;506:144669. [DOI: 10.1016/j.apsusc.2019.144669] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
19 Jusková P, Matthys L, Viovy J, Malaquin L. 3D deterministic lateral displacement (3D-DLD) cartridge system for high throughput particle sorting. Chem Commun 2020;56:5190-3. [DOI: 10.1039/c9cc05858c] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wunsch BH, Kim S, Gifford SM, Astier Y, Wang C, Bruce RL, Patel JV, Duch EA, Dawes S, Stolovitzky G, Smith JT. Gel-on-a-chip: continuous, velocity-dependent DNA separation using nanoscale lateral displacement. Lab Chip 2019;19:1567-78. [DOI: 10.1039/c8lc01408f] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
21 Pariset E, Parent C, Fouillet Y, François B, Verplanck N, Revol-Cavalier F, Thuaire A, Agache V. Separation of Biological Particles in a Modular Platform of Cascaded Deterministic Lateral Displacement Modules. Sci Rep 2018;8:17762. [PMID: 30531826 DOI: 10.1038/s41598-018-34958-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
22 Han M, Li J, He G, Lin M, Xiao W, Li X, Wu X, Jiang X. Tailored 3D printed micro-crystallization chip for versatile and high-efficiency droplet evaporative crystallization. Lab Chip 2019;19:767-77. [DOI: 10.1039/c8lc01319e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
23 Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal Chem 2019;91:548-68. [DOI: 10.1021/acs.analchem.8b04049] [Cited by in Crossref: 93] [Cited by in F6Publishing: 66] [Article Influence: 23.3] [Reference Citation Analysis]
24 Wu Y, Chattaraj R, Ren Y, Jiang H, Lee D. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces. Anal Chem 2021;93:7635-46. [PMID: 34014074 DOI: 10.1021/acs.analchem.1c00312] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Chen K, Qin K. Microbial transport and dispersion in heterogeneous flows created by pillar arrays. Physics of Fluids 2022;34:023308. [DOI: 10.1063/5.0082275] [Reference Citation Analysis]
26 Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coordination Chemistry Reviews 2020;415:213317. [DOI: 10.1016/j.ccr.2020.213317] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]