1 |
Li P, Li T, Feng X, Liu D, Zhong Q, Fang X, Liao Z, Wang J, Xiao M, Wang L. A micro-carbon nanotube transistor for ultra-sensitive, label-free, and rapid detection of Staphylococcal enterotoxin C in food. J Hazard Mater 2023;449:131033. [PMID: 36812728 DOI: 10.1016/j.jhazmat.2023.131033] [Reference Citation Analysis]
|
2 |
Hugo A, Rodrigues T, Mader JK, Knoll W, Bouchiat V, Boukherroub R, Szunerits S. Matrix metalloproteinase sensing in wound fluids: Are graphene-based field effect transistors a viable alternative? Biosensors and Bioelectronics: X 2023;13:100305. [DOI: 10.1016/j.biosx.2023.100305] [Reference Citation Analysis]
|
3 |
Xu X, Ding Z, Zhang X, Zha R, Li W, Xu L, Sun D, Cai X, Liang T, Wang Y, Li C. A near-infrared photoelectrochemical aptasensing system based on Bi(2)O(2)S nanoflowers and gold nanoparticles for high-performance determination of MCF-7 cells. Anal Chim Acta 2023;1251:340982. [PMID: 36925306 DOI: 10.1016/j.aca.2023.340982] [Reference Citation Analysis]
|
4 |
Birgaoanu M, Sachse M, Gatsiou A. RNA Editing Therapeutics: Advances, Challenges and Perspectives on Combating Heart Disease. Cardiovasc Drugs Ther 2023;37:401-11. [PMID: 36239832 DOI: 10.1007/s10557-022-07391-3] [Reference Citation Analysis]
|
5 |
Liu Y, Qian X, Ran C, Li L, Fu T, Su D, Xie S, Tan W. Aptamer-Based Targeted Protein Degradation. ACS Nano 2023. [PMID: 36942868 DOI: 10.1021/acsnano.2c10379] [Reference Citation Analysis]
|
6 |
Bohrmann L, Burghardt T, Rodríguez-rodríguez C, Herth MM, Saatchi K, Häfeli UO. Quantitative Evaluation of a Multimodal Aptamer-Targeted Long-Circulating Polymer for Tumor Targeting. ACS Omega 2023. [DOI: 10.1021/acsomega.2c07762] [Reference Citation Analysis]
|
7 |
Li X, Wang T, Xie T, Dai J, Zhang Y, Ling N, Guo J, Li C, Sun X, Zhang X, Peng Y, Wang H, Peng T, Ye M, Tan W. Aptamer-Mediated Enrichment of Rare Circulating Fetal Nucleated Red Blood Cells for Noninvasive Prenatal Diagnosis. Anal Chem 2023. [PMID: 36920371 DOI: 10.1021/acs.analchem.3c00115] [Reference Citation Analysis]
|
8 |
Weaver S, Mohammadi MH, Nakatsuka N. Aptamer-functionalized capacitive biosensors. Biosens Bioelectron 2023;224:115014. [PMID: 36628826 DOI: 10.1016/j.bios.2022.115014] [Reference Citation Analysis]
|
9 |
Wei Y, Qin G, Wang Z, Zhao C, Ren J, Qu X. Bioorthogonal Activation of TLR7 Agonists Provokes Innate Immunity to Reinforce Aptamer-Based Checkpoint Blockade. ACS Nano 2023. [PMID: 36916491 DOI: 10.1021/acsnano.2c12313] [Reference Citation Analysis]
|
10 |
Sun Y, Kong J, Ge X, Mao M, Yu H, Wang Y. An Antisense Oligonucleotide-Loaded Blood-Brain Barrier Penetrable Nanoparticle Mediating Recruitment of Endogenous Neural Stem Cells for the Treatment of Parkinson's Disease. ACS Nano 2023;17:4414-32. [PMID: 36688425 DOI: 10.1021/acsnano.2c09752] [Reference Citation Analysis]
|
11 |
Hou Y, Lu X, Yang J, Tang C, Jiang H, Cai T, Chen M, Wei Z, Yu P. A label-free fluorescent aptamer sensor for testosterone based on SYBR Green I. Anal Methods 2023. [PMID: 36883443 DOI: 10.1039/d3ay00055a] [Reference Citation Analysis]
|
12 |
Park KS, Choi A, Kim HJ, Park I, Eom MS, Yeo SG, Son RG, Park TI, Lee G, Soh HT, Hong Y, Pack SP. Ultra-sensitive label-free SERS biosensor with high-throughput screened DNA aptamer for universal detection of SARS-CoV-2 variants from clinical samples. Biosens Bioelectron 2023;228:115202. [PMID: 36940632 DOI: 10.1016/j.bios.2023.115202] [Reference Citation Analysis]
|
13 |
Su L, Wan J, Hu Q, Qin D, Han D, Niu L. Target-Synergized Biologically Mediated RAFT Polymerization for Electrochemical Aptasensing of Femtomolar Thrombin. Anal Chem 2023;95:4570-5. [PMID: 36825747 DOI: 10.1021/acs.analchem.3c00210] [Reference Citation Analysis]
|
14 |
Zhou Z, Lan X, Zhu L, Zhang Y, Chen K, Zhang W, Xu W. Portable dual-aptamer microfluidic chip biosensor for Bacillus cereus based on aptamer tailoring and dumbbell-shaped probes. J Hazard Mater 2023;445:130545. [PMID: 36493638 DOI: 10.1016/j.jhazmat.2022.130545] [Reference Citation Analysis]
|
15 |
Zhu H, Wang J, Zhang Q, Pan X, Zhang J. Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance. Pharmacol Ther 2023;244:108371. [PMID: 36871783 DOI: 10.1016/j.pharmthera.2023.108371] [Reference Citation Analysis]
|
16 |
Biao L, Liu J, Hu X, Xiang W, Hou W, Li C, Wang J, Yao K, Tang J, Long Z, Long W, Liu J. Recent advances in aptamer-based therapeutic strategies for targeting cancer stem cells. Materials Today Bio 2023. [DOI: 10.1016/j.mtbio.2023.100605] [Reference Citation Analysis]
|
17 |
Chen J, Xu M, Zhang Y, Xu L, Zhao S, An Y, Ma R, Liu Y, Ma F, Shi L. Allosteric synthetic antibody (Allo-SyAb) for improved cancer immunotherapy. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.142374] [Reference Citation Analysis]
|
18 |
Hu Z, Li Y, Figueroa-miranda G, Musal S, Li H, Martínez-roque MA, Hu Q, Feng L, Mayer D, Offenhäusser A. Aptamer based biosensor platforms for neurotransmitters analysis. TrAC Trends in Analytical Chemistry 2023. [DOI: 10.1016/j.trac.2023.117021] [Reference Citation Analysis]
|
19 |
Duan N, Chen X, Lin X, Ying D, Wang Z, Yuan W, Wu S. Paper-based fluorometric sensing of malachite green using synergistic recognition of aptamer-molecularly imprinted polymers and luminescent metal–organic frameworks. Sensors and Actuators B: Chemical 2023. [DOI: 10.1016/j.snb.2023.133665] [Reference Citation Analysis]
|
20 |
Canella A, Rajappa P. Therapeutic utility of engineered myeloid cells in the tumor microenvironment. Cancer Gene Ther 2023. [PMID: 36854896 DOI: 10.1038/s41417-023-00600-7] [Reference Citation Analysis]
|
21 |
Fan R, Tao X, Zhai X, Zhu Y, Li Y, Chen Y, Dong D, Yang S, Lv L. Application of aptamer-drug delivery system in the therapy of breast cancer. Biomed Pharmacother 2023;161:114444. [PMID: 36857912 DOI: 10.1016/j.biopha.2023.114444] [Reference Citation Analysis]
|
22 |
Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023;11:1609-27. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Reference Citation Analysis]
|
23 |
Chen J, Li Y, Liu Z. Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. Cell Rep Phys Sci 2023;4:101249. [PMID: 36714073 DOI: 10.1016/j.xcrp.2023.101249] [Reference Citation Analysis]
|
24 |
Zhu H, Wu E, Pan Z, Zhang C, Zhang Y, Liao Q, Wang Y, Sun Y, Ye M, Wu W. Development of an Aptamer-Based Molecular Tool for Specifically Targeting Microglia via the CD64 Protein. Anal Chem 2023;95:3238-46. [PMID: 36716100 DOI: 10.1021/acs.analchem.2c04084] [Reference Citation Analysis]
|
25 |
Zheng Y, Guo M, Wu S, Wang W, Jin M, Wang Q, Wang K. Construction of a DNA Nanoassembly Based on Spatially Ordered Recognition Elements for Inhibiting β-Amyloid Aggregation. Langmuir 2023;39:2192-203. [PMID: 36735839 DOI: 10.1021/acs.langmuir.2c02675] [Reference Citation Analysis]
|
26 |
Hirschbiegel CM, Zhang X, Huang R, Cicek YA, Fedeli S, Rotello VM. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv Drug Deliv Rev 2023;195:114730. [PMID: 36791809 DOI: 10.1016/j.addr.2023.114730] [Reference Citation Analysis]
|
27 |
Menon AP, Moreno B, Meraviglia-Crivelli D, Nonatelli F, Villanueva H, Barainka M, Zheleva A, van Santen HM, Pastor F. Modulating T Cell Responses by Targeting CD3. Cancers (Basel) 2023;15. [PMID: 36831533 DOI: 10.3390/cancers15041189] [Reference Citation Analysis]
|
28 |
Zhang X, Yang G, Zhao Y, Dai X, Liu W, Qu F, Huang Y. Selection and Identification of an ssDNA Aptamer for Fibroblast Activation Protein. Molecules 2023;28. [PMID: 36838669 DOI: 10.3390/molecules28041682] [Reference Citation Analysis]
|
29 |
Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023;24. [PMID: 36834935 DOI: 10.3390/ijms24043525] [Reference Citation Analysis]
|
30 |
Hamada K, Hashimoto T, Iwashita R, Yamada Y, Kikkawa Y, Nomizu M. Development of a bispecific DNA-aptamer-based lysosome-targeting chimera for HER2 protein degradation. Cell Reports Physical Science 2023. [DOI: 10.1016/j.xcrp.2023.101296] [Reference Citation Analysis]
|
31 |
Sánchez MF, Tampé R. Ligand-independent receptor clustering modulates transmembrane signaling: a new paradigm. Trends Biochem Sci 2023;48:156-71. [PMID: 36115755 DOI: 10.1016/j.tibs.2022.08.002] [Reference Citation Analysis]
|
32 |
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023;18:163-79. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Reference Citation Analysis]
|
33 |
Dixit R, Khambhati K, Supraja KV, Singh V, Lederer F, Show PL, Awasthi MK, Sharma A, Jain R. Application of machine learning on understanding biomolecule interactions in cellular machinery. Bioresour Technol 2023;370:128522. [PMID: 36565819 DOI: 10.1016/j.biortech.2022.128522] [Reference Citation Analysis]
|
34 |
Huynh L, Chen A. Design of a protein-targeted DNA aptamer using atomistic simulation. J Biomol Struct Dyn 2023;41:672-80. [PMID: 34895068 DOI: 10.1080/07391102.2021.2011414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
35 |
Liang C, Wang Y, Zhang T, Nie H, Han Y, Bai J. Aptamer-functionalised metal-organic frameworks as an 'on-off-on' fluorescent sensor for bisphenol S detection. Talanta 2023;253:123942. [PMID: 36150340 DOI: 10.1016/j.talanta.2022.123942] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
36 |
Li X, Jia M, Yu L, Li Y, He X, Chen L, Zhang Y. An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chemistry 2023;402:134239. [DOI: 10.1016/j.foodchem.2022.134239] [Reference Citation Analysis]
|
37 |
Chau BA, Chen V, Cochrane AW, Parent LJ, Mouland AJ. Liquid-liquid phase separation of nucleocapsid proteins during SARS-CoV-2 and HIV-1 replication. Cell Rep 2023;42:111968. [PMID: 36640305 DOI: 10.1016/j.celrep.2022.111968] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
38 |
Zhang J, Li W, Qi Y, Wang G, Li L, Jin Z, Tian J, Du Y. PD-L1 Aptamer-Functionalized Metal-Organic Framework Nanoparticles for Robust Photo-Immunotherapy against Cancer with Enhanced Safety. Angew Chem Int Ed Engl 2023;62:e202214750. [PMID: 36458940 DOI: 10.1002/anie.202214750] [Reference Citation Analysis]
|
39 |
Lee SJ, Cho J, Lee BH, Hwang D, Park JW. Design and Prediction of Aptamers Assisted by In Silico Methods. Biomedicines 2023;11. [PMID: 36830893 DOI: 10.3390/biomedicines11020356] [Reference Citation Analysis]
|
40 |
Yang G, Zhang S, Song W, Bai X, Li L, Luo F, Cheng Y, Wang D, Wang Y, Chen J, Zhao J, Zhao Y. Efficient Targeted Delivery of Bifunctional Circular Aptamer-ASO Chimera to Suppress the SARS-CoV-2 Proliferation and Inflammation. Small 2023;:e2207066. [PMID: 36683236 DOI: 10.1002/smll.202207066] [Reference Citation Analysis]
|
41 |
Puzzo F, Zhang C, Powell Gray B, Zhang F, Sullenger BA, Kay MA. Aptamer-programmable adeno-associated viral vectors as a novel platform for cell-specific gene transfer. Mol Ther Nucleic Acids 2023;31:383-97. [PMID: 36817723 DOI: 10.1016/j.omtn.2023.01.007] [Reference Citation Analysis]
|
42 |
Mikuła E, Malecka-baturo K. An Overview of the Latest Developments in the Electrochemical Aptasensing of Neurodegenerative Diseases. Coatings 2023;13:235. [DOI: 10.3390/coatings13020235] [Reference Citation Analysis]
|
43 |
Takashima Y, Komoto Y, Ohshiro T, Nakatani K, Taniguchi M. Quantitative Microscopic Observation of Base-Ligand Interactions via Hydrogen Bonds by Single-Molecule Counting. J Am Chem Soc 2023;145:1310-8. [PMID: 36597667 DOI: 10.1021/jacs.2c11260] [Reference Citation Analysis]
|
44 |
Mou J, Ding J, Qin W. Deep Learning-Enhanced Potentiometric Aptasensing with Magneto-Controlled Sensors. Angew Chem Int Ed Engl 2023;62:e202210513. [PMID: 36404278 DOI: 10.1002/anie.202210513] [Reference Citation Analysis]
|
45 |
Moussa S, Kilgour M, Jans C, Hernandez-Garcia A, Cuperlovic-Culf M, Bengio Y, Simine L. Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine Learning. J Phys Chem B 2023;127:62-8. [PMID: 36574492 DOI: 10.1021/acs.jpcb.2c05660] [Reference Citation Analysis]
|
46 |
Alkhamis O, Xiao Y. Systematic Study of in Vitro Selection Stringency Reveals How To Enrich High-Affinity Aptamers. J Am Chem Soc 2023;145:194-206. [PMID: 36574475 DOI: 10.1021/jacs.2c09522] [Reference Citation Analysis]
|
47 |
Wang R, Liu Y, Xiao W, Yi Q, Jiang M, Guo R, Song L, Li M, Li F, Shi D, Zhao L, Huang W, Zuo X, Mao X. Framework Nucleic Acids as Blood-Retinal-Barrier-Penetrable Nanocarrier for Periocular Administration. ACS Appl Mater Interfaces 2023;15:541-51. [PMID: 36534594 DOI: 10.1021/acsami.2c18042] [Reference Citation Analysis]
|
48 |
Chen K, Cai J, Wang S, Li Y, Yang C, Fu T, Zhao Z, Zhang X, Tan W. Aptamer Inhibits Tumor Growth by Leveraging Cellular Proteasomal Degradation System to Degrade c-Met in Mice. Angew Chem Int Ed Engl 2023;62:e202208451. [PMID: 36268649 DOI: 10.1002/anie.202208451] [Reference Citation Analysis]
|
49 |
García Melián MF, Moreno M, Cerecetto H, Calzada V. Aptamer-Based Immunotheranostic Strategies. Cancer Biother Radiopharm 2023. [PMID: 36603108 DOI: 10.1089/cbr.2022.0064] [Reference Citation Analysis]
|
50 |
Ding F, Zhang S, Chen Q, Feng H, Ge Z, Zuo X, Fan C, Li Q, Xia Q. Immunomodulation with Nucleic Acid Nanodevices. Small 2023;:e2206228. [PMID: 36599642 DOI: 10.1002/smll.202206228] [Reference Citation Analysis]
|
51 |
Huang X, Wang M, Wu X, Zou Y, Xu J, Cao C, Ma Q, Yu B, Liu Y, Gui Y. Screening DNA aptamers that control the DNA cleavage, homology-directed repair, and transcriptional regulation of the CRISPR-(d)Cas9 system. Mol Ther 2023;31:260-8. [PMID: 36245127 DOI: 10.1016/j.ymthe.2022.10.009] [Reference Citation Analysis]
|
52 |
Zhao Q, Gong Z, Wang J, Fu L, Zhang J, Wang C, Miron RJ, Yuan Q, Zhang Y. A Zinc- and Calcium-Rich Lysosomal Nanoreactor Rescues Monocyte/Macrophage Dysfunction under Sepsis. Adv Sci (Weinh) 2023;10:e2205097. [PMID: 36596693 DOI: 10.1002/advs.202205097] [Reference Citation Analysis]
|
53 |
Piasek AM, Musolf P, Sobiepanek A. Aptamer-based Advances in Skin Cancer Research. Curr Med Chem 2023;30:953-73. [PMID: 35400317 DOI: 10.2174/0929867329666220408112735] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
54 |
Liao Y, Xiong S, Ur Rehman Z, He X, Peng H, Liu J, Sun S. The Research Advances of Aptamers in Hematologic Malignancies. Cancers (Basel) 2023;15. [PMID: 36612296 DOI: 10.3390/cancers15010300] [Reference Citation Analysis]
|
55 |
Kulabhusan PK, Pishva P, Çapkın E, Tambe P, Yüce M. Aptamer-based Emerging Tools for Viral Biomarker Detection: A Focus on SARS-CoV-2. Curr Med Chem 2023;30:910-34. [PMID: 35156569 DOI: 10.2174/1568009622666220214101059] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
56 |
Selvaraj C, Dinesh DC, Rajaram K, Sundaresan S, Singh SK. Macromolecular chemistry: An introduction. In-Silico Approaches to Macromolecular Chemistry 2023. [DOI: 10.1016/b978-0-323-90995-2.00007-2] [Reference Citation Analysis]
|
57 |
Yin X, He Z, Ge W, Zhao Z. Application of aptamer functionalized nanomaterials in targeting therapeutics of typical tumors. Front Bioeng Biotechnol 2023;11:1092901. [PMID: 36873354 DOI: 10.3389/fbioe.2023.1092901] [Reference Citation Analysis]
|
58 |
Pranay K, Gupta MK, Devi S, Sharma N, Anand A. Challenges of aptamers as targeting ligands for anticancer therapies. Aptamers Engineered Nanocarriers for Cancer Therapy 2023. [DOI: 10.1016/b978-0-323-85881-6.00011-7] [Reference Citation Analysis]
|
59 |
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. Microfluid Nanofluidics 2023;27:15. [PMID: 36688097 DOI: 10.1007/s10404-022-02622-3] [Reference Citation Analysis]
|
60 |
Hu LF, Li YX, Wang JZ, Zhao YT, Wang Y. Controlling CRISPR-Cas9 by guide RNA engineering. Wiley Interdiscip Rev RNA 2023;14:e1731. [PMID: 35393779 DOI: 10.1002/wrna.1731] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
61 |
Pusta A, Casian M, Hosu O, Tertis M, Cristea C. Microdevice-based aptamer sensors. Aptamers Engineered Nanocarriers for Cancer Therapy 2023. [DOI: 10.1016/b978-0-323-85881-6.00006-3] [Reference Citation Analysis]
|
62 |
Mansouri A, Sathyapalan T, Kesharwani P, Sahebkar A. Aptamer-functionalized PLGA nanoparticles for targeted cancer therapy. Aptamers Engineered Nanocarriers for Cancer Therapy 2023. [DOI: 10.1016/b978-0-323-85881-6.00005-1] [Reference Citation Analysis]
|
63 |
Ayass MA, Tripathi T, Griko N, Pashkov V, Dai J, Zhang J, Herbert FC, Ramankutty Nair R, Okyay T, Zhu K, Gassensmith JJ, Abi-Mosleh L. Highly efficacious and safe neutralizing DNA aptamer of SARS-CoV-2 as an emerging therapy for COVID-19 disease. Virol J 2022;19:227. [PMID: 36581924 DOI: 10.1186/s12985-022-01943-7] [Reference Citation Analysis]
|
64 |
Klett-Mingo JI, Pinto-Díez C, Cambronero-Plaza J, Carrión-Marchante R, Barragán-Usero M, Pérez-Morgado MI, Rodríguez-Martín E, Toledo-Lobo MV, González VM, Martín ME. Potential Therapeutic Use of Aptamers against HAT1 in Lung Cancer. Cancers (Basel) 2022;15. [PMID: 36612223 DOI: 10.3390/cancers15010227] [Reference Citation Analysis]
|
65 |
Puumala LS, Grist SM, Morales JM, Bickford JR, Chrostowski L, Shekhar S, Cheung KC. Biofunctionalization of Multiplexed Silicon Photonic Biosensors. Biosensors (Basel) 2022;13. [PMID: 36671887 DOI: 10.3390/bios13010053] [Reference Citation Analysis]
|
66 |
Sun Y, Mo L, Hu X, Yu D, Xie S, Li J, Zhao Z, Fang X, Ye M, Qiu L, Tan W, Yang Y. Bispecific Aptamer-Based Recognition-then-Conjugation Strategy for PD1/PDL1 Axis Blockade and Enhanced Immunotherapy. ACS Nano 2022;16:21129-38. [PMID: 36484532 DOI: 10.1021/acsnano.2c09093] [Reference Citation Analysis]
|
67 |
Sato R, Suzuki K, Yasuda Y, Suenaga A, Fukui K. RNAapt3D: RNA aptamer 3D-structural modeling database. Biophys J 2022;121:4770-6. [PMID: 36146935 DOI: 10.1016/j.bpj.2022.09.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
68 |
Zhang L, Chu M, Ji C, Wei J, Yang Y, Huang Z, Tan W, Tan J, Yuan Q. In Situ Visualization of Epidermal Growth Factor Receptor Nuclear Translocation with Circular Bivalent Aptamer. Anal Chem 2022;94:17413-21. [PMID: 36469021 DOI: 10.1021/acs.analchem.2c02762] [Reference Citation Analysis]
|
69 |
Mathivanan J, Bai Z, Chen A, Sheng J. Design, Synthesis, and Characterization of a Novel 2'-5'-Linked Amikacin-Binding Aptamer: An Experimental and MD Simulation Study. ACS Chem Biol 2022;17:3478-88. [PMID: 36453647 DOI: 10.1021/acschembio.2c00653] [Reference Citation Analysis]
|
70 |
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022;44:6346-67. [PMID: 36547094 DOI: 10.3390/cimb44120433] [Reference Citation Analysis]
|
71 |
Orr A, Wilson P, Stotesbury T. DNA-Crosslinked Alginate Hydrogels: Characterization, Microparticle Development, and Applications in Forensic Science. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01673] [Reference Citation Analysis]
|
72 |
Zhang Y, Chen X, Qiao Y, Yang S, Wang Z, Ji M, Yin K, Zhao J, Liu K, Yuan B. DNA Aptamer Selected against Esophageal Squamous Cell Carcinoma for Tissue Imaging and Targeted Therapy with Integrin β1 as a Molecular Target. Anal Chem 2022;94:17212-22. [PMID: 36459499 DOI: 10.1021/acs.analchem.2c03863] [Reference Citation Analysis]
|
73 |
Sun Y, Geng X, Ma Y, Qin Y, Hu S, Xie Y, Wang R. Artificial Base-Directed In Vivo Formulation of Aptamer-Drug Conjugates with Albumin for Long Circulation and Targeted Delivery. Pharmaceutics 2022;14. [PMID: 36559275 DOI: 10.3390/pharmaceutics14122781] [Reference Citation Analysis]
|
74 |
Ahn C, Lee M, Jung C. Quantitative Methods for Metabolite Analysis in Metabolic Engineering. Biotechnol Bioproc E 2022. [DOI: 10.1007/s12257-022-0200-z] [Reference Citation Analysis]
|
75 |
Salama AKAA, Trkulja MV, Casanova E, Uras IZ. Targeted Protein Degradation: Clinical Advances in the Field of Oncology. Int J Mol Sci 2022;23. [PMID: 36499765 DOI: 10.3390/ijms232315440] [Reference Citation Analysis]
|
76 |
Vaganov AA, Taranushenko TE, Luzan NA, Shchugoreva IA, Kolovskaya OS, Artyushenko PV, Zamay TN, Kichkailo AS. Aptamers Regulating the Hemostasis System. Molecules 2022;27. [PMID: 36500686 DOI: 10.3390/molecules27238593] [Reference Citation Analysis]
|
77 |
Xiang W, Peng Y, Zeng H, Yu C, Zhang Q, Liu B, Liu J, Hu X, Wei W, Deng M, Wang N, Liu X, Xie J, Hou W, Tang J, Long Z, Wang L, Liu J. Targeting treatment of bladder cancer using PTK7 aptamer-gemcitabine conjugate. Biomater Res 2022;26:74. [PMID: 36471380 DOI: 10.1186/s40824-022-00328-9] [Reference Citation Analysis]
|
78 |
Zhang Y, Mi D, Chen Y. An instructive attempt on developing aptamer-constructed PROTAC for breast cancer treatment. Molecular Therapy - Nucleic Acids 2022;30:351-352. [DOI: 10.1016/j.omtn.2022.10.008] [Reference Citation Analysis]
|
79 |
Ahmadi Z, Jha D, Kumar Gautam H, Kumar P, Kumar Sharma A. Cationic RGD peptidomimetic nanoconjugates as effective tumor targeting gene delivery vectors with antimicrobial potential. Bioorganic Chemistry 2022;129:106197. [DOI: 10.1016/j.bioorg.2022.106197] [Reference Citation Analysis]
|
80 |
Rejeeth C, Sharma A. Label-free designed nanomaterials enrichment and separation techniques for phosphoproteomics based on mass spectrometry. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.1047055] [Reference Citation Analysis]
|
81 |
Ming T, Luo J, Xing Y, Cheng Y, Liu J, Sun S, Kong F, Xu S, Dai Y, Xie J, Jin H, Cai X. Recent progress and perspectives of continuous in vivo testing device. Mater Today Bio 2022;16:100341. [PMID: 35875195 DOI: 10.1016/j.mtbio.2022.100341] [Reference Citation Analysis]
|
82 |
Burton K, Nic Daeid N, Adegoke O. Surface plasmon-enhanced aptamer-based fluorescence detection of cocaine using hybrid nanostructure of cadmium-free ZnSe/In2S3 core/shell quantum dots and gold nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry 2022;433:114131. [DOI: 10.1016/j.jphotochem.2022.114131] [Reference Citation Analysis]
|
83 |
Masoudifar R, Pouyanfar N, Liu D, Ahmadi M, Landi B, Akbari M, Moayeri-jolandan S, Ghorbani-bidkorpeh F, Asadian E, Shahbazi M. Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. Applied Materials Today 2022;29:101646. [DOI: 10.1016/j.apmt.2022.101646] [Reference Citation Analysis]
|
84 |
Unida V, Vindigni G, Raniolo S, Stolfi C, Desideri A, Biocca S. Folate-Functionalization Enhances Cytotoxicity of Multivalent DNA Nanocages on Triple-Negative Breast Cancer Cells. Pharmaceutics 2022;14. [PMID: 36559104 DOI: 10.3390/pharmaceutics14122610] [Reference Citation Analysis]
|
85 |
Razlansari M, Jafarinejad S, rahdar A, Shirvaliloo M, Arshad R, Fathi-karkan S, Mirinejad S, Sargazi S, Sheervalilou R, Ajalli N, Pandey S. Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem 2022. [DOI: 10.1007/s11010-022-04614-x] [Reference Citation Analysis]
|
86 |
Lim KRQ, Yokota T. Current Strategies of Muscular Dystrophy Therapeutics: An Overview. Methods Mol Biol 2023;2587:3-30. [PMID: 36401021 DOI: 10.1007/978-1-0716-2772-3_1] [Reference Citation Analysis]
|
87 |
Yu H, Zhao Q. Sensitive Microscale Thermophoresis Assay Using Aptamer Thermal Switch. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c03068] [Reference Citation Analysis]
|
88 |
Shea SM, Thomas KA, Rassam RMG, Mihalko EP, Daniel C, Sullenger BA, Spinella PC, Nimjee SM. Dose-Dependent Von Willebrand Factor Inhibition by Aptamer BB-031 Correlates with Thrombolysis in a Microfluidic Model of Arterial Occlusion. Pharmaceuticals (Basel) 2022;15. [PMID: 36558901 DOI: 10.3390/ph15121450] [Reference Citation Analysis]
|
89 |
Hu X, Zhang D, Zeng Z, Huang L, Lin X, Hong S. Aptamer-Based Probes for Cancer Diagnostics and Treatment. Life (Basel) 2022;12. [PMID: 36431072 DOI: 10.3390/life12111937] [Reference Citation Analysis]
|
90 |
Gholikhani T, Kumar S, Valizadeh H, Mahdinloo S, Adibkia K, Zakeri-Milani P, Barzegar-Jalali M, Jimenez B. Advances in Aptamers-Based Applications in Breast Cancer: Drug Delivery, Therapeutics, and Diagnostics. Int J Mol Sci 2022;23. [PMID: 36430951 DOI: 10.3390/ijms232214475] [Reference Citation Analysis]
|
91 |
Roca C, Avalos-Padilla Y, Prieto-Simón B, Iglesias V, Ramírez M, Imperial S, Fernàndez-Busquets X. Selection of an Aptamer against the Enzyme 1-deoxy-D-xylulose-5-phosphate Reductoisomerase from Plasmodium falciparum. Pharmaceutics 2022;14. [PMID: 36432706 DOI: 10.3390/pharmaceutics14112515] [Reference Citation Analysis]
|
92 |
Miranda A, Lopez-Blanco R, Lopes-Nunes J, Melo AM, Campello MPC, Paulo A, Oliveira MC, Mergny JL, Oliveira PA, Fernandez-Megia E, Cruz C. Gallic Acid-Triethylene Glycol Aptadendrimers Synthesis, Biophysical Characterization and Cellular Evaluation. Pharmaceutics 2022;14. [PMID: 36432647 DOI: 10.3390/pharmaceutics14112456] [Reference Citation Analysis]
|
93 |
Liu M, Wang Z, Li S, Deng Y, He N. Identification of PHB2 as a Potential Biomarker of Luminal A Breast Cancer Cells Using a Cell-Specific Aptamer. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c12291] [Reference Citation Analysis]
|
94 |
Amundarain A, Pastor F, Prósper F, Agirre X. Aptamers, a New Therapeutic Opportunity for the Treatment of Multiple Myeloma. Cancers 2022;14:5471. [DOI: 10.3390/cancers14215471] [Reference Citation Analysis]
|
95 |
Shraim AS, Abdel Majeed BA, Al-binni MA, Hunaiti A. Therapeutic Potential of Aptamer–Protein Interactions. ACS Pharmacol Transl Sci 2022. [DOI: 10.1021/acsptsci.2c00156] [Reference Citation Analysis]
|
96 |
Wang S, Ma R, Li L, Wang L, Li J, Sun J, Mao X, Tan W. Engineering Robust Aptamers with High Affinity by Key Fragment Evolution and Terminal Fixation. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c02653] [Reference Citation Analysis]
|
97 |
Wang SC, Yan XY, Yang C, Naranmandura H. The Landscape of Nucleic-Acid-Based Aptamers for Treatment of Hematologic Malignancies: Challenges and Future Directions. Bioengineering 2022;9:635. [DOI: 10.3390/bioengineering9110635] [Reference Citation Analysis]
|
98 |
Desrosiers A, Derbali RM, Hassine S, Berdugo J, Long V, Lauzon D, De Guire V, Fiset C, DesGroseillers L, Leblond Chain J, Vallée-Bélisle A. Programmable self-regulated molecular buffers for precise sustained drug delivery. Nat Commun 2022;13:6504. [PMID: 36323663 DOI: 10.1038/s41467-022-33491-7] [Reference Citation Analysis]
|
99 |
Wei Z, Cheng X, Li J, Wang G, Mao J, Zhao J, Lou X. Ultrasensitive evanescent wave optical fiber aptasensor for online, continuous, type-specific detection of sulfonamides in environmental water. Analytica Chimica Acta 2022;1233:340505. [DOI: 10.1016/j.aca.2022.340505] [Reference Citation Analysis]
|
100 |
Rhouati A, Rhouati A, Marty JL. A Review on Aptamers Selection and Application in Heart Diseases Diagnosis. Curr Top Med Chem 2022;22:2463-73. [PMID: 36045527 DOI: 10.2174/1568026622666220831114322] [Reference Citation Analysis]
|
101 |
Jiang M, Liu H, Wang J, Li S, Zheng Z, Wang D, Wei H, Yu C. Optimized aptamer functionalization for enhanced anticancer efficiency in vivo. International Journal of Pharmaceutics 2022;628:122330. [DOI: 10.1016/j.ijpharm.2022.122330] [Reference Citation Analysis]
|
102 |
Guzzardo GM, Sidonio R Jr, Callaghan MU, Regling K. Early stage clinical trials for the treatment of hemophilia A. Expert Opin Investig Drugs 2022;31:1169-86. [PMID: 36265129 DOI: 10.1080/13543784.2022.2138742] [Reference Citation Analysis]
|
103 |
Uddin N, Binzel DW, Shu D, Fu T, Guo P. Targeted delivery of RNAi to cancer cells using RNA-ligand displaying exosome. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.11.019] [Reference Citation Analysis]
|
104 |
Le Dortz LL, Rouxel C, Leroy Q, Brosseau N, Boulouis HJ, Haddad N, Lagrée AC, Deshuillers PL. Optimized Lambda Exonuclease Digestion or Purification Using Streptavidin-Coated Beads: Which One Is Best for Successful DNA Aptamer Selection? Methods Protoc 2022;5. [PMID: 36412811 DOI: 10.3390/mps5060089] [Reference Citation Analysis]
|
105 |
Mollica L, Cupaioli FA, Rossetti G, Chiappori F. An overview of structural approaches to study therapeutic RNAs. Front Mol Biosci 2022;9. [DOI: 10.3389/fmolb.2022.1044126] [Reference Citation Analysis]
|
106 |
Sankar Satpathy B, Barik B, Alik Kumar L, Biswal S. Potential of Lipid Based Nanodrug Carriers for Targeted Treatment of Glioblastoma: Recent Progress and Challenges Ahead. Glioblastoma - Current Evidences [Working Title] 2022. [DOI: 10.5772/intechopen.108419] [Reference Citation Analysis]
|
107 |
Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, Md Yasin IS, Wasoh H. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application. Biosensors 2022;12:922. [DOI: 10.3390/bios12110922] [Reference Citation Analysis]
|
108 |
Liu L, Yu H, Zhao Q. The Characterization of Binding between Aptamer and Bisphenol A and Developing Electrochemical Aptasensors for Bisphenol A with Rationally Engineered Aptamers. Biosensors 2022;12:913. [DOI: 10.3390/bios12110913] [Reference Citation Analysis]
|
109 |
Chen J, Zhou J, Peng Y, Xie Y, Xiao Y. Aptamers: A prospective tool for infectious diseases diagnosis. J Clin Lab Anal 2022;:e24725. [PMID: 36245423 DOI: 10.1002/jcla.24725] [Reference Citation Analysis]
|
110 |
Cuffaro D, Ciccone L, Rossello A, Nuti E, Santamaria S. Targeting Aggrecanases for Osteoarthritis Therapy: From Zinc Chelation to Exosite Inhibition. J Med Chem 2022. [PMID: 36250680 DOI: 10.1021/acs.jmedchem.2c01177] [Reference Citation Analysis]
|
111 |
Riccardi C, D’aria F, Fasano D, Digilio FA, Carillo MR, Amato J, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Truncated Analogues of a G-Quadruplex-Forming Aptamer Targeting Mutant Huntingtin: Shorter Is Better! IJMS 2022;23:12412. [DOI: 10.3390/ijms232012412] [Reference Citation Analysis]
|
112 |
Moreira D, Leitão D, Lopes-nunes J, Santos T, Figueiredo J, Miranda A, Alexandre D, Tomaz C, Mergny J, Cruz C. G-Quadruplex Aptamer-Ligand Characterization. Molecules 2022;27:6781. [DOI: 10.3390/molecules27206781] [Reference Citation Analysis]
|
113 |
Wang Y, Wang D, Lin J, Lyu Z, Chen P, Sun T, Xue C, Mojtabavi M, Vedadghavami A, Zhang Z, Wang R, Zhang L, Park C, Heo GS, Liu Y, Dong SS, Zhang K. A Long‐Circulating Vector for Aptamers Based upon Polyphosphodiester‐Backboned Molecular Brushes. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202204576] [Reference Citation Analysis]
|
114 |
Cai R, Chen X, Zhang Y, Wang X, Zhou N. Systematic bio-fabrication of aptamers and their applications in engineering biology. Syst Microbiol and Biomanuf 2022. [DOI: 10.1007/s43393-022-00140-5] [Reference Citation Analysis]
|
115 |
Sflakidou E, Leonidis G, Foroglou E, Siokatas C, Sarli V. Recent Advances in Natural Product-Based Hybrids as Anti-Cancer Agents. Molecules 2022;27:6632. [PMID: 36235168 DOI: 10.3390/molecules27196632] [Reference Citation Analysis]
|
116 |
Janani SK, Dhanabal SP, Sureshkumar R, Nikitha Upadhyayula SS. Anti-nucleolin Aptamer as a Boom in Rehabilitation of Breast Cancer. Curr Pharm Des 2022;28:3114-26. [PMID: 36173049 DOI: 10.2174/1381612828666220928105044] [Reference Citation Analysis]
|
117 |
Xu Z, Shi T, Mo F, Yu W, Shen Y, Jiang Q, Wang F, Liu X. Programmable Assembly of Multivalent DNA‐Protein Superstructures for Tumor Imaging and Targeted Therapy. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202211505] [Reference Citation Analysis]
|
118 |
Cheng EL, Kacherovsky N, Pun SH. Aptamer-Based Traceless Multiplexed Cell Isolation Systems. ACS Appl Mater Interfaces 2022. [PMID: 36149728 DOI: 10.1021/acsami.2c11783] [Reference Citation Analysis]
|
119 |
Cruz Da Silva E, Foppolo S, Lhermitte B, Ingremeau M, Justiniano H, Klein L, Chenard M, Vauchelles R, Abdallah B, Lehmann M, Etienne-selloum N, Dontenwill M, Choulier L. Bioimaging Nucleic-Acid Aptamers with Different Specificities in Human Glioblastoma Tissues Highlights Tumoral Heterogeneity. Pharmaceutics 2022;14:1980. [DOI: 10.3390/pharmaceutics14101980] [Reference Citation Analysis]
|
120 |
Sheng J, Pi Y, Zhao S, Wang B, Chen M, Chang K. Novel DNA nanoflower biosensing technologies towards next-generation molecular diagnostics. Trends Biotechnol 2022:S0167-7799(22)00229-3. [PMID: 36117022 DOI: 10.1016/j.tibtech.2022.08.011] [Reference Citation Analysis]
|
121 |
Nuzzo S, Iaboni M, Ibba ML, Rienzo A, Musumeci D, Franzese M, Roscigno G, Affinito A, Petrillo G, Quintavalle C, Ciccone G, Esposito CL, Catuogno S. Selection of RNA aptamers targeting hypoxia in cancer. Front Mol Biosci 2022;9:956935. [DOI: 10.3389/fmolb.2022.956935] [Reference Citation Analysis]
|
122 |
Guo X, Huang Z, Chen J, He K, Lin J, Zhang H, Zeng Y. Synergistic delivery of resveratrol and ultrasmall copper-based nanoparticles by aptamer-functionalized ultrasound nanobubbles for the treatment of nonalcoholic fatty liver disease. Front Physiol 2022;13:950141. [DOI: 10.3389/fphys.2022.950141] [Reference Citation Analysis]
|
123 |
Tang R, Fu Y, Gong B, Fan Y, Wang H, Huang Y, Nie Z, Wei P. A Chimeric Conjugate of Antibody and Programmable DNA Nanoassembly Smartly Activates T Cells for Precise Cancer Cell Targeting. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202205902] [Reference Citation Analysis]
|
124 |
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022;350:538-68. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
125 |
Almeida NBF, Sousa TASL, Santos VCF, Lacerda CMS, Silva TG, Grenfell RFQ, Plentz F, Andrade ASR. DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection. Beilstein J Nanotechnol 2022;13:873-81. [DOI: 10.3762/bjnano.13.78] [Reference Citation Analysis]
|
126 |
Ghasemii K, Darroudi M, Rahimmanesh I, Ghomi M, Hassanpour M, Sharifi E, Yousefiasl S, Ahmadi S, Zarrabi A, Borzacchiello A, Rabiee M, Paiva-santos AC, Rabiee N. Advances in aptamer-based drug delivery vehicles for cancer therapy. Biomaterials Advances 2022;140:213077. [DOI: 10.1016/j.bioadv.2022.213077] [Reference Citation Analysis]
|
127 |
Li X, Mei W, Wu Q, Wang J, Qi L. Theranostic Ruthenium Polypyridine Nanoparticles for Targeted Chimera Delivery into Ovarian Cancer Cells. j biomed nanotechnol 2022;18:2100-2112. [DOI: 10.1166/jbn.2022.3418] [Reference Citation Analysis]
|
128 |
Wang Y, Yang Q, Gao Z, Dong H. Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosensors and Bioelectronics 2022;212:114423. [DOI: 10.1016/j.bios.2022.114423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
129 |
Gao F, Huang H, Sheng C, He S. Efficient synthesis of artificial pharmaceutical solid-phase modules for constructing aptamer-drug conjugates. Bioorganic Chemistry 2022;126:105919. [DOI: 10.1016/j.bioorg.2022.105919] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
130 |
Yuan B, Xi Y, Qi C, Zhao M, Zhu X, Tang J. A sequentially triggered DNA nanocapsule for targeted drug delivery based on pH-responsive i-motif and tumor cell-specific aptamer. Front Bioeng Biotechnol 2022;10:965337. [DOI: 10.3389/fbioe.2022.965337] [Reference Citation Analysis]
|
131 |
Zhao C, Dekker FJ. Novel Design Strategies to Enhance the Efficiency of Proteolysis Targeting Chimeras. ACS Pharmacol Transl Sci . [DOI: 10.1021/acsptsci.2c00089] [Reference Citation Analysis]
|
132 |
Barzaman K, Vafaei R, Samadi M, Kazemi MH, Hosseinzadeh A, Merikhian P, Moradi-kalbolandi S, Eisavand MR, Dinvari H, Farahmand L. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell Int 2022;22. [DOI: 10.1186/s12935-022-02658-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
133 |
Gao F, Yin J, Chen Y, Guo C, Hu H, Su J. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front Bioeng Biotechnol 2022;10:972933. [DOI: 10.3389/fbioe.2022.972933] [Reference Citation Analysis]
|
134 |
Kneißle K, Krämer M, Kissmann A, Xing H, Müller F, Amann V, Noschka R, Gottschalk K, Bozdogan A, Andersson J, Weil T, Spellerberg B, Stenger S, Rosenau F. A Polyclonal SELEX Aptamer Library Allows Differentiation of Candida albicans, C. auris and C. parapsilosis Cells from Human Dermal Fibroblasts. JoF 2022;8:856. [DOI: 10.3390/jof8080856] [Reference Citation Analysis]
|
135 |
Chen Y, Yang X, Liu J, Zhang D, He J, Tang L, Li J, Xiang Q. In vitro selection of a single-strand DNA aptamer targeting the receptor-binding domain of SARS-CoV-2 spike protein. Nucleosides Nucleotides Nucleic Acids 2023;42:105-18. [PMID: 35949145 DOI: 10.1080/15257770.2022.2109170] [Reference Citation Analysis]
|
136 |
Zou Y, Wang Y, Wen X, Li C, Lei L, Guo Q, Sun G, Yu L, Nie H. A DNA Aptamer Targeting Cellular Fibronectin Rather Than Plasma Fibronectin for Bioimaging and Targeted Chemotherapy of Tumors. Adv Funct Materials. [DOI: 10.1002/adfm.202205002] [Reference Citation Analysis]
|
137 |
Liao Y, Wu X, Wu M, Fang Y, Li J, Tang W. Non-coding RNAs in lung cancer: emerging regulators of angiogenesis. J Transl Med 2022;20:349. [PMID: 35918758 DOI: 10.1186/s12967-022-03553-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
138 |
Wang W, He S, Dong G, Sheng C. Nucleic-Acid-Based Targeted Degradation in Drug Discovery. J Med Chem 2022. [PMID: 35916496 DOI: 10.1021/acs.jmedchem.2c00875] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
139 |
Xie S, Wang Z, Fu T, Zheng L, Wu H, He L, Huang H, Yang C, Wang R, Qian X, Qiu L, Tan W. Engineering Aptamers with Selectively Enhanced Biostability in the Tumor Microenvironment. Angew Chem Int Ed Engl 2022;61:e202201220. [PMID: 35536294 DOI: 10.1002/anie.202201220] [Reference Citation Analysis]
|
140 |
Niu Y, Yang Y, Yang Z, Wang X, Zhang P, Lv L, Liu Y, Liu Y, Zhou Y. Aptamer-immobilized bone-targeting nanoparticles in situ reduce sclerostin for osteoporosis treatment. Nano Today 2022;45:101529. [DOI: 10.1016/j.nantod.2022.101529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
141 |
Ji M, Wang C, Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Zhang Y, He N. Examining binding capacity of aptamers based on fluorescence image segmentation. mat express 2022;12:1049-1058. [DOI: 10.1166/mex.2022.2252] [Reference Citation Analysis]
|
142 |
Duan N, Yao T, Li C, Wang Z, Wu S. Surface-enhanced Raman spectroscopy relying on bimetallic Au–Ag nanourchins for the detection of the food allergen β-lactoglobulin. Talanta 2022;245:123445. [DOI: 10.1016/j.talanta.2022.123445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
143 |
Lin C, Liang Y, Guo M, Saw PE, Xu X. Stimuli-responsive polyprodrug for cancer therapy. Materials Today Advances 2022;15:100266. [DOI: 10.1016/j.mtadv.2022.100266] [Reference Citation Analysis]
|
144 |
Cruz-hernández CD, Rodríguez-martínez G, Cortés-ramírez SA, Morales-pacheco M, Cruz-burgos M, Losada-garcía A, Reyes-grajeda JP, González-ramírez I, González-covarrubias V, Camacho-arroyo I, Cerbón M, Rodríguez-dorantes M. Aptamers as Theragnostic Tools in Prostate Cancer. Biomolecules 2022;12:1056. [DOI: 10.3390/biom12081056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
145 |
Pleiko K, Haugas M, Parfejevs V, Pantelejevs T, Parisini E, Teesalu T, Riekstina U. Targeting triple-negative breast cancer with β1-integrin binding aptamer.. [DOI: 10.1101/2022.07.28.501822] [Reference Citation Analysis]
|
146 |
Duan N, Li C, Song M, Ren K, Wang Z, Wu S. Deoxynivalenol fluorescence aptasensor based on AuCu bimetallic nanoclusters and MoS2. Mikrochim Acta 2022;189:296. [PMID: 35900604 DOI: 10.1007/s00604-022-05385-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
147 |
Douaki A, Garoli D, Inam AKMS, Angeli MAC, Cantarella G, Rocchia W, Wang J, Petti L, Lugli P. Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors. Biosensors 2022;12:574. [DOI: 10.3390/bios12080574] [Reference Citation Analysis]
|
148 |
Zhu Y, Zhu L, Wang X, Jin H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis 2022;13:644. [PMID: 35871216 DOI: 10.1038/s41419-022-05075-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
|
149 |
Dai L, Zhang J, Wang X, Yang X, Pan F, Yang L, Zhao Y. Protein DEK and DTA Aptamers: Insight Into the Interaction Mechanisms and the Computational Aptamer Design. Front Mol Biosci 2022;9:946480. [DOI: 10.3389/fmolb.2022.946480] [Reference Citation Analysis]
|
150 |
Liu TL, Dong Y, Chen S, Zhou J, Ma Z, Li J. Battery-free, tuning circuit-inspired wireless sensor systems for detection of multiple biomarkers in bodily fluids. Sci Adv 2022;8:eabo7049. [PMID: 35857473 DOI: 10.1126/sciadv.abo7049] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
151 |
Xiong X, Zhu T, Zhu Y, Cao M, Xiao J, Li L, Wang F, Fan C, Pei H. Molecular convolutional neural networks with DNA regulatory circuits. Nat Mach Intell. [DOI: 10.1038/s42256-022-00502-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
152 |
Aboelsoued D, Abdel Megeed KN. Diagnosis and control of cryptosporidiosis in farm animals. J Parasit Dis. [DOI: 10.1007/s12639-022-01513-2] [Reference Citation Analysis]
|
153 |
Halder J, Pradhan D, Biswasroy P, Rai VK, Kar B, Ghosh G, Rath G. Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. J Drug Target 2022;:1-21. [PMID: 35786242 DOI: 10.1080/1061186X.2022.2095389] [Reference Citation Analysis]
|
154 |
Wang Y, Wang D, Lin J, Lyu Z, Chen P, Sun T, Xue C, Mojtabavi M, Vedadghavami A, Zhang Z, Wang R, Zhang L, Park C, Heo GS, Liu Y, Dong S, Zhang K. A Long-Circulating Vector for Aptamers Based upon Polyphosphodiester-Backboned Molecular Brushes.. [DOI: 10.1101/2022.06.30.498214] [Reference Citation Analysis]
|
155 |
Uversky VN. Rebellion of the deregulated regulators: What is the clinical relevance of studying intrinsically disordered proteins? Expert Rev Proteomics 2022;19:279-82. [PMID: 36728540 DOI: 10.1080/14789450.2023.2176755] [Reference Citation Analysis]
|
156 |
Li Q, Yin G, Wang J, Li L, Liang Q, Zhao X, Chen Y, Zheng X, Zhao X. An emerging paradigm to develop analytical methods based on immobilized transmembrane proteins and its applications in drug discovery. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116728] [Reference Citation Analysis]
|
157 |
Lee J, Ryu M, Bae D, Kim HM, Eyun SI, Bae J, Lee K. Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method. J Microbiol 2022. [DOI: 10.1007/s12275-022-2235-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
158 |
Wang Y, Lee Y, Matsuura K, Liu X, Cheng C. Editorial: Detection Nanodevices for Infectious Diseases. Front Bioeng Biotechnol 2022;10:962746. [DOI: 10.3389/fbioe.2022.962746] [Reference Citation Analysis]
|
159 |
Li X, Sun B, Zhu J, Qian M, Chen Y. Construction of a Mass-Tagged Oligo Probe Set for Revealing Protein Ratiometric Relationship Associated with EGFR-HER2 Heterodimerization in Living Cells. Anal Chem 2022. [PMID: 35709389 DOI: 10.1021/acs.analchem.1c04989] [Reference Citation Analysis]
|
160 |
Zheng J, Wang Q, Shi L, Shi L, Li T. Calcium-Differentiated Cellular Internalization of Allosteric Framework Nucleic Acids for Targeted Payload Delivery. Anal Chem 2022. [PMID: 35709364 DOI: 10.1021/acs.analchem.2c01434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
161 |
Yan J, Li T, Miao Z, Wang P, Sheng C, Zhuang C. Homobivalent, Trivalent, and Covalent PROTACs: Emerging Strategies for Protein Degradation. J Med Chem 2022. [PMID: 35763424 DOI: 10.1021/acs.jmedchem.2c00728] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
162 |
Liu H, Huang Y, Huang M, Huang Z, Wang Q, Qing L, Li L, Xu S, Jia B. Current Status, Opportunities, and Challenges of Exosomes in Oral Cancer Diagnosis and Treatment. Int J Nanomedicine 2022;17:2679-705. [PMID: 35733418 DOI: 10.2147/IJN.S365594] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
163 |
Li R, Wu X, Li J, Lu X, Zhao RC, Liu J, Ding B. A covalently conjugated branched DNA aptamer cluster-based nanoplatform for efficiently targeted drug delivery. Nanoscale 2022. [PMID: 35726974 DOI: 10.1039/d2nr01252a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
164 |
Liu R, Zhang F, Sang Y, Liu M, Shi M, Wang X. Selection and Characterization of DNA Aptamers for Constructing Aptamer-AuNPs Colorimetric Method for Detection of AFM1. Foods 2022;11:1802. [PMID: 35742000 DOI: 10.3390/foods11121802] [Reference Citation Analysis]
|
165 |
Chen Y, Tandon I, Heelan W, Wang Y, Tang W, Hu Q. Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chem Soc Rev 2022. [PMID: 35713468 DOI: 10.1039/d1cs00762a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
166 |
Yılmaz D, Muslu T, Parlar A, Kurt H, Yüce M. SELEX against whole-cell bacteria resulted in lipopolysaccharide binding aptamers. J Biotechnol 2022;354:10-20. [PMID: 35700936 DOI: 10.1016/j.jbiotec.2022.06.001] [Reference Citation Analysis]
|
167 |
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022;7:181. [PMID: 35680848 DOI: 10.1038/s41392-022-00999-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
168 |
Dai H, Abdullah R, Wu X, Li F, Ma Y, Lu A, Zhang G. Pancreatic Cancer: Nucleic Acid Drug Discovery and Targeted Therapy. Front Cell Dev Biol 2022;10:855474. [PMID: 35652096 DOI: 10.3389/fcell.2022.855474] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
169 |
Feraliana, Khoirunnisa S, Septiani NW, Iqbal M, Sutarti T, Nugrahapraja H, Yuliarto B. Development of COVID-19 Detection Using SPR Sensors: A Preliminary Result. J Phys : Conf Ser 2022;2243:012110. [DOI: 10.1088/1742-6596/2243/1/012110] [Reference Citation Analysis]
|
170 |
Tang J, Li B, Qi C, Wang Z, Yin K, Guo L, Zhang W, Yuan B. Imaging specific cell-surface sialylation using DNA dendrimer-assisted FRET. Talanta 2022;243:123399. [DOI: 10.1016/j.talanta.2022.123399] [Reference Citation Analysis]
|
171 |
Bruno JG. Applications in Which Aptamers Are Needed or Wanted in Diagnostics and Therapeutics. Pharmaceuticals 2022;15:693. [DOI: 10.3390/ph15060693] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
172 |
Bai C, Meng X, Wen K, Citartan M, Wang C, Yu S, Lin Q. Surface acoustic wave-assisted microfluidic isolation of aptamers. Microfluid Nanofluidics 2022;26:43. [PMID: 36937170 DOI: 10.1007/s10404-022-02548-w] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
173 |
Xu R, Cao H, Lin D, Yu B, Qu J. Lanthanide-doped upconversion nanoparticles for biological super-resolution fluorescence imaging. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100922] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
174 |
Rösner L, Konken CP, Depke DA, Rentmeister A, Schäfers M. Covalent labeling of immune cells. Current Opinion in Chemical Biology 2022;68:102144. [DOI: 10.1016/j.cbpa.2022.102144] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
175 |
Kilgour M, Liu T, Dementyev IS, Simine L. E2EDNA 2.0: Python Pipeline for Simulating DNA Aptamers with Ligands. JOSS 2022;7:4182. [DOI: 10.21105/joss.04182] [Reference Citation Analysis]
|
176 |
Virgilio A, Pecoraro A, Benigno D, Russo A, Russo G, Esposito V, Galeone A. Antiproliferative Effects of the Aptamer d(GGGT)4 and Its Analogues with an Abasic-Site Mimic Loop on Different Cancer Cells. Int J Mol Sci 2022;23:5952. [PMID: 35682635 DOI: 10.3390/ijms23115952] [Reference Citation Analysis]
|
177 |
Rana S, Bhatnagar A, Singh S, Prabhakar N. Evaluation of liver specific ionizable lipid nanocarrierin the delivery of siRNA. Chem Phys Lipids 2022;:105207. [PMID: 35623403 DOI: 10.1016/j.chemphyslip.2022.105207] [Reference Citation Analysis]
|
178 |
Chen W, Lai Q, Zhang Y, Liu Z. Recent Advances in Aptasensors For Rapid and Sensitive Detection of Staphylococcus Aureus. Front Bioeng Biotechnol 2022;10:889431. [DOI: 10.3389/fbioe.2022.889431] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
179 |
Zhang J, Zhao P, Li W, Ye L, Li L, Li Z, Li M. Near-Infrared Light-Activatable Spherical Nucleic Acids for Conditional Control of Protein Activity. Angew Chem Int Ed Engl 2022;61:e202117562. [PMID: 35191157 DOI: 10.1002/anie.202117562] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
180 |
Jing L, Xie C, Li Q, Yao H, Yang M, Li H, Xia F, Li S. A Sandwich-type Lateral Flow Strip Using a Split, Single Aptamer for Point-of-Care Detection of Cocaine. J Anal Test 2022;6:120-8. [DOI: 10.1007/s41664-022-00228-w] [Reference Citation Analysis]
|
181 |
Sipos F, Bohusné Barta B, Simon Á, Nagy L, Dankó T, Raffay RE, Petővári G, Zsiros V, Wichmann B, Sebestyén A, Műzes G. Survival of HT29 Cancer Cells Is Affected by IGF1R Inhibition via Modulation of Self-DNA-Triggered TLR9 Signaling and the Autophagy Response. Pathol Oncol Res 2022;28:1610322. [DOI: 10.3389/pore.2022.1610322] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
182 |
Patil PJ, Sutar SS, Usman M, Patil DN, Dhanavade MJ, Shehzad Q, Mehmood A, Shah H, Teng C, Zhang C, Li X. Exploring bioactive peptides as potential therapeutic and biotechnology treasures: A contemporary perspective. Life Sci 2022;301:120637. [PMID: 35568229 DOI: 10.1016/j.lfs.2022.120637] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
183 |
Luo D, Lin X, Zhao Y, Hu J, Mo F, Song G, Zou Z, Wang F, Liu X. A dynamic DNA nanosponge for triggered amplification of gene-photodynamic modulation. Chem Sci 2022;13:5155-63. [PMID: 35655573 DOI: 10.1039/d2sc00459c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
184 |
Yap SHK, Pan J, Linh DV, Zhang X, Wang X, Teo WZ, Zamburg E, Tham CK, Yew WS, Poh CL, Thean AV. Engineered Nucleotide Chemicapacitive Microsensor Array Augmented with Physics-Guided Machine Learning for High-Throughput Screening of Cannabidiol. Small 2022;:e2107659. [PMID: 35521934 DOI: 10.1002/smll.202107659] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
185 |
Troyano-Hernáez P, Reinosa R, Holguín Á. HIV Capsid Protein Genetic Diversity Across HIV-1 Variants and Impact on New Capsid-Inhibitor Lenacapavir. Front Microbiol 2022;13:854974. [PMID: 35495642 DOI: 10.3389/fmicb.2022.854974] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
186 |
Xu R, Abune L, Davis B, Ouyang L, Zhang G, Wang Y, Zhe J. Ultrasensitive detection of small biomolecules using aptamer-based molecular recognition and nanoparticle counting. Biosensors and Bioelectronics 2022;203:114023. [DOI: 10.1016/j.bios.2022.114023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
187 |
Liu R, Zhang F, Sang Y, Katouzian I, Jafari SM, Wang X, Li W, Wang J, Mohammadi Z. Screening, identification, and application of nucleic acid aptamers applied in food safety biosensing. Trends in Food Science & Technology 2022;123:355-75. [DOI: 10.1016/j.tifs.2022.03.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
|
188 |
Churcher NKM, Greyling C, Upasham S, Lin K, Rice P, Pali M, Spiro J, Prasad S. AptaStrensor (aptamer-based sensor for stress monitoring): The interrelationship between NPY and cortisol towards chronic disease monitoring. Biosensors and Bioelectronics: X 2022;10:100145. [DOI: 10.1016/j.biosx.2022.100145] [Reference Citation Analysis]
|
189 |
Soni GK, Wangoo N, Cokca C, Peneva K, Sharma RK. Ultrasensitive aptasensor for arsenic detection using quantum dots and guanylated Poly(methacrylamide). Analytica Chimica Acta 2022;1209:339854. [DOI: 10.1016/j.aca.2022.339854] [Reference Citation Analysis]
|
190 |
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1785. [PMID: 35238490 DOI: 10.1002/wnan.1785] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
191 |
Yu S, Li D, Zhang N, Ni S, Sun M, Wang L, Xiao H, Liu D, Liu J, Yu Y, Zhang Z, Yeung STY, Zhang S, Lu A, Zhang Z, Zhang B, Zhang G. Drug discovery of sclerostin inhibitors. Acta Pharm Sin B 2022;12:2150-70. [PMID: 35646527 DOI: 10.1016/j.apsb.2022.01.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
192 |
Dreymann N, Wuensche J, Sabrowski W, Moeller A, Czepluch D, Vu Van D, Fuessel S, Menger MM. Inhibition of Human Urokinase-Type Plasminogen Activator (uPA) Enzyme Activity and Receptor Binding by DNA Aptamers as Potential Therapeutics through Binding to the Different Forms of uPA. Int J Mol Sci 2022;23:4890. [PMID: 35563278 DOI: 10.3390/ijms23094890] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
193 |
Biyani M, Yasuda K, Isogai Y, Okamoto Y, Weilin W, Kodera N, Flechsig H, Sakaki T, Nakajima M, Biyani M. Novel DNA Aptamer for CYP24A1 Inhibition with Enhanced Antiproliferative Activity in Cancer Cells. ACS Appl Mater Interfaces 2022;14:18064-78. [PMID: 35436103 DOI: 10.1021/acsami.1c22965] [Reference Citation Analysis]
|
194 |
Riccardi C, D'Aria F, Digilio FA, Carillo MR, Amato J, Fasano D, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Fighting the Huntington's Disease with a G-Quadruplex-Forming Aptamer Specifically Binding to Mutant Huntingtin Protein: Biophysical Characterization, In Vitro and In Vivo Studies. Int J Mol Sci 2022;23:4804. [PMID: 35563194 DOI: 10.3390/ijms23094804] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
195 |
George TA, Hsu C, Meeson A, Lundy DJ. Nanocarrier-Based Targeted Therapies for Myocardial Infarction. Pharmaceutics 2022;14:930. [DOI: 10.3390/pharmaceutics14050930] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
196 |
Mollasalehi N, Francois-Moutal L, Porciani D, Burke DH, Khanna M. Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Ther 2022. [PMID: 35452303 DOI: 10.1089/nat.2021.0091] [Reference Citation Analysis]
|
197 |
Murtaza G, Rizvi AS, Qiu L, Xue M, Meng Z. Aptamer empowered hydrogels: Fabrication and bio‐sensing applications. J of Applied Polymer Sci 2022;139. [DOI: 10.1002/app.52441] [Reference Citation Analysis]
|
198 |
Yousef H, Liu Y, Zheng L. Nanomaterial-Based Label-Free Electrochemical Aptasensors for the Detection of Thrombin. Biosensors (Basel) 2022;12:253. [PMID: 35448312 DOI: 10.3390/bios12040253] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
199 |
Zhang H, Mao W, Hu Y, Wei X, Huang L, Fan S, Huang M, Song Y, Yu Y, Fu F. Visual detection of aflatoxin B1 based on specific aptamer recognition combining with triple amplification strategy. Spectrochim Acta A Mol Biomol Spectrosc 2022;271:120862. [PMID: 35085996 DOI: 10.1016/j.saa.2022.120862] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
200 |
Duan C, Townley HE. Isolation of NELL 1 Aptamers for Rhabdomyosarcoma Targeting. Bioengineering 2022;9:174. [DOI: 10.3390/bioengineering9040174] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
201 |
Jing X, Wang S, Tang H, Li D, Zhou F, Xin L, He Q, Hu S, Zhang T, Chen T, Song J. Dynamically Bioresponsive DNA Hydrogel Incorporated with Dual-Functional Stem Cells from Apical Papilla-Derived Exosomes Promotes Diabetic Bone Regeneration. ACS Appl Mater Interfaces 2022;14:16082-99. [PMID: 35344325 DOI: 10.1021/acsami.2c02278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
202 |
Wei J, Song R, Sabbagh A, Marisetty A, Shukla N, Fang D, Najem H, Ott M, Long J, Zhai L, Lesniak MS, James CD, Platanias L, Curran M, Heimberger AB. Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system. OncoImmunology 2022;11:2062827. [DOI: 10.1080/2162402x.2022.2062827] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
203 |
Parihar A, Singhal A, Kumar N, Khan R, Khan MA, Srivastava AK. Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics. Nanomicro Lett 2022;14:100. [PMID: 35403935 DOI: 10.1007/s40820-022-00845-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
|
204 |
Song W, Song Y, Li Q, Fan C, Lan X, Jiang D. Advances in aptamer-based nuclear imaging. Eur J Nucl Med Mol Imaging 2022. [PMID: 35394153 DOI: 10.1007/s00259-022-05782-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
205 |
Van Simaeys D, De La Fuente A, Zilio S, Zoso A, Kuznetsova V, Alcazar O, Buchwald P, Grilli A, Caroli J, Bicciato S, Serafini P. RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nat Commun 2022;13:1815. [PMID: 35383192 DOI: 10.1038/s41467-022-29377-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
206 |
Loukanov A, Kuribara A, Filipov C, Nikolova S. Theranostic nanomachines for cancer treatment. PHAR 2022;69:285-93. [DOI: 10.3897/pharmacia.69.e80595] [Reference Citation Analysis]
|
207 |
Yunn NO, Lee J, Lee HS, Oh EJ, Park M, Park S, Jin SY, Shin E, Lee JWY, Kim Y, Bae SS, Ryu SH. An aptamer agonist of the insulin receptor acts as a positive or negative allosteric modulator, depending on its concentration. Exp Mol Med 2022;54:531-41. [PMID: 35478209 DOI: 10.1038/s12276-022-00760-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
208 |
Adegoke O, Daeid NN. Alloyed AuFeZnSe quantum dots@gold nanorod nanocomposite as an ultrasensitive and selective plasmon-amplified fluorescence OFF-ON aptasensor for arsenic (III). Journal of Photochemistry and Photobiology A: Chemistry 2022;426:113755. [DOI: 10.1016/j.jphotochem.2021.113755] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
209 |
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
210 |
Zhang J, Zhao P, Li W, Ye L, Li L, Li Z, Li M. Near‐Infrared Light‐Activatable Spherical Nucleic Acids for Conditional Control of Protein Activity. Angewandte Chemie. [DOI: 10.1002/ange.202117562] [Reference Citation Analysis]
|
211 |
Ao Y, Duan A, Chen B, Yu X, Wu Y, Zhang X, Li S. Integration of an Expression Platform in the SELEX Cycle to Select DNA Aptamer Binding to a Disease Biomarker. ACS Omega 2022;7:10804-11. [PMID: 35382297 DOI: 10.1021/acsomega.2c00769] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
212 |
Li X, Pan J, Li Y, Xu F, Hou J, Yang G, Zhou S. Development of a Localized Drug Delivery System with a Step-by-Step Cell Internalization Capacity for Cancer Immunotherapy. ACS Nano 2022. [PMID: 35324153 DOI: 10.1021/acsnano.1c10892] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
213 |
Camorani S, d'Argenio A, Agnello L, Nilo R, Zannetti A, Ibarra LE, Fedele M, Cerchia L. Optimization of Short RNA Aptamers for TNBC Cell Targeting. Int J Mol Sci 2022;23:3511. [PMID: 35408872 DOI: 10.3390/ijms23073511] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
214 |
You Y, Deng Q, Wang Y, Sang Y, Li G, Pu F, Ren J, Qu X. DNA-based platform for efficient and precisely targeted bioorthogonal catalysis in living systems. Nat Commun 2022;13:1459. [PMID: 35304487 DOI: 10.1038/s41467-022-29167-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
215 |
Wan Q, Zeng Z, Qi J, Zhao Y, Liu X, Chen Z, Zhou H, Zu Y. Aptamer Targets Triple-Negative Breast Cancer through Specific Binding to Surface CD49c. Cancers 2022;14:1570. [DOI: 10.3390/cancers14061570] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
216 |
Abe Y, Ukai K, Michida M. Efficient Divergent Synthesis of 2′- O ,4′- C -Ethylene-Bridged Nucleic Acid (ENA) Phosphoramidites. Org Process Res Dev 2022;26:1289-307. [DOI: 10.1021/acs.oprd.2c00013] [Reference Citation Analysis]
|
217 |
Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 2022:S0168-9525(22)00018-X. [PMID: 35303998 DOI: 10.1016/j.tig.2022.02.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
|
218 |
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022;14:1480. [PMID: 35326630 DOI: 10.3390/cancers14061480] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
219 |
Layman B, Mandella B, Carter J, Breen H, Rinehart J, Cavinato A. Isolation and Characterization of a ssDNA Aptamer against Major Soluble Antigen of Renibacterium salmoninarum. Molecules 2022;27:1853. [DOI: 10.3390/molecules27061853] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
220 |
Li K, Tharwat M, Larson EL, Felgendreff P, Hosseiniasl SM, Rmilah AA, Safwat K, Ross JJ, Nyberg SL. Re-Endothelialization of Decellularized Liver Scaffolds: A Step for Bioengineered Liver Transplantation. Front Bioeng Biotechnol 2022;10:833163. [DOI: 10.3389/fbioe.2022.833163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
221 |
Bae SW, Kim J, Kwon S. Recent Advances in Polymer Additive Engineering for Diagnostic and Therapeutic Hydrogels. Int J Mol Sci 2022;23:2955. [PMID: 35328375 DOI: 10.3390/ijms23062955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
222 |
Zhang C, Owen LA, Lillvis JH, Zhang SX, Kim IK, DeAngelis MM. AMD Genomics: Non-Coding RNAs as Biomarkers and Therapeutic Targets. J Clin Med 2022;11:1484. [PMID: 35329812 DOI: 10.3390/jcm11061484] [Reference Citation Analysis]
|
223 |
Hu X, Tang L, Zheng M, Liu J, Zhang Z, Li Z, Yang Q, Xiang S, Fang L, Ren Q, Liu X, Huang CZ, Mao C, Zuo H. Structure-Guided Designing Pre-Organization in Bivalent Aptamers. J Am Chem Soc 2022. [PMID: 35245025 DOI: 10.1021/jacs.1c12593] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
224 |
Komiyama M, Shigi N, Ariga K. DNA‐Based Nanoarchitectures as Eminent Vehicles for Smart Drug Delivery Systems. Adv Funct Materials. [DOI: 10.1002/adfm.202200924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
225 |
Andersson P. Preclinical Safety Assessment of Therapeutic Oligonucleotides. Methods Mol Biol 2022;2434:355-70. [PMID: 35213031 DOI: 10.1007/978-1-0716-2010-6_25] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
226 |
Martínez-Roque MA, Franco-Urquijo PA, García-Velásquez VM, Choukeife M, Mayer G, Molina-Ramírez SR, Figueroa-Miranda G, Mayer D, Alvarez-Salas LM. DNA aptamer selection for SARS-CoV-2 spike glycoprotein detection. Anal Biochem 2022;:114633. [PMID: 35247355 DOI: 10.1016/j.ab.2022.114633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
227 |
Ozer I, Pitoc GA, Layzer JM, Moreno A, Olson LB, Layzer KD, Hucknall AM, Sullenger BA, Chilkoti A. PEG-Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response. Adv Mater 2022;34:e2107852. [PMID: 34994037 DOI: 10.1002/adma.202107852] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
228 |
Qian S, Chang D, He S, Li Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Analytica Chimica Acta 2022;1196:339511. [DOI: 10.1016/j.aca.2022.339511] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
|
229 |
Atapour A, Khajehzadeh H, Shafie M, Abbasi M, Mosleh-shirazi S, Kasaee SR, Amani AM. Gold nanoparticle-based aptasensors: A promising perspective for early-stage detection of cancer biomarkers. Materials Today Communications 2022;30:103181. [DOI: 10.1016/j.mtcomm.2022.103181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
|
230 |
Zogg H, Singh R, Ro S. Current Advances in RNA Therapeutics for Human Diseases. Int J Mol Sci 2022;23:2736. [PMID: 35269876 DOI: 10.3390/ijms23052736] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
|
231 |
Adam T, Gopinath SC. Nanosensors: Recent Perspectives on Attainments and Future Promise of Downstream Applications. Process Biochemistry 2022. [DOI: 10.1016/j.procbio.2022.03.024] [Reference Citation Analysis]
|
232 |
Zheng A, Du Y, Wang Y, Zheng Y, Ning Z, Wu M, Zhang C, Zhang D, Liu J, Liu X. CD16/PD-L1 bi-specific aptamer for cancer immunotherapy through recruiting NK cells and acting as immunocheckpoint blockade. Molecular Therapy - Nucleic Acids 2022;27:998-1009. [DOI: 10.1016/j.omtn.2022.01.010] [Reference Citation Analysis]
|
233 |
Thomas BJ, Porciani D, Burke DH. Cancer immunomodulation using bispecific aptamers. Molecular Therapy - Nucleic Acids 2022;27:894-915. [DOI: 10.1016/j.omtn.2022.01.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
234 |
Mironov V, Shchugoreva IA, Artyushenko PV, Morozov D, Borbone N, Oliviero G, Zamay TN, Moryachkov RV, Kolovskaya OS, Lukyanenko KA, Song Y, Merkuleva IA, Zabluda VN, Peters G, Koroleva LS, Veprintsev DV, Glazyrin YE, Volosnikova EA, Belenkaya SV, Esina TI, Isaeva AA, Nesmeyanova VS, Shanshin DV, Berlina AN, Komova NS, Svetlichnyi VA, Silnikov VN, Shcherbakov DN, Zamay GS, Zamay SS, Smolyarova T, Tikhonova EP, Chen KH, Jeng U, Condorelli G, Franciscis V, Groenhof G, Yang C, Moskovsky AA, Fedorov DG, Tomilin FN, Tan W, Alexeev Y, Berezovski MV, Kichkailo AS. Structure‐ and Interaction‐Based Design of Anti‐SARS‐CoV‐2 Aptamers. Chemistry A European J 2022;28. [DOI: 10.1002/chem.202104481] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
235 |
An Y, Li X, Yao F, Duan J, Yang XD. Novel Complex of PD-L1 Aptamer and Albumin Enhances Antitumor Efficacy In Vivo. Molecules 2022;27:1482. [PMID: 35268583 DOI: 10.3390/molecules27051482] [Reference Citation Analysis]
|
236 |
Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer 2022;21. [DOI: 10.1186/s12943-022-01528-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
237 |
Roueinfar M, Templeton HN, Sheng JA, Hong KL. An Update of Nucleic Acids Aptamers Theranostic Integration with CRISPR/Cas Technology. Molecules 2022;27:1114. [PMID: 35164379 DOI: 10.3390/molecules27031114] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
238 |
Infante A, Alcorta-Sevillano N, Macías I, Rodríguez CI. Educating EVs to Improve Bone Regeneration: Getting Closer to the Clinic. Int J Mol Sci 2022;23:1865. [PMID: 35163787 DOI: 10.3390/ijms23031865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
239 |
Khan S, Hussain A, Fahimi H, Aliakbari F, Haj Bloukh S, Edis Z, Mahdi Nejadi Babadaei M, Izadi Z, Shiri Varnamkhasti B, Jahanshahi F, Lin Y, Hao X, Hasan Khan R, Rasti B, Vaghar-lahijani G, Hua L, Derakhshankhah H, Sharifi M, Falahati M. A review on the therapeutic applications of aptamers and aptamer-conjugated nanoparticles in cancer, inflammatory and viral diseases. Arabian Journal of Chemistry 2022;15:103626. [DOI: 10.1016/j.arabjc.2021.103626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
240 |
Mercer TR, Munro T, Mattick JS. The potential of long noncoding RNA therapies. Trends in Pharmacological Sciences 2022. [DOI: 10.1016/j.tips.2022.01.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
241 |
He L, Yu X, Huang R, Jin L, Liu Y, Deng Y, Li S, Chen H, Chen Z, Li Z, Xiao P, He N. A novel specific and ultrasensitive method detecting extracellular vesicles secreted from lung cancer by padlock probe-based exponential rolling circle amplification. Nano Today 2022;42:101334. [DOI: 10.1016/j.nantod.2021.101334] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
|
242 |
Ma S, Ji J, Tong Y, Zhu Y, Dou J, Zhang X, Xu S, Zhu T, Xu X, You Q, Jiang Z. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
243 |
Corey DR, Damha MJ, Manoharan M. Challenges and Opportunities for Nucleic Acid Therapeutics. Nucleic Acid Ther 2022;32:8-13. [PMID: 34931905 DOI: 10.1089/nat.2021.0085] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
|
244 |
Sharma A, Dulta K, Nagraik R, Dua K, Singh SK, Chellappan DK, Kumar D, Shin D. Potentialities of aptasensors in cancer diagnosis. Materials Letters 2022;308:131240. [DOI: 10.1016/j.matlet.2021.131240] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
245 |
Chen X, Zhang L, Shao X, Gong W, Shi T, Dong J, Shi Y, Shen S, He Y, Qin J, Lu J, Jiang Q, Guo B. Specific Clearance of Senescent Synoviocytes Suppresses the Development of Osteoarthritis based on Aptamer‐Functionalized Targeted Drug Delivery System. Adv Funct Materials 2022;32:2109460. [DOI: 10.1002/adfm.202109460] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
246 |
Wandtke T, Wędrowska E, Szczur M, Przybylski G, Libura M, Kopiński P. Aptamers-Diagnostic and Therapeutic Solution in SARS-CoV-2. Int J Mol Sci 2022;23:1412. [PMID: 35163338 DOI: 10.3390/ijms23031412] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
247 |
Bowie D. The Many Faces of the AMPA-type Ionotropic Glutamate receptor. Neuropharmacology 2022;:108975. [PMID: 35065944 DOI: 10.1016/j.neuropharm.2022.108975] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
248 |
Alkhamis O, Canoura J, Bukhryakov KV, Tarifa A, Decaprio AP, Xiao Y. DNA Aptamer–Cyanine Complexes as Generic Colorimetric Small‐Molecule Sensors. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202112305] [Reference Citation Analysis]
|
249 |
Tarab-Ravski D, Stotsky-Oterin L, Peer D. Delivery strategies of RNA therapeutics to leukocytes. J Control Release 2022:S0168-3659(22)00030-X. [PMID: 35041904 DOI: 10.1016/j.jconrel.2022.01.016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
250 |
Arshavsky‐graham S, Heuer C, Jiang X, Segal E. Aptasensors versus immunosensors—Which will prevail? Engineering in Life Sciences. [DOI: 10.1002/elsc.202100148] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
|
251 |
He S, Dong G, Cheng J, Wu Y, Sheng C. Strategies for designing proteolysis targeting chimaeras (PROTACs). Med Res Rev 2022. [PMID: 35001407 DOI: 10.1002/med.21877] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
|
252 |
Setlem SK, Mondal B, Ramlal S. A fluorescent aptasensor for the detection of Aflatoxin B1 by graphene oxide mediated quenching and release of fluorescence. J Microbiol Methods 2022;193:106414. [PMID: 35016975 DOI: 10.1016/j.mimet.2022.106414] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
253 |
Liu M, Wang L, Lo Y, Shiu SC, Kinghorn AB, Tanner JA. Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells 2022;11:159. [DOI: 10.3390/cells11010159] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
254 |
Figueroa-pizano M. Biological macromolecules for growth factor delivery. Biological Macromolecules 2022. [DOI: 10.1016/b978-0-323-85759-8.00018-x] [Reference Citation Analysis]
|
255 |
Kumar R, Pulikanti GR, Shankar KR, Rambabu D, Mangili V, Kumbam LR, Sagara PS, Nakka N, Yogesh M. Surface coating and functionalization of metal and metal oxide nanoparticles for biomedical applications. Metal Oxides for Biomedical and Biosensor Applications 2022. [DOI: 10.1016/b978-0-12-823033-6.00007-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
256 |
Ali GK, Omer KM. Molecular imprinted polymer combined with aptamer (MIP-aptamer) as a hybrid dual recognition element for bio(chemical) sensing applications. Review. Talanta 2022;236:122878. [PMID: 34635258 DOI: 10.1016/j.talanta.2021.122878] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
|
257 |
Nakhjavani M, Samarasinghe RM, Shigdar S. Triple-negative breast cancer brain metastasis: an update on druggable targets, current clinical trials, and future treatment options. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.01.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
258 |
Joshi S, Sharma S, Verma G, Saini A. Peptide functionalized nanomaterials as microbial sensors. Photophysics and Nanophysics in Therapeutics 2022. [DOI: 10.1016/b978-0-323-89839-3.00004-x] [Reference Citation Analysis]
|
259 |
Holm K, Alluin J, Song M, Zhou J, Rossi JJ. Combinatorial RNA therapies in cancer immunotherapy: Challenges and directions. RNA Therapeutics 2022. [DOI: 10.1016/b978-0-12-821595-1.00013-0] [Reference Citation Analysis]
|
260 |
Wang Z, Yang B. Polypharmacology in Drug Design and Discovery—Basis for Rational Design of Multitarget Drugs. Polypharmacology 2022. [DOI: 10.1007/978-3-031-04998-9_12] [Reference Citation Analysis]
|
261 |
Zhang Z, Su Y, Yu C, Alcantara M, Rossi D, Kortylewski M. Targeted RNA therapeutics for treatment of cancer and immunomodulation. RNA Therapeutics 2022. [DOI: 10.1016/b978-0-12-821595-1.00010-5] [Reference Citation Analysis]
|
262 |
Schneider DJ, Lynch SA, Gelinas AD, Ostroff RM, Rohloff JC, Williams P, Janjic N, Drolet DW. SOMAmer reagents and the SomaScan platform: Chemically modified aptamers and their applications in therapeutics, diagnostics, and proteomics. RNA Therapeutics 2022. [DOI: 10.1016/b978-0-12-821595-1.00007-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
263 |
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022;23:1191-209. [PMID: 35702767 DOI: 10.2174/1389450123666220610171005] [Reference Citation Analysis]
|
264 |
Rupp TM, Cramer H. CMC and regulatory aspects of oligonucleotide therapeutics. RNA Therapeutics 2022. [DOI: 10.1016/b978-0-12-821595-1.00012-9] [Reference Citation Analysis]
|
265 |
Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet 2022;23:265-80. [PMID: 34983972 DOI: 10.1038/s41576-021-00439-4] [Cited by in Crossref: 98] [Cited by in F6Publishing: 92] [Article Influence: 98.0] [Reference Citation Analysis]
|
266 |
Suraritdechachai S, Lakkanasirorat B, Uttamapinant C. Molecular probes for cellular imaging of post-translational proteoforms. RSC Chem Biol . [DOI: 10.1039/d1cb00190f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
267 |
Zheng Y, He S, Jin P, Gao Y, Di Y, Gao L, Wang J. Construction of multifunctional carboxymethyl cellulose nanohydrogel carriers based on near-infrared DNA-templated quantum dots for tumor theranostics. RSC Adv 2022;12:31869-31877. [DOI: 10.1039/d2ra05424h] [Reference Citation Analysis]
|
268 |
Pereira AC, Pina AF, Sousa D, Ferreira D, Santos-pereira C, Rodrigues JL, Melo LDR, Sales G, Sousa SF, Rodrigues LR. Identification of novel aptamers targeting cathepsin B-overexpressing prostate cancer cells. Mol Syst Des Eng 2022;7:637-50. [DOI: 10.1039/d2me00022a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
269 |
Xi S, Wang Y, Hu M, Wang L, Cheng M, Dong Y. Tetracycline Intelligent Target-Inducing Logic Gate Based on Triple-Stranded DNA Nanoswitch. Communications in Computer and Information Science 2022. [DOI: 10.1007/978-981-19-1256-6_30] [Reference Citation Analysis]
|
270 |
Yu H, Frederiksen J, Sullenger BA. Aptamer-based protein inhibitors. RNA Therapeutics 2022. [DOI: 10.1016/b978-0-12-821595-1.00008-7] [Reference Citation Analysis]
|
271 |
Aggarwal N, Choudhury S, Chibh S, Panda JJ. Aptamer-nanoconjugates as emerging theranostic systems in neurodegenerative disorders. Colloid and Interface Science Communications 2022;46:100554. [DOI: 10.1016/j.colcom.2021.100554] [Reference Citation Analysis]
|
272 |
Chen J, Chen M, Zhu TF. Directed evolution and selection of biostable L-DNA aptamers with a mirror-image DNA polymerase. Nat Biotechnol 2022;40:1601-9. [PMID: 35668324 DOI: 10.1038/s41587-022-01337-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
273 |
Laina A, Vlachogiannis NΙ, Stamatelopoulos K, Stellos K. RNA therapies for cardiovascular disease. The Vasculome 2022. [DOI: 10.1016/b978-0-12-822546-2.00003-4] [Reference Citation Analysis]
|
274 |
Hervey JRD, Freund N, Houlihan G, Dhaliwal G, Holliger P, Taylor AI. Efficient synthesis and replication of diverse sequence libraries composed of biostable nucleic acid analogues. RSC Chem Biol 2022. [DOI: 10.1039/d2cb00035k] [Reference Citation Analysis]
|
275 |
Ueki R, Sando S. Design and Biological Application of RTK Agonist Aptamers. Handbook of Chemical Biology of Nucleic Acids 2022. [DOI: 10.1007/978-981-16-1313-5_78-1] [Reference Citation Analysis]
|
276 |
Swaminathan A, Theijeswini R, Gayathri M. Aptamer-based nanomaterials for drug/gene delivery systems and diagnostics to combat microbial infections. Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance 2022. [DOI: 10.1016/b978-0-323-90792-7.00005-1] [Reference Citation Analysis]
|
277 |
Guo H, Sun Y, Ma P, Khan IM, Duan N, Wang Z. Sensitive detection of patulin based on DNase Ⅰ-assisted fluorescent aptasensor by using AuNCs-modified truncated aptamer. Food Control 2022;131:108430. [DOI: 10.1016/j.foodcont.2021.108430] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
|
278 |
Qu N, Ying Y, Qin J, Chen AK. Rational design of self-assembled RNA nanostructures for HIV-1 virus assembly blockade. Nucleic Acids Res 2021:gkab1282. [PMID: 34967412 DOI: 10.1093/nar/gkab1282] [Reference Citation Analysis]
|
279 |
Wang C, Shirzaei Sani E, Gao W. Wearable Bioelectronics for Chronic Wound Management. Adv Funct Materials 2022;32:2111022. [DOI: 10.1002/adfm.202111022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
280 |
Shigdar S, Agnello L, Fedele M, Camorani S, Cerchia L. Profiling Cancer Cells by Cell-SELEX: Use of Aptamers for Discovery of Actionable Biomarkers and Therapeutic Applications Thereof. Pharmaceutics 2021;14:28. [PMID: 35056924 DOI: 10.3390/pharmaceutics14010028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
281 |
Yang C, Jiang Y, Hao SH, Yan XY, Hong F, Naranmandura H. Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. J Mater Chem B 2021;10:20-33. [PMID: 34881767 DOI: 10.1039/d1tb02098f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
|
282 |
Xia F, He A, Zhao H, Sun Y, Duan Q, Abbas SJ, Liu J, Xiao Z, Tan W. Molecular Engineering of Aptamer Self-Assemblies Increases in Vivo Stability and Targeted Recognition. ACS Nano 2021. [PMID: 34935348 DOI: 10.1021/acsnano.1c05265] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
|
283 |
Huml L, Tauchen J, Rimpelová S, Holubová B, Lapčík O, Jurášek M. Advances in the Determination of Anabolic-Androgenic Steroids: From Standard Practices to Tailor-Designed Multidisciplinary Approaches. Sensors (Basel) 2021;22:4. [PMID: 35009549 DOI: 10.3390/s22010004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
284 |
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS Appl Bio Mater 2021;4:8060-79. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
285 |
Valero J, Civit L, Dupont DM, Selnihhin D, Reinert LS, Idorn M, Israels BA, Bednarz AM, Bus C, Asbach B, Peterhoff D, Pedersen FS, Birkedal V, Wagner R, Paludan SR, Kjems J. A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry. Proc Natl Acad Sci U S A 2021;118:e2112942118. [PMID: 34876524 DOI: 10.1073/pnas.2112942118] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
|
286 |
Yadav A, Singh S, Sohi H, Dang S. Advances in Delivery of Chemotherapeutic Agents for Cancer Treatment. AAPS PharmSciTech 2021;23:25. [PMID: 34907501 DOI: 10.1208/s12249-021-02174-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
287 |
Maru B, Nadeau L, McKeague M. Enhancing CAR-T Cell Therapy with Functional Nucleic Acids. ACS Pharmacol Transl Sci 2021;4:1716-27. [PMID: 34927006 DOI: 10.1021/acsptsci.1c00188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
288 |
Corrêa LB, Pinto SR, Alencar LMR, Missailidis S, Rosas EC, Henriques MDGMO, Santos-Oliveira R. Nanoparticle conjugated with aptamer anti-MUC1/Y for inflammatory arthritis. Colloids Surf B Biointerfaces 2021;211:112280. [PMID: 34902784 DOI: 10.1016/j.colsurfb.2021.112280] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
289 |
Murakami K, Izuo N, Bitan G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J Biol Chem 2021;298:101478. [PMID: 34896392 DOI: 10.1016/j.jbc.2021.101478] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
290 |
Duan N, Song M, Mi W, Wang Z, Wu S. Effectively Selecting Aptamers for Targeting Aromatic Biogenic Amines and Their Application in Aptasensing Establishment. J Agric Food Chem 2021;69:14671-9. [PMID: 34809428 DOI: 10.1021/acs.jafc.1c05934] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
291 |
Zheng X, Gao S, Wu J, Hu X. A Fluorescent Aptasensor Based on Assembled G-Quadruplex and Thioflavin T for the Detection of Biomarker VEGF165. Front Bioeng Biotechnol 2021;9:764123. [PMID: 34869275 DOI: 10.3389/fbioe.2021.764123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
292 |
Ren M, Wang Y, Luo Y, Yao X, Yang Z, Zhang P, Zhao W, Jiang D. Functionalized Nanoparticles in Prevention and Targeted Therapy of Viral Diseases With Neurotropism Properties, Special Insight on COVID-19. Front Microbiol 2021;12:767104. [PMID: 34867899 DOI: 10.3389/fmicb.2021.767104] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
293 |
Gupta R, Kaul S, Singh V, Kumar S, Singhal NK. Graphene oxide and fluorescent aptamer based novel biosensor for detection of 25-hydroxyvitamin D3. Sci Rep 2021;11:23456. [PMID: 34873222 DOI: 10.1038/s41598-021-02837-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
294 |
Hoshiyama J, Okada Y, Hayata Y, Eguchi A, Ueki R, Sando S. Characterization of a DNA Aptamer with High Specificity toward Fibroblast Growth Factor Receptor 1. Chem Lett 2021;50:1949-52. [DOI: 10.1246/cl.210505] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
295 |
Khanali J, Azangou-Khyavy M, Asaadi Y, Jamalkhah M, Kiani J. Nucleic Acid-Based Treatments Against COVID-19: Potential Efficacy of Aptamers and siRNAs. Front Microbiol 2021;12:758948. [PMID: 34858370 DOI: 10.3389/fmicb.2021.758948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
296 |
Ozturk M, Nilsen-Hamilton M, Ilgu M. Aptamer Applications in Neuroscience. Pharmaceuticals (Basel) 2021;14:1260. [PMID: 34959661 DOI: 10.3390/ph14121260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
297 |
Wang S, Niu Y, Jia P, Liao Z, Guo W, Chaves RC, Tran-ba K, He L, Bai H, Sia S, Kaufman LJ, Wang X, Zhou Y, Dong Y, Mao JJ. Alkaline activation of endogenous latent TGFβ1 by an injectable hydrogel directs cell homing for in situ complex tissue regeneration. Bioactive Materials 2021. [DOI: 10.1016/j.bioactmat.2021.12.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
298 |
Tang X, Feng C, Pan Q, Sun F, Zhu X. Engineered aptamer for the analysis of cells. TrAC Trends in Analytical Chemistry 2021;145:116456. [DOI: 10.1016/j.trac.2021.116456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
299 |
Joshi B, Ortiz D, Zuhorn I. Converting extracellular vesicles into nanomedicine: loading and unloading of cargo. Materials Today Nano 2021;16:100148. [DOI: 10.1016/j.mtnano.2021.100148] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
300 |
Zhu C, Yao C, Yang D. Aptamer-Based DNA Materials for the Separation and Analysis of Biological Particles. Trans Tianjin Univ 2021;27:450-459. [DOI: 10.1007/s12209-021-00301-y] [Reference Citation Analysis]
|
301 |
Yang H, Cao Y, Li D, Li F, Ma J, Peng S, Liu P. AS1411 and EpDT3-conjugated silver nanotriangle-mediated photothermal therapy for breast cancer and cancer stem cells. Nanomedicine (Lond) 2021;16:2503-19. [PMID: 34812051 DOI: 10.2217/nnm-2021-0257] [Reference Citation Analysis]
|
302 |
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021;121:13797-868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Cited by in Crossref: 20] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
|
303 |
Zhang L, Zhou L, Zhang H, Zhang Y, Li L, Xie T, Chen Y, Li X, Ling N, Dai J, Sun X, Liu J, Zhao J, Peng T, Ye M. Development of a DNA Aptamer against Multidrug-Resistant Hepatocellular Carcinoma for In Vivo Imaging. ACS Appl Mater Interfaces 2021;13:54656-64. [PMID: 34779207 DOI: 10.1021/acsami.1c12391] [Reference Citation Analysis]
|
304 |
Saminathan A, Zajac M, Anees P, Krishnan Y. Organelle-level precision with next-generation targeting technologies. Nat Rev Mater. [DOI: 10.1038/s41578-021-00396-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
|
305 |
McCloskey CM, Li Q, Yik EJ, Chim N, Ngor AK, Medina E, Grubisic I, Co Ting Keh L, Poplin R, Chaput JC. Evolution of Functionally Enhanced α-l-Threofuranosyl Nucleic Acid Aptamers. ACS Synth Biol 2021;10:3190-9. [PMID: 34739228 DOI: 10.1021/acssynbio.1c00481] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
306 |
Villa A, Brunialti E, Dellavedova J, Meda C, Rebecchi M, Conti M, Donnici L, De Francesco R, Reggiani A, Lionetti V, Ciana P. DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic. Pharmacol Res 2021;175:105982. [PMID: 34798263 DOI: 10.1016/j.phrs.2021.105982] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
307 |
Geng Z, Cao Z, Liu R, Liu K, Liu J, Tan W. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat Commun 2021;12:6584. [PMID: 34782610 DOI: 10.1038/s41467-021-26956-8] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 24.0] [Reference Citation Analysis]
|
308 |
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021;13:1897. [PMID: 34834311 DOI: 10.3390/pharmaceutics13111897] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
309 |
Lim WY, Lan BL, Ramakrishnan N. Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review. Biosensors (Basel) 2021;11:434. [PMID: 34821650 DOI: 10.3390/bios11110434] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
|
310 |
Luong A, Roy I, Malhotra BD, Luong JH. Analytical and biosensing platforms for insulin: A review. Sensors and Actuators Reports 2021;3:100028. [DOI: 10.1016/j.snr.2021.100028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
311 |
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee KB, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. Adv Sci (Weinh) 2021;8:e2100556. [PMID: 34558234 DOI: 10.1002/advs.202100556] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
|
312 |
Vandghanooni S, Sanaat Z, Farahzadi R, Eskandani M, Omidian H, Omidi Y. Recent progress in the development of aptasensors for cancer diagnosis: Focusing on aptamers against cancer biomarkers. Microchemical Journal 2021;170:106640. [DOI: 10.1016/j.microc.2021.106640] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
313 |
Huang Z, Niu L. RNA aptamers for AMPA receptors. Neuropharmacology 2021;199:108761. [PMID: 34509496 DOI: 10.1016/j.neuropharm.2021.108761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
314 |
Teixeira SPB, Reis RL, Peppas NA, Gomes ME, Domingues RMA. Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. Sci Adv 2021;7:eabi9884. [PMID: 34714673 DOI: 10.1126/sciadv.abi9884] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
315 |
Tade RS, More MP, Nangare SN, Patil PO. Graphene quantum dots (GQDs) nanoarchitectonics for theranostic application in lung cancer. J Drug Target 2021;:1-18. [PMID: 34595987 DOI: 10.1080/1061186X.2021.1987442] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
316 |
Alkhamis O, Canoura J, Bukhryakov KV, Tarifa A, DeCaprio AP, Xiao Y. DNA Aptamer-Cyanine Complexes as Generic Colorimetric Small-Molecule Sensors. Angew Chem Int Ed Engl 2021. [PMID: 34706127 DOI: 10.1002/anie.202112305] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
317 |
Alamudi SH, Kimoto M, Hirao I. Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharmacological agents. RSC Med Chem 2021;12:1640-9. [PMID: 34778766 DOI: 10.1039/d1md00199j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
318 |
Shi J, Wang D, Ma Y, Liu J, Li Y, Reza R, Zhang Z, Liu J, Zhang K. Photoactivated Self-Disassembly of Multifunctional DNA Nanoflower Enables Amplified Autophagy Suppression for Low-Dose Photodynamic Therapy. Small 2021;:e2104722. [PMID: 34672076 DOI: 10.1002/smll.202104722] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
319 |
Dantsu Y, Zhang Y, Zhang W. Synthesis of 2′‐Deoxy‐2′‐fluoro‐ L ‐cytidine and Fluorinated L ‐Nucleic Acids for Structural Studies. ChemistrySelect 2021;6:10597-10600. [DOI: 10.1002/slct.202103202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
320 |
He S, Gao F, Ma J, Ma H, Dong G, Sheng C. Aptamer‐PROTAC Conjugates (APCs) for Tumor‐Specific Targeting in Breast Cancer. Angewandte Chemie 2021;133:23487-23493. [DOI: 10.1002/ange.202107347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
321 |
Esposito CL, Van Roosbroeck K, Santamaria G, Rotoli D, Sandomenico A, Wierda WG, Ferrajoli A, Ruvo M, Calin GA, de Franciscis V, Catuogno S. Selection of a Nuclease-Resistant RNA Aptamer Targeting CD19. Cancers (Basel) 2021;13:5220. [PMID: 34680368 DOI: 10.3390/cancers13205220] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
322 |
Miele D, Xia X, Catenacci L, Sorrenti M, Rossi S, Sandri G, Ferrari F, Rossi JJ, Bonferoni MC. Chitosan Oleate Coated PLGA Nanoparticles as siRNA Drug Delivery System. Pharmaceutics 2021;13:1716. [PMID: 34684009 DOI: 10.3390/pharmaceutics13101716] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
323 |
Xiao X, Li H, Zhao L, Zhang Y, Liu Z. Oligonucleotide aptamers: Recent advances in their screening, molecular conformation and therapeutic applications. Biomed Pharmacother 2021;143:112232. [PMID: 34649356 DOI: 10.1016/j.biopha.2021.112232] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
|
324 |
Wang S, Gao H, Wei Z, Zhou J, Ren S, He J, Luan Y, Lou X. Shortened and multivalent aptamers for ultrasensitive and rapid detection of alternariol in wheat using optical waveguide sensors. Biosens Bioelectron 2021;196:113702. [PMID: 34655971 DOI: 10.1016/j.bios.2021.113702] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
325 |
Akiyama M, Ueki R, Yanagawa M, Abe M, Hiroshima M, Sako Y, Sando S. DNA‐Based Synthetic Growth Factor Surrogates with Fine‐Tuned Agonism**. Angewandte Chemie 2021;133:22927-22934. [DOI: 10.1002/ange.202105314] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
326 |
Uno A, Arima K, Shimazaki M, Ushida M, Amano K, Namikawa R, Sakurai K. A novel β-glucan-oligonucleotide complex selectively delivers siRNA to APCs via Dectin-1. J Control Release 2021;338:792-803. [PMID: 34530053 DOI: 10.1016/j.jconrel.2021.09.011] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
327 |
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
328 |
Uno A, Arima K, Ushida M, Katayama Y, Shimazaki M, Amano K, Namikawa R, Sakurai K. β-1.3 Glucan Complex Drastically Suppresses Kidney Clearance of siRNA. Chem Lett 2021;50:1778-1780. [DOI: 10.1246/cl.210334] [Reference Citation Analysis]
|
329 |
Harini K, Srivastava A, Kulandaisamy A, Gromiha MM. ProNAB: database for binding affinities of protein-nucleic acid complexes and their mutants. Nucleic Acids Res 2021:gkab848. [PMID: 34606614 DOI: 10.1093/nar/gkab848] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
330 |
Yue H, Chen J, Chen X, Wang X, Zhang Y, Zhou N. Systematic screening and optimization of single-stranded DNA aptamer specific for N-acetylneuraminic acid: A comparative study. Sensors and Actuators B: Chemical 2021;344:130270. [DOI: 10.1016/j.snb.2021.130270] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
331 |
Vandghanooni S, Sanaat Z, Barar J, Adibkia K, Eskandani M, Omidi Y. Recent advances in aptamer-based nanosystems and microfluidics devices for the detection of ovarian cancer biomarkers. TrAC Trends in Analytical Chemistry 2021;143:116343. [DOI: 10.1016/j.trac.2021.116343] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
|
332 |
Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021;296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
|
333 |
Liao L, Du S, Ding Y, Su M, Yu T, Duan T, Li Q, He S, Wang H, Liu H. Highly stable surface-enhanced Raman spectroscopy assay on abnormal thrombin levels in the blood plasma of cancer patients. Anal Methods 2021;13:4328-33. [PMID: 34477192 DOI: 10.1039/d1ay01002f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
334 |
Pandey PN, Saini N, Sapre N, Kulkarni DA, Tiwari DAK. Prioritising breast cancer theranostics: A current medical longing in oncology. Cancer Treat Res Commun 2021;29:100465. [PMID: 34598060 DOI: 10.1016/j.ctarc.2021.100465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
335 |
Nagano M, Oguro T, Sawada R, Yoshitomi T, Yoshimoto K. Accelerated Discovery of Potent Bioactive anti-TNFα Aptamers by Microbead-Assisted Capillary Electrophoresis (MACE)-SELEX. Chembiochem 2021. [PMID: 34549879 DOI: 10.1002/cbic.202100478] [Reference Citation Analysis]
|
336 |
Kacherovsky N, Yang LF, Dang HV, Cheng EL, Cardle II, Walls AC, Mccallum M, Sellers DL, Dimaio F, Salipante SJ, Corti D, Veesler D, Pun SH. Discovery and Characterization of Spike N‐Terminal Domain‐Binding Aptamers for Rapid SARS‐CoV‐2 Detection. Angewandte Chemie 2021;133:21381-5. [DOI: 10.1002/ange.202107730] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
337 |
Kacherovsky N, Yang LF, Dang HV, Cheng EL, Cardle II, Walls AC, McCallum M, Sellers DL, DiMaio F, Salipante SJ, Corti D, Veesler D, Pun SH. Discovery and Characterization of Spike N-Terminal Domain-Binding Aptamers for Rapid SARS-CoV-2 Detection. Angew Chem Int Ed Engl 2021;60:21211-5. [PMID: 34328683 DOI: 10.1002/anie.202107730] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
|
338 |
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021;11:682129. [PMID: 34532286 DOI: 10.3389/fonc.2021.682129] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
339 |
Wang X, Ye Y, Huang Z, Seeberger PH, Hu J, Yin J. In vivo dual fluorescence imaging of mucin 1 and its glycoform in tumor cells. Nanoscale 2021;13:15067-73. [PMID: 34533554 DOI: 10.1039/d1nr02821a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
340 |
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021;11:9133-61. [PMID: 34522231 DOI: 10.7150/thno.61804] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
341 |
Lee S, Kang TW, Hwang IJ, Kim HI, Jeon SJ, Yim D, Choi C, Son W, Kim H, Yang CS, Lee H, Kim JH. Transition-Metal Dichalcogenide Artificial Antibodies with Multivalent Polymeric Recognition Phases for Rapid Detection and Inactivation of Pathogens. J Am Chem Soc 2021;143:14635-45. [PMID: 34410692 DOI: 10.1021/jacs.1c05458] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
342 |
Panday R, Abdalla AME, Neupane M, Khadka S, Kricha A, Yang G. Advances in Magnetic Nanoparticle-Driven Delivery of Gene Therapies towards Prostate Cancer. Journal of Nanomaterials 2021;2021:1-10. [DOI: 10.1155/2021/6050795] [Reference Citation Analysis]
|
343 |
Hollenstein M. The Chemical Repertoire of DNA Enzymes. Ribozymes 2021. [DOI: 10.1002/9783527814527.ch23] [Reference Citation Analysis]
|
344 |
Tang Q, Han D. Obtaining Precise Molecular Information via DNA Nanotechnology. Membranes (Basel) 2021;11:683. [PMID: 34564500 DOI: 10.3390/membranes11090683] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
345 |
Pérez de Carvasal K, Riccardi C, Russo Krauss I, Cavasso D, Vasseur JJ, Smietana M, Morvan F, Montesarchio D. Charge-Transfer Interactions Stabilize G-Quadruplex-Forming Thrombin Binding Aptamers and Can Improve Their Anticoagulant Activity. Int J Mol Sci 2021;22:9510. [PMID: 34502432 DOI: 10.3390/ijms22179510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
346 |
Kohata A, Ueki R, Okuro K, Hashim PK, Sando S, Aida T. Photoreactive Molecular Glue for Enhancing the Efficacy of DNA Aptamers by Temporary-to-Permanent Conjugation with Target Proteins. J Am Chem Soc 2021;143:13937-43. [PMID: 34424707 DOI: 10.1021/jacs.1c06816] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
347 |
Pereira-barros MA, Nic Daeid N, Adegoke O. Rapid and selective aptamer-based fluorescence detection of salivary lysozyme using plasmonic metal-enhanced fluorescence of ZnSSe alloyed quantum dots-gold nanoparticle nanohybrid. Journal of Photochemistry and Photobiology A: Chemistry 2021;418:113384. [DOI: 10.1016/j.jphotochem.2021.113384] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
348 |
Felicetti L, Femminella M, Reali G. A Molecular Communications System for the Detection of Inflammatory Levels Related to COVID-19 Disease. IEEE Trans Mol Biol Multi-Scale Commun 2021;7:165-174. [DOI: 10.1109/tmbmc.2021.3071788] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
349 |
Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B. Systematic Evolution of Ligands by Exponential Enrichment Technologies and Aptamer-Based Applications: Recent Progress and Challenges in Precision Medicine of Infectious Diseases. Front Bioeng Biotechnol 2021;9:704077. [PMID: 34447741 DOI: 10.3389/fbioe.2021.704077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
350 |
Tozaki T, Kwak HG, Nakamura K, Takasu M, Ishii H, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Kusano K, Hirata M, Nirasawa T, Nagata SI. Sequence determination of phosphorothioated oligonucleotides using MALDI-TOF mass spectrometry for controlling gene doping in equestrian sports. Drug Test Anal 2021. [PMID: 34418319 DOI: 10.1002/dta.3154] [Reference Citation Analysis]
|
351 |
Beh CY, Prajnamitra RP, Chen LL, Hsieh PC. Advances in Biomimetic Nanoparticles for Targeted Cancer Therapy and Diagnosis. Molecules 2021;26:5052. [PMID: 34443638 DOI: 10.3390/molecules26165052] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
352 |
Sester C, Mccone JA, Vorster I, Harvey JE, Hodgkiss JM. Unravelling the binding mode of a methamphetamine aptamer: a spectroscopic and calorimetric investigation.. [DOI: 10.1101/2021.08.13.456068] [Reference Citation Analysis]
|
353 |
Tsogtbaatar K, Sousa DA, Ferreira D, Tevlek A, Aydın HM, Çelik E, Rodrigues L. In vitro selection of DNA aptamers against human osteosarcoma. Invest New Drugs 2021. [PMID: 34383183 DOI: 10.1007/s10637-021-01161-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
354 |
Hayata Y, Ueki R, Sando S. Feeder-Free Human Induced Pluripotent Stem Cell Culture Using a DNA Aptamer-Based Mimic of Basic Fibroblast Growth Factor. Methods Mol Biol 2021;2312:301-5. [PMID: 34228298 DOI: 10.1007/978-1-0716-1441-9_18] [Reference Citation Analysis]
|
355 |
Gu W, Qu R, Meng F, Cornelissen JJLM, Zhong Z. Polymeric nanomedicines targeting hematological malignancies. J Control Release 2021;337:571-88. [PMID: 34364920 DOI: 10.1016/j.jconrel.2021.08.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
356 |
Žuržul N, Stokke BT. DNA Aptamer Functionalized Hydrogels for Interferometric Fiber-Optic Based Continuous Monitoring of Potassium Ions. Biosensors (Basel) 2021;11:266. [PMID: 34436068 DOI: 10.3390/bios11080266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
357 |
Varty K, O'Brien C, Ignaszak A. Breast Cancer Aptamers: Current Sensing Targets, Available Aptamers, and Their Evaluation for Clinical Use in Diagnostics. Cancers (Basel) 2021;13:3984. [PMID: 34439139 DOI: 10.3390/cancers13163984] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
358 |
Heredia FL, Roche-Lima A, Parés-Matos EI. A novel artificial intelligence-based approach for identification of deoxynucleotide aptamers. PLoS Comput Biol 2021;17:e1009247. [PMID: 34343165 DOI: 10.1371/journal.pcbi.1009247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
359 |
Li S, Jiang Q, Liu Y, Wang W, Yu W, Wang F, Liu X. Precision Spherical Nucleic Acids Enable Sensitive FEN1 Imaging and Controllable Drug Delivery for Cancer-Specific Therapy. Anal Chem 2021;93:11275-83. [PMID: 34342424 DOI: 10.1021/acs.analchem.1c02264] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
360 |
Xu X, Su Y, Zhang Y, Wang X, Tian H, Ma X, Chu H, Xu W. Novel rolling circle amplification biosensors for food-borne microorganism detection. TrAC Trends in Analytical Chemistry 2021;141:116293. [DOI: 10.1016/j.trac.2021.116293] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
361 |
Heng JW, Yazid MD, Abdul Rahman MR, Sulaiman N. Coatings in Decellularized Vascular Scaffolds for the Establishment of a Functional Endothelium: A Scoping Review of Vascular Graft Refinement. Front Cardiovasc Med 2021;8:677588. [PMID: 34395554 DOI: 10.3389/fcvm.2021.677588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
362 |
Gu Z, Yang S, Xu M, Zhang X, Fan C, Li J. Research frontiers of chemical detection and measurements. Pure and Applied Chemistry 2021;93:1453-61. [DOI: 10.1515/pac-2020-1008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
363 |
Streckerová T, Kurfürst J, Curtis EA. Single-round deoxyribozyme discovery. Nucleic Acids Res 2021;49:6971-81. [PMID: 34133739 DOI: 10.1093/nar/gkab504] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
364 |
Głazowska S, Mravec J. An aptamer highly specific to cellulose enables the analysis of the association of cellulose with matrix cell wall polymers in vitro and in muro. Plant J 2021. [PMID: 34314513 DOI: 10.1111/tpj.15442] [Reference Citation Analysis]
|
365 |
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small‐Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem 2021;133:16938-61. [DOI: 10.1002/ange.202008663] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
366 |
Yu H, Alkhamis O, Canoura J, Liu Y, Xiao Y. Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development. Angew Chem Int Ed Engl 2021;60:16800-23. [PMID: 33559947 DOI: 10.1002/anie.202008663] [Cited by in Crossref: 50] [Cited by in F6Publishing: 56] [Article Influence: 25.0] [Reference Citation Analysis]
|
367 |
Zhang B, Wang C, Du Y, Paxton R, He X. A 'smart' aptamer-functionalized continuous label-free cell catch-transport-release system. J Mater Chem B 2021. [PMID: 34291267 DOI: 10.1039/d1tb00739d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
368 |
Živojević K, Mladenović M, Djisalov M, Mundzic M, Ruiz-Hernandez E, Gadjanski I, Knežević NŽ. Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications. J Control Release 2021;337:193-211. [PMID: 34293320 DOI: 10.1016/j.jconrel.2021.07.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
369 |
Walia S, Chandrasekaran AR, Chakraborty B, Bhatia D. Aptamer-Programmed DNA Nanodevices for Advanced, Targeted Cancer Theranostics. ACS Appl Bio Mater 2021;4:5392-404. [PMID: 35006722 DOI: 10.1021/acsabm.1c00413] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
370 |
Sugimoto N, Endoh T, Takahashi S, Tateishi-karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B , That Is the Question”. BCSJ 2021;94:1970-98. [DOI: 10.1246/bcsj.20210131] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
371 |
Yang C, Ma D, Lu L, Yang X, Xi Z. Synthesis of KUE-siRNA Conjugates for Prostate Cancer Cell-Targeted Gene Silencing. Chembiochem 2021. [PMID: 34263529 DOI: 10.1002/cbic.202100243] [Reference Citation Analysis]
|
372 |
Rotkrua P, Lohlamoh W, Watcharapo P, Soontornworajit B. A molecular hybrid comprising AS1411 and PDGF-BB aptamer, cholesterol, and doxorubicin for inhibiting proliferation of SW480 cells. J Mol Recognit 2021;:e2926. [PMID: 34258818 DOI: 10.1002/jmr.2926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
373 |
He S, Gao F, Ma J, Ma H, Dong G, Sheng C. Aptamer-PROTAC Conjugates (APCs) for Tumor-Specific Targeting in Breast Cancer. Angew Chem Int Ed Engl 2021. [PMID: 34240523 DOI: 10.1002/anie.202107347] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
|
374 |
Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M. Aptamers isolated against mosquito-borne pathogens. World J Microbiol Biotechnol 2021;37:131. [PMID: 34240263 DOI: 10.1007/s11274-021-03097-0] [Reference Citation Analysis]
|
375 |
Li B, Wei J, Di C, Lu Z, Qi F, Zhang Y, Leong WS, Li L, Nie G, Li S. Molecularly engineered truncated tissue factor with therapeutic aptamers for tumor-targeted delivery and vascular infarction. Acta Pharm Sin B 2021;11:2059-69. [PMID: 34386338 DOI: 10.1016/j.apsb.2020.11.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
376 |
Chen X, Zhang Y, Shi Y, Niu T, Li B, Guo L, Qiao Y, Zhao J, Yuan B, Liu K. Evolution of DNA aptamers against esophageal squamous cell carcinoma using cell-SELEX. Analyst 2021;146:4180-7. [PMID: 34105524 DOI: 10.1039/d1an00634g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
377 |
Morena F, Argentati C, Tortorella I, Emiliani C, Martino S. De novo ssRNA Aptamers against the SARS-CoV-2 Main Protease: In Silico Design and Molecular Dynamics Simulation. Int J Mol Sci 2021;22:6874. [PMID: 34206794 DOI: 10.3390/ijms22136874] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
378 |
Matsunaga KI, Kimoto M, Lim VW, Tan HP, Wong YQ, Sun W, Vasoo S, Leo YS, Hirao I. High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res 2021:gkab515. [PMID: 34169309 DOI: 10.1093/nar/gkab515] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
379 |
Jin Y, Liu B, Younis MH, Huang G, Liu J, Cai W, Wei W. Next-Generation Molecular Imaging of Thyroid Cancer. Cancers (Basel) 2021;13:3188. [PMID: 34202358 DOI: 10.3390/cancers13133188] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
380 |
De La Fuente A, Zilio S, Caroli J, Van Simaeys D, Mazza EMC, Ince TA, Bronte V, Bicciato S, Weed DT, Serafini P. Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Sci Transl Med 2020;12:eaav9760. [PMID: 32554710 DOI: 10.1126/scitranslmed.aav9760] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
381 |
Huang SP, Chuang YJ, Lee WB, Tsai YC, Lin CN, Hsu KF, Lee GB. An integrated microfluidic system for rapid, automatic and high-throughput staining of clinical tissue samples for diagnosis of ovarian cancer. Lab Chip 2020;20:1103-9. [PMID: 32040102 DOI: 10.1039/c9lc00979e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
382 |
Hoinka J, Wang Y, Przytycka TM. AptaBlocks Online: A Web-Based Toolkit for the In Silico Design of Oligonucleotide Sticky Bridges. J Comput Biol 2020;27:356-60. [PMID: 32160038 DOI: 10.1089/cmb.2019.0470] [Reference Citation Analysis]
|
383 |
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. Adv Therap 2021;4:2100040. [DOI: 10.1002/adtp.202100040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
384 |
Dantsu Y, Zhang Y, Zhang W. Synthesis and Structural Characterization of 2'-Deoxy-2'-fluoro-l-uridine Nucleic Acids. Org Lett 2021;23:5007-11. [PMID: 34142829 DOI: 10.1021/acs.orglett.1c01498] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
385 |
Akiyama M, Ueki R, Yanagawa M, Abe M, Hiroshima M, Sako Y, Sando S. DNA-Based Synthetic Growth Factor Surrogates with Fine-Tuned Agonism*. Angew Chem Int Ed Engl 2021. [PMID: 34142433 DOI: 10.1002/anie.202105314] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
386 |
Shigdar S, Schrand B, Giangrande PH, de Franciscis V. Aptamers: Cutting edge of cancer therapies. Mol Ther 2021;29:2396-411. [PMID: 34146729 DOI: 10.1016/j.ymthe.2021.06.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
|
387 |
Redman RL, Krauss IJ. Directed Evolution of 2'-Fluoro-Modified, RNA-Supported Carbohydrate Clusters That Bind Tightly to HIV Antibody 2G12. J Am Chem Soc 2021;143:8565-71. [PMID: 34096703 DOI: 10.1021/jacs.1c03194] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
388 |
Kong G, Xiong M, Liu L, Hu L, Meng HM, Ke G, Zhang XB, Tan W. DNA origami-based protein networks: from basic construction to emerging applications. Chem Soc Rev 2021;50:1846-73. [PMID: 33306073 DOI: 10.1039/d0cs00255k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
|
389 |
Abune L, Davis B, Wang Y. Aptamer-functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1731. [PMID: 34132055 DOI: 10.1002/wnan.1731] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
390 |
Iturriaga-Goyon E, Buentello-Volante B, Magaña-Guerrero FS, Garfias Y. Future Perspectives of Therapeutic, Diagnostic and Prognostic Aptamers in Eye Pathological Angiogenesis. Cells 2021;10:1455. [PMID: 34200613 DOI: 10.3390/cells10061455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
391 |
Jia F, Bai X, Zhang X, Fu Y, Li Y, Li X, Kokini JL. A Low-Field Magnetic Resonance Imaging Aptasensor for the Rapid and Visual Sensing of Pseudomonas aeruginosa in Food, Juice, and Water. Anal Chem 2021;93:8631-7. [PMID: 34107210 DOI: 10.1021/acs.analchem.1c01669] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
|
392 |
Huang Z, Wang D, Long CY, Li SH, Wang XQ, Tan W. Regulating the Anticancer Efficacy of Sgc8-Combretastatin A4 Conjugates: A Case of Recognizing the Significance of Linker Chemistry for the Design of Aptamer-Based Targeted Drug Delivery Strategies. J Am Chem Soc 2021;143:8559-64. [PMID: 34097382 DOI: 10.1021/jacs.1c03013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
393 |
Niederlender S, Fontaine JJ, Karadjian G. Potential applications of aptamers in veterinary science. Vet Res 2021;52:79. [PMID: 34078451 DOI: 10.1186/s13567-021-00948-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
394 |
Afzal M, Park J, Jeon JS, Akmal M, Yoon TS, Sung HJ. Acoustofluidic Separation of Proteins Using Aptamer-Functionalized Microparticles. Anal Chem 2021;93:8309-17. [PMID: 34075739 DOI: 10.1021/acs.analchem.1c01198] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
395 |
Xiao Y, Fan Y, Tu W, Ning Y, Zhu M, Liu Y, Shi X. Multifunctional PLGA microfibrous rings enable MR imaging-guided tumor chemotherapy and metastasis inhibition through prevention of circulating tumor cell shedding. Nano Today 2021;38:101123. [DOI: 10.1016/j.nantod.2021.101123] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
|
396 |
Sarkis M, Bernardi A, Shah N, Papathanasiou MM. Decision support tools for next-generation vaccines and advanced therapy medicinal products: present and future. Current Opinion in Chemical Engineering 2021;32:100689. [DOI: 10.1016/j.coche.2021.100689] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
397 |
Krissanaprasit A, Key CM, Froehlich K, Pontula S, Mihalko E, Dupont DM, Andersen ES, Kjems J, Brown AC, LaBean TH. Multivalent Aptamer-Functionalized Single-Strand RNA Origami as Effective, Target-Specific Anticoagulants with Corresponding Reversal Agents. Adv Healthc Mater 2021;10:e2001826. [PMID: 33882195 DOI: 10.1002/adhm.202001826] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
398 |
Kang TW, Hwang IJ, Lee S, Jeon SJ, Choi C, Han J, So Y, Son W, Kim H, Yang CS, Park JH, Lee H, Kim JH. Multivalent Nanosheet Antibody Mimics for Selective Microbial Recognition and Inactivation. Adv Mater 2021;33:e2101376. [PMID: 33890691 DOI: 10.1002/adma.202101376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
399 |
Ebrahimi SB, Samanta D, Partridge BE, Kusmierz CD, Cheng HF, Grigorescu AA, Chávez JL, Mirau PA, Mirkin CA. Programming Fluorogenic DNA Probes for Rapid Detection of Steroids. Angew Chem Int Ed Engl 2021;60:15260-5. [PMID: 33878237 DOI: 10.1002/anie.202103440] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
400 |
Ebrahimi SB, Samanta D, Partridge BE, Kusmierz CD, Cheng HF, Grigorescu AA, Chávez JL, Mirau PA, Mirkin CA. Programming Fluorogenic DNA Probes for Rapid Detection of Steroids. Angew Chem 2021;133:15388-93. [DOI: 10.1002/ange.202103440] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
401 |
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021;9:628. [PMID: 34073038 DOI: 10.3390/biomedicines9060628] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
402 |
Castle LM, Schuh DA, Reynolds EE, Furst AL. Electrochemical Sensors to Detect Bacterial Foodborne Pathogens. ACS Sens 2021;6:1717-30. [PMID: 33955227 DOI: 10.1021/acssensors.1c00481] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
|
403 |
Qu LL, Ying YL, Yu RJ, Long YT. In situ food-borne pathogen sensors in a nanoconfined space by surface enhanced Raman scattering. Mikrochim Acta 2021;188:201. [PMID: 34041602 DOI: 10.1007/s00604-021-04864-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
404 |
Tan DJY, Cheong VV, Lim KW, Phan AT. A modular approach to enzymatic ligation of peptides and proteins with oligonucleotides. Chem Commun (Camb) 2021;57:5507-10. [PMID: 34036975 DOI: 10.1039/d1cc01348c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
405 |
Jeddi I, Saiz L. Computational design of single-stranded DNA hairpin aptamers immobilized on a biosensor substrate. Sci Rep 2021;11:10984. [PMID: 34040012 DOI: 10.1038/s41598-021-88796-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
406 |
Şener BB, Yiğit D, Bayraç AT, Bayraç C. Inhibition of cell migration and invasion by ICAM-1 binding DNA aptamers. Anal Biochem 2021;628:114262. [PMID: 34038704 DOI: 10.1016/j.ab.2021.114262] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
407 |
Kang T, Ni JS, Li T, Wang J, Li Z, Li Y, Zha M, Zhang C, Wu X, Guo H, Xi L, Li K. Efficient and precise delivery of microRNA by photoacoustic force generated from semiconducting polymer-based nanocarriers. Biomaterials 2021;275:120907. [PMID: 34090050 DOI: 10.1016/j.biomaterials.2021.120907] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
408 |
Kim H, Kim H, Yoon S, Lee K, Kim J, Kim B. Colorimetric Aptasensor for Detecting Bacillus carboniphilus Using Aptamer Isolated with a Non-SELEX-Based Method. Chemosensors 2021;9:121. [DOI: 10.3390/chemosensors9060121] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
409 |
Eguchi A, Ueki A, Hoshiyama J, Kuwata K, Chikaoka Y, Kawamura T, Nagatoishi S, Tsumoto K, Ueki R, Sando S. A DNA Aptamer That Inhibits the Aberrant Signaling of Fibroblast Growth Factor Receptor in Cancer Cells. JACS Au 2021;1:578-85. [PMID: 34467321 DOI: 10.1021/jacsau.0c00121] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
410 |
Li Z, Fu X, Huang J, Zeng P, Huang Y, Chen X, Liang C. Advances in Screening and Development of Therapeutic Aptamers Against Cancer Cells. Front Cell Dev Biol 2021;9:662791. [PMID: 34095130 DOI: 10.3389/fcell.2021.662791] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
411 |
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B 2021;9:1208-37. [PMID: 33393582 DOI: 10.1039/d0tb02168g] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
|
412 |
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021;:1-18. [PMID: 34026278 DOI: 10.1038/s41578-021-00315-x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 79] [Article Influence: 35.0] [Reference Citation Analysis]
|
413 |
Weaver SD, Whelan RJ. Characterization of DNA aptamer-protein binding using fluorescence anisotropy assays in low-volume, high-efficiency plates. Anal Methods 2021;13:1302-7. [PMID: 33533761 DOI: 10.1039/d0ay02256j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
414 |
Hong T, Qiu L, Zhou S, Cai Z, Cui P, Zheng R, Wang J, Tan S, Jiang P. How does DNA 'meet' capillary-based microsystems? Analyst 2021;146:48-63. [PMID: 33211035 DOI: 10.1039/d0an01336f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
415 |
Landmesser U, Poller W, Tsimikas S, Most P, Paneni F, Lüscher TF. From traditional pharmacological towards nucleic acid-based therapies for cardiovascular diseases. Eur Heart J 2020;41:3884-99. [PMID: 32350510 DOI: 10.1093/eurheartj/ehaa229] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 19.0] [Reference Citation Analysis]
|
416 |
Li L, Wan J, Wen X, Guo Q, Jiang H, Wang J, Ren Y, Wang K. Identification of a New DNA Aptamer by Tissue-SELEX for Cancer Recognition and Imaging. Anal Chem 2021;93:7369-77. [PMID: 33960774 DOI: 10.1021/acs.analchem.1c01445] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
417 |
Muhammad M, Shao C, Huang Q. Aptamer-functionalized Au nanoparticles array as the effective SERS biosensor for label-free detection of interleukin-6 in serum. Sensors and Actuators B: Chemical 2021;334:129607. [DOI: 10.1016/j.snb.2021.129607] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
|
418 |
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders. Cell Mol Neurobiol 2021. [PMID: 33934227 DOI: 10.1007/s10571-021-01093-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
419 |
Takahashi M, Amano R, Ozawa M, Martinez A, Akita K, Nakamura Y. Nucleic acid ligands act as a PAM and agonist depending on the intrinsic ligand binding state of P2RY2. Proc Natl Acad Sci U S A 2021;118:e2019497118. [PMID: 33911033 DOI: 10.1073/pnas.2019497118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
420 |
Tizei PAG, Harris E, Withanage S, Renders M, Pinheiro VB. A novel framework for engineering protein loops exploring length and compositional variation. Sci Rep 2021;11:9134. [PMID: 33911147 DOI: 10.1038/s41598-021-88708-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
421 |
Quan ML, Glunz PW, Luettgen JM. Anticoagulants. Burger's Medicinal Chemistry and Drug Discovery 2021. [DOI: 10.1002/0471266949.bmc182.pub2] [Reference Citation Analysis]
|
422 |
Dai Z, Wang L, Wang Z. Functional Immunostimulating DNA Materials: The Rising Stars for Cancer Immunotherapy. Macromol Biosci 2021;21:e2100083. [PMID: 33896107 DOI: 10.1002/mabi.202100083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
423 |
Huang SS, Lee KJ, Chen HC, Prajnamitra RP, Hsu CH, Jian CB, Yu XE, Chueh DY, Kuo CW, Chiang TC, Choong OK, Huang SC, Beh CY, Chen LL, Lai JJ, Chen P, Kamp TJ, Tien YW, Lee HM, Hsieh PC. Immune cell shuttle for precise delivery of nanotherapeutics for heart disease and cancer. Sci Adv 2021;7:eabf2400. [PMID: 33893103 DOI: 10.1126/sciadv.abf2400] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
424 |
Ferreira D, Barbosa J, Sousa DA, Silva C, Melo LDR, Avci-Adali M, Wendel HP, Rodrigues LR. Selection of aptamers against triple negative breast cancer cells using high throughput sequencing. Sci Rep 2021;11:8614. [PMID: 33883615 DOI: 10.1038/s41598-021-87998-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
425 |
Carrasco-León A, Amundarain A, Gómez-Echarte N, Prósper F, Agirre X. The Role of lncRNAs in the Pathobiology and Clinical Behavior of Multiple Myeloma. Cancers (Basel) 2021;13:1976. [PMID: 33923983 DOI: 10.3390/cancers13081976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
426 |
Wang F, Zhang Y, Chen D, Zhang Z, Li Z. Single microbead-based fluorescent aptasensor (SMFA) for direct isolation and in situ quantification of exosomes from plasma. Analyst 2021;146:3346-51. [PMID: 33999063 DOI: 10.1039/d1an00463h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
427 |
Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021;13:1896. [PMID: 33920840 DOI: 10.3390/cancers13081896] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
428 |
Troisi R, Balasco N, Santamaria A, Vitagliano L, Sica F. Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. Int J Biol Macromol 2021;181:858-67. [PMID: 33864869 DOI: 10.1016/j.ijbiomac.2021.04.076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
429 |
Chen J, Wang J, Luo Z, Fang X, He L, Zhu J, Qurat Ul Ain Z, He J, Ma H, Zhang H, Liu M, He L. Productive screening of single aptamers with ddPCR. Analyst 2020;145:4130-7. [PMID: 32421137 DOI: 10.1039/d0an00460j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
430 |
González-Alemán R, Chevrollier N, Simoes M, Montero-Cabrera L, Leclerc F. MCSS-Based Predictions of Binding Mode and Selectivity of Nucleotide Ligands. J Chem Theory Comput 2021;17:2599-618. [PMID: 33764770 DOI: 10.1021/acs.jctc.0c01339] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
431 |
Marcucci F, Rumio C. Depleting Tumor Cells Expressing Immune Checkpoint Ligands-A New Approach to Combat Cancer. Cells 2021;10:872. [PMID: 33921301 DOI: 10.3390/cells10040872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
432 |
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021;7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
|
433 |
Nelissen FHT, Peeters WJM, Roelofs TP, Nagelkerke A, Span PN, Heus HA. Improving Breast Cancer Treatment Specificity Using Aptamers Obtained by 3D Cell-SELEX. Pharmaceuticals (Basel) 2021;14:349. [PMID: 33918832 DOI: 10.3390/ph14040349] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
434 |
Zhao D, Yang G, Liu Q, Liu W, Weng Y, Zhao Y, Qu F, Li L, Huang Y. A photo-triggerable aptamer nanoswitch for spatiotemporal controllable siRNA delivery. Nanoscale 2020;12:10939-43. [PMID: 32207496 DOI: 10.1039/d0nr00301h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
435 |
Zhang Q, Guo Z, Luo F, Xiao H, Liu W, Fan L, Cao C. Model, Simulation, and Experiments on Moving Exchange Boundary via Ligand and Quantum Dots in Chip Electrophoresis. Anal Chem 2021;93:5360-4. [PMID: 33754711 DOI: 10.1021/acs.analchem.1c00242] [Reference Citation Analysis]
|
436 |
Chen J, Liu X, Xu M, Li Z, Xu D. Accomplishment of one-step specific PCR and evaluated SELEX process by a dual-microfluidic amplified system. Biomicrofluidics 2021;15:024107. [PMID: 33841601 DOI: 10.1063/5.0045965] [Reference Citation Analysis]
|
437 |
Ștefan G, Hosu O, De Wael K, Lobo-castañón MJ, Cristea C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochimica Acta 2021;376:137994. [DOI: 10.1016/j.electacta.2021.137994] [Cited by in Crossref: 30] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
|
438 |
Chen Z, Hu L, Zhang BT, Lu A, Wang Y, Yu Y, Zhang G. Artificial Intelligence in Aptamer-Target Binding Prediction. Int J Mol Sci 2021;22:3605. [PMID: 33808496 DOI: 10.3390/ijms22073605] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
|
439 |
Cevaal PM, Ali A, Czuba-Wojnilowicz E, Symons J, Lewin SR, Cortez-Jugo C, Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS Nano 2021;15:3736-53. [PMID: 33600163 DOI: 10.1021/acsnano.0c09514] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
|
440 |
Liu X, Wang YL, Wu J, Qi J, Zeng Z, Wan Q, Chen Z, Manandhar P, Cavener VS, Boyle NR, Fu X, Salazar E, Kuchipudi SV, Kapur V, Zhang X, Umetani M, Sen M, Willson RC, Chen SH, Zu Y. Neutralizing Aptamers Block S/RBD-ACE2 Interactions and Prevent Host Cell Infection. Angew Chem Weinheim Bergstr Ger 2021;133:10361-6. [PMID: 34230707 DOI: 10.1002/ange.202100345] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
441 |
Liu X, Wang YL, Wu J, Qi J, Zeng Z, Wan Q, Chen Z, Manandhar P, Cavener VS, Boyle NR, Fu X, Salazar E, Kuchipudi SV, Kapur V, Zhang X, Umetani M, Sen M, Willson RC, Chen SH, Zu Y. Neutralizing Aptamers Block S/RBD-ACE2 Interactions and Prevent Host Cell Infection. Angew Chem Int Ed Engl 2021;60:10273-8. [PMID: 33684258 DOI: 10.1002/anie.202100345] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 17.0] [Reference Citation Analysis]
|
442 |
Mendonça MCP, Kont A, Aburto MR, Cryan JF, O'Driscoll CM. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Mol Pharm 2021;18:1491-506. [PMID: 33734715 DOI: 10.1021/acs.molpharmaceut.0c01238] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
443 |
Li Y, Zhao Q. Antibody- and aptamer-based competitive fluorescence polarization/anisotropy assays for ochratoxin A with tetramethylrhodamine-labeled ochratoxin A. Anal Methods 2021;13:1612-7. [PMID: 33734257 DOI: 10.1039/d1ay00003a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
444 |
Sgallová R, Curtis EA. Secondary Structure Libraries for Artificial Evolution Experiments. Molecules 2021;26:1671. [PMID: 33802780 DOI: 10.3390/molecules26061671] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
445 |
Cartón-García F, Saande CJ, Meraviglia-Crivelli D, Aldabe R, Pastor F. Oligonucleotide-Based Therapies for Renal Diseases. Biomedicines 2021;9:303. [PMID: 33809425 DOI: 10.3390/biomedicines9030303] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
446 |
Li J, Ren X, Zhao J, Lou X. PD-L1 aptamer isolation via Modular-SELEX and its applications in cancer cell detection and tumor tissue section imaging. Analyst 2021;146:2910-8. [PMID: 33724284 DOI: 10.1039/d1an00182e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
447 |
Li C, Li J, Liang A, Wen G, Jiang Z. Aptamer Turn-On SERS/RRS/Fluorescence Tri-mode Platform for Ultra-trace Urea Determination Using Fe/N-Doped Carbon Dots. Front Chem 2021;9:613083. [PMID: 33791276 DOI: 10.3389/fchem.2021.613083] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
|
448 |
Geraldi A, Khairunnisa F, Farah N, Bui LM, Rahman Z. Synthetic Scaffold Systems for Increasing the Efficiency of Metabolic Pathways in Microorganisms. Biology (Basel) 2021;10:216. [PMID: 33799683 DOI: 10.3390/biology10030216] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
449 |
Fang K, Wang L, Huang H, Dong S, Guo Y. Therapeutic efficacy and cardioprotection of nucleolin-targeted doxorubicin-loaded ultrasound nanobubbles in treating triple-negative breast cancer. Nanotechnology 2021. [PMID: 33690196 DOI: 10.1088/1361-6528/abed03] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
450 |
Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: A short review. Talanta 2021;229:122274. [PMID: 33838776 DOI: 10.1016/j.talanta.2021.122274] [Cited by in Crossref: 40] [Cited by in F6Publishing: 30] [Article Influence: 20.0] [Reference Citation Analysis]
|
451 |
Ding P, Wang Z, Wu Z, Zhu W, Liu L, Sun N, Pei R. Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells. J Mater Chem B 2020;8:3408-22. [PMID: 32022083 DOI: 10.1039/c9tb02457c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
|
452 |
Wu H, Wang H, Wu J, Han G, Liu Y, Zou P. A novel fluorescent aptasensor based on exonuclease-assisted triple recycling amplification for sensitive and label-free detection of aflatoxin B1. J Hazard Mater 2021;415:125584. [PMID: 33743380 DOI: 10.1016/j.jhazmat.2021.125584] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
453 |
Checler F, Afram E, Pardossi-Piquard R, Lauritzen I. Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021;296:100489. [PMID: 33662398 DOI: 10.1016/j.jbc.2021.100489] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
|
454 |
Emrani S, Lamar M, Price CC, Baliga S, Wasserman V, Matusz E, Swenson R, Baliga G, Libon DJ. Assessing the capacity for mental manipulation in patients with statically-determined mild cognitive impairment using digital technology. Exploration of Medicine. [DOI: 10.37349/emed.2021.00034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
455 |
Agnello L, Camorani S, Fedele M, Cerchia L. Aptamers and antibodies: rivals or allies in cancer targeted therapy? Exploration of Targeted Anti-tumor Therapy. [DOI: 10.37349/etat.2021.00035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
456 |
Byun J. Recent Progress and Opportunities for Nucleic Acid Aptamers. Life (Basel) 2021;11:193. [PMID: 33671039 DOI: 10.3390/life11030193] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
|
457 |
Chen X, Lisi F, Bakthavathsalam P, Longatte G, Hoque S, Tilley RD, Gooding JJ. Impact of the Coverage of Aptamers on a Nanoparticle on the Binding Equilibrium and Kinetics between Aptamer and Protein. ACS Sens 2021;6:538-45. [PMID: 33296177 DOI: 10.1021/acssensors.0c02212] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
458 |
Tabuchi Y, Yang J, Taki M. Inhibition of thrombin activity by a covalent-binding aptamer and reversal by the complementary strand antidote. Chem Commun (Camb) 2021;57:2483-6. [PMID: 33625415 DOI: 10.1039/d0cc08109d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
459 |
Brown DG, Wobst HJ. A Decade of FDA-Approved Drugs (2010-2019): Trends and Future Directions. J Med Chem 2021;64:2312-38. [PMID: 33617254 DOI: 10.1021/acs.jmedchem.0c01516] [Cited by in Crossref: 43] [Cited by in F6Publishing: 53] [Article Influence: 21.5] [Reference Citation Analysis]
|
460 |
Yang Y, Yin Y, Wang S, Dong Y. Simultaneous determination of zearalenone and ochratoxin A based on microscale thermophoresis assay with a bifunctional aptamer. Anal Chim Acta 2021;1155:338345. [PMID: 33766318 DOI: 10.1016/j.aca.2021.338345] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
461 |
Liu B, Yang W, Che C, Liu J, Si M, Gong Z, Gao R, Yang G. A Targeted Nano Drug Delivery System of AS1411 Functionalized Graphene Oxide Based Composites. ChemistryOpen 2021;10:408-13. [PMID: 33605540 DOI: 10.1002/open.202000226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
462 |
Fan C, Wang S, Schanze K, Fernandez LE. Materials Applications of Aptamers. ACS Appl Mater Interfaces 2021;13:9289-90. [PMID: 33599492 DOI: 10.1021/acsami.1c02475] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
463 |
Li T, Yao F, An Y, Li X, Duan J, Yang XD. Novel Complex of PD-L1 Aptamer and Holliday Junction Enhances Antitumor Efficacy in Vivo. Molecules 2021;26:1067. [PMID: 33670583 DOI: 10.3390/molecules26041067] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
464 |
Sunday CE, Chowdhury M. Review—Aptamer-Based Electrochemical Sensing Strategies for Breast Cancer. J Electrochem Soc 2021;168:027511. [DOI: 10.1149/1945-7111/abe34d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
465 |
Tran TTT, Delgado A, Jeong S. Organ-on-a-Chip: The Future of Therapeutic Aptamer Research? BioChip J 2021;15:109-22. [DOI: 10.1007/s13206-021-00016-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
466 |
Li D, Liu L, Huang Q, Tong T, Zhou Y, Li Z, Bai Q, Liang H, Chen L. Recent advances on aptamer-based biosensors for detection of pathogenic bacteria. World J Microbiol Biotechnol 2021;37:45. [PMID: 33554321 DOI: 10.1007/s11274-021-03002-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
|
467 |
Yunn NO, Park M, Park S, Lee J, Noh J, Shin E, Ryu SH. A hotspot for enhancing insulin receptor activation revealed by a conformation-specific allosteric aptamer. Nucleic Acids Res 2021;49:700-12. [PMID: 33410883 DOI: 10.1093/nar/gkaa1247] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
468 |
Muhammad M, Huang Q. A review of aptamer-based SERS biosensors: Design strategies and applications. Talanta 2021;227:122188. [PMID: 33714469 DOI: 10.1016/j.talanta.2021.122188] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
|
469 |
Yu H, Luo Y, Alkhamis O, Canoura J, Yu B, Xiao Y. Isolation of Natural DNA Aptamers for Challenging Small-Molecule Targets, Cannabinoids. Anal Chem 2021;93:3172-80. [PMID: 33528997 DOI: 10.1021/acs.analchem.0c04592] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
|
470 |
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021;50:2839-91. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Cited by in Crossref: 118] [Cited by in F6Publishing: 132] [Article Influence: 59.0] [Reference Citation Analysis]
|
471 |
Nourse J, Danckwardt S. A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacology & Therapeutics 2021;218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
472 |
Huang Z, Qiu L, Zhang T, Tan W. Integrating DNA Nanotechnology with Aptamers for Biological and Biomedical Applications. Matter 2021;4:461-89. [DOI: 10.1016/j.matt.2020.11.002] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
|
473 |
Liu Y, Canoura J, Alkhamis O, Xiao Y. Immobilization Strategies for Enhancing Sensitivity of Electrochemical Aptamer-Based Sensors. ACS Appl Mater Interfaces 2021;13:9491-9. [PMID: 33448791 DOI: 10.1021/acsami.0c20707] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
|
474 |
Acquah C, Jeevanandam J, Tan KX, Danquah MK. Engineered Aptamers for Enhanced COVID-19 Theranostics. Cell Mol Bioeng 2021;:1-13. [PMID: 33488836 DOI: 10.1007/s12195-020-00664-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
475 |
Liu J, Toy R, Vantucci C, Pradhan P, Zhang Z, Kuo KM, Kubelick KP, Huo D, Wen J, Kim J, Lyu Z, Dhal S, Atalis A, Ghosh-Choudhary SK, Devereaux EJ, Gumbart JC, Xia Y, Emelianov SY, Willett NJ, Roy K. Bifunctional Janus Particles as Multivalent Synthetic Nanoparticle Antibodies (SNAbs) for Selective Depletion of Target Cells. Nano Lett 2021;21:875-86. [PMID: 33395313 DOI: 10.1021/acs.nanolett.0c04833] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
476 |
Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 2021;168:79-98. [PMID: 32712197 DOI: 10.1016/j.addr.2020.07.018] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 27.5] [Reference Citation Analysis]
|
477 |
Sabu A, Lin J, Doong R, Huang Y, Chiu H. Prospects of an engineered tumor-targeted nanotheranostic platform based on NIR-responsive upconversion nanoparticles. Mater Adv 2021;2:7101-17. [DOI: 10.1039/d1ma00563d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
478 |
Chen Q, Zhang Y, Yin H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv Drug Deliv Rev 2021;168:246-58. [PMID: 33122087 DOI: 10.1016/j.addr.2020.10.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
|
479 |
Ducongé F. Aptamers for Molecular Imaging. Molecular Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00034-x] [Reference Citation Analysis]
|
480 |
Cho SW, Lim HJ, Chua B, Son A. Single-stranded DNA probe paired aptasensor with extra dye binding sites to enhance its fluorescence response in the presence of a target compound. RSC Adv 2021;11:21796-21804. [DOI: 10.1039/d1ra00971k] [Reference Citation Analysis]
|
481 |
Huang X, Blum NT, Lin J, Shi J, Zhang C, Huang P. Chemotherapeutic drug–DNA hybrid nanostructures for anti-tumor therapy. Mater Horiz 2021;8:78-101. [DOI: 10.1039/d0mh00715c] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
|
482 |
Liu B, Wang H, Zhang D. Aptamer-Based Medical Devices. Aptamers for Medical Applications 2021. [DOI: 10.1007/978-981-33-4838-7_5] [Reference Citation Analysis]
|
483 |
Zhang B, Jiang J, Wu P, Zou J, Le J, Lin J, Li C, Luo B, Zhang Y, Huang R, Shao J. A smart dual-drug nanosystem based on co-assembly of plant and food-derived natural products for synergistic HCC immunotherapy. Acta Pharm Sin B 2021;11:246-57. [PMID: 33532190 DOI: 10.1016/j.apsb.2020.07.026] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
484 |
Sharma A, Ramena G. Fluorescent aptamers for detection and treatment of pathogenic bacteria and cancer. Fluorescent Probes 2021. [DOI: 10.1016/bs.mim.2020.11.002] [Reference Citation Analysis]
|
485 |
Liu Z, Liu Y. Aptamer-Based Drug Delivery Systems. Aptamers for Medical Applications 2021. [DOI: 10.1007/978-981-33-4838-7_4] [Reference Citation Analysis]
|
486 |
Hou J, Yan D, Liu Y, Huang P, Cui H. The Roles of Integrin α5β1 in Human Cancer. Onco Targets Ther 2020;13:13329-44. [PMID: 33408483 DOI: 10.2147/OTT.S273803] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 8.3] [Reference Citation Analysis]
|
487 |
Strong ME, Richards JR, Torres M, Beck CM, La Belle JT. Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Biosens Bioelectron 2021;177:112949. [PMID: 33429205 DOI: 10.1016/j.bios.2020.112949] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
|
488 |
Gao F, Zhou J, Sun Y, Yang C, Zhang S, Wang R, Tan W. Programmable Repurposing of Existing Drugs as Pharmaceutical Elements for the Construction of Aptamer-Drug Conjugates. ACS Appl Mater Interfaces 2021;13:9457-63. [PMID: 33356116 DOI: 10.1021/acsami.0c18846] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
489 |
Sun S, Yang S, Hu X, Zheng C, Song H, Wang L, Shen Z, Wu ZS. Combination of Immunomagnetic Separation with Aptamer-Mediated Double Rolling Circle Amplification for Highly Sensitive Circulating Tumor Cell Detection. ACS Sens 2020;5:3870-8. [PMID: 33205648 DOI: 10.1021/acssensors.0c01082] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
490 |
Jeong HY, Kim H, Lee M, Hong J, Lee JH, Kim J, Choi MJ, Park YS, Kim SC. Development of HER2-Specific Aptamer-Drug Conjugate for Breast Cancer Therapy. Int J Mol Sci 2020;21:E9764. [PMID: 33371333 DOI: 10.3390/ijms21249764] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
491 |
Tian L, Pei R, Zhong L, Ji Y, Zhou D, Zhou S. Enhanced targeting of 3D pancreatic cancer spheroids by aptamer-conjugated polymeric micelles with deep tumor penetration. Eur J Pharmacol 2021;894:173814. [PMID: 33352182 DOI: 10.1016/j.ejphar.2020.173814] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
492 |
Elbadawi M, Ong JJ, Pollard TD, Gaisford S, Basit AW. Additive Manufacturable Materials for Electrochemical Biosensor Electrodes. Adv Funct Mater 2021;31:2006407. [DOI: 10.1002/adfm.202006407] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
|
493 |
Yang L, Gao T, Li W, Luo Y, Ullah S, Fang X, Cao Y, Pei R. Ni-Nitrilotriacetic Acid Affinity SELEX Method for Selection of DNA Aptamers Specific to the N-Cadherin Protein. ACS Comb Sci 2020;22:867-72. [PMID: 33146506 DOI: 10.1021/acscombsci.0c00165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
|
494 |
Souza AG, Bastos VAF, Fujimura PT, Ferreira ICC, Leal LF, da Silva LS, Laus AC, Reis RM, Martins MM, Santos PS, Corrêa NCR, Marangoni K, Thomé CH, Colli LM, Goulart LR, Goulart VA. Cell-free DNA promotes malignant transformation in non-tumor cells. Sci Rep 2020;10:21674. [PMID: 33303880 DOI: 10.1038/s41598-020-78766-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
495 |
Kučera R, Sčensná A, Miletín M, Zimčík P. The chromatographic behaviour of new double-labelled oligodeoxynucleotide probes containing azaphthalocyanine dye as a quencher with respect to evaluation of their purity. Biomed Chromatogr 2021;35:e5033. [PMID: 33226652 DOI: 10.1002/bmc.5033] [Reference Citation Analysis]
|
496 |
Baranda Pellejero L, Mahdifar M, Ercolani G, Watson J, Brown T Jr, Ricci F. Using antibodies to control DNA-templated chemical reactions. Nat Commun 2020;11:6242. [PMID: 33288745 DOI: 10.1038/s41467-020-20024-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
497 |
Allemailem KS, Almatroudi A, Alsahli MA, Basfar GT, Alrumaihi F, Rahmani AH, Khan AA. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech 2020;10:551. [PMID: 33269185 DOI: 10.1007/s13205-020-02546-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
|
498 |
Tezuka-kagajo M, Maekawa M, Ogawa A, Hatta Y, Ishii E, Eguchi M, Higashiyama S. Development of Human CBF1-Targeting Single-Stranded DNA Aptamers with Antiangiogenic Activity In Vitro. Nucleic Acid Therapeutics 2020;30:365-78. [DOI: 10.1089/nat.2020.0875] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
499 |
Han B, Dong L, Li L, Sha L, Cao Y, Zhao J. Mild reduction-promoted sandwich aptasensing for simple and versatile detection of protein biomarkers. Sensors and Actuators B: Chemical 2020;325:128762. [DOI: 10.1016/j.snb.2020.128762] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
500 |
Xing Y, Cheng Z, Wang R, Lv C, James TD, Yu F. Analysis of extracellular vesicles as emerging theranostic nanoplatforms. Coordination Chemistry Reviews 2020;424:213506. [DOI: 10.1016/j.ccr.2020.213506] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|
501 |
Duan N, Qi S, Guo Y, Xu W, Wu S, Wang Z. Fe3O4@Au@Ag nanoparticles as surface-enhanced Raman spectroscopy substrates for sensitive detection of clenbuterol hydrochloride in pork with the use of aptamer binding. LWT 2020;134:110017. [DOI: 10.1016/j.lwt.2020.110017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
502 |
Han X, Mitchell MJ, Nie G. Nanomaterials for Therapeutic RNA Delivery. Matter 2020;3:1948-75. [DOI: 10.1016/j.matt.2020.09.020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
|
503 |
Cao J, Su J, An M, Yang Y, Zhang Y, Zuo J, Zhang N, Zhao Y. Novel DEK-Targeting Aptamer Delivered by a Hydrogel Microneedle Attenuates Collagen-Induced Arthritis. Mol Pharm 2021;18:305-16. [PMID: 33253580 DOI: 10.1021/acs.molpharmaceut.0c00954] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
504 |
Ratanabunyong S, Aeksiri N, Yanaka S, Yagi-Utsumi M, Kato K, Choowongkomon K, Hannongbua S. Characterization of New DNA Aptamers for Anti-HIV-1 Reverse Transcriptase. Chembiochem 2021;22:915-23. [PMID: 33095511 DOI: 10.1002/cbic.202000633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
505 |
Sattari R, Palizban A, Khanahmad H. Single-Strand DNA-Like Oligonucleotide Aptamer Against Proprotein Convertase Subtilisin/Kexin 9 Using CE-SELEX: PCSK9 Targeting Selection. Cardiovasc Drugs Ther 2020;34:475-85. [PMID: 32415571 DOI: 10.1007/s10557-020-06986-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
|
506 |
Lee H, Han H, Jeon S. Baleen-Mimicking Virtual Filters for Rapid Detection of Pathogenic Bacteria in Water Using Magnetic Nanoparticle Chains and a Halbach Ring. ACS Sens 2020;5:3432-7. [PMID: 33104342 DOI: 10.1021/acssensors.0c01334] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
507 |
Chin LK, Son T, Hong JS, Liu AQ, Skog J, Castro CM, Weissleder R, Lee H, Im H. Plasmonic Sensors for Extracellular Vesicle Analysis: From Scientific Development to Translational Research. ACS Nano 2020;14:14528-48. [PMID: 33119256 DOI: 10.1021/acsnano.0c07581] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
|
508 |
Lanphere C, Arnott PM, Jones SF, Korlova K, Howorka S. A Biomimetic DNA-Based Membrane Gate for Protein-Controlled Transport of Cytotoxic Drugs. Angew Chem Int Ed Engl 2021;60:1903-8. [PMID: 33231913 DOI: 10.1002/anie.202011583] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
509 |
Lanphere C, Arnott PM, Jones SF, Korlova K, Howorka S. A Biomimetic DNA‐Based Membrane Gate for Protein‐Controlled Transport of Cytotoxic Drugs. Angew Chem 2021;133:1931-6. [DOI: 10.1002/ange.202011583] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
510 |
Rosell M, Fernández-Recio J. Docking-based identification of small-molecule binding sites at protein-protein interfaces. Comput Struct Biotechnol J 2020;18:3750-61. [PMID: 33250973 DOI: 10.1016/j.csbj.2020.11.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
511 |
Charbgoo F, Taghdisi SM, Yazdian‐robati R, Abnous K, Ramezani M, Alibolandi M. Aptamer‐Incorporated Nanoparticle Systems for Drug Delivery. In: Rai M, Razzaghi‐abyaneh M, Ingle AP, editors. Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment. Wiley; 2020. pp. 95-112. [DOI: 10.1002/9781119671732.ch5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
512 |
Ptacek J, Zhang D, Qiu L, Kruspe S, Motlova L, Kolenko P, Novakova Z, Shubham S, Havlinova B, Baranova P, Chen SJ, Zou X, Giangrande P, Barinka C. Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer. Nucleic Acids Res 2020;48:11130-45. [PMID: 32525981 DOI: 10.1093/nar/gkaa494] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
513 |
Riccardi C, Napolitano E, Musumeci D, Montesarchio D. Dimeric and Multimeric DNA Aptamers for Highly Effective Protein Recognition. Molecules 2020;25:E5227. [PMID: 33182593 DOI: 10.3390/molecules25225227] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
514 |
Xue J, Chen F, Bai M, Cao X, Fu W, Zhang J, Zhao Y. Aptamer-Functionalized Microdevices for Bioanalysis. ACS Appl Mater Interfaces 2021;13:9402-11. [PMID: 33170621 DOI: 10.1021/acsami.0c16138] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
515 |
Phung NL, Walter JG, Jonczyk R, Seiler LK, Scheper T, Blume C. Development of an Aptamer-Based Lateral Flow Assay for the Detection of C-Reactive Protein Using Microarray Technology as a Prescreening Platform. ACS Comb Sci 2020;22:617-29. [PMID: 32894679 DOI: 10.1021/acscombsci.0c00080] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
516 |
Kim J, Park H, Saravanakumar G, Kim WJ. Polymer/Aptamer-Integrated Gold Nanoconstruct Suppresses the Inflammatory Process by Scavenging ROS and Capturing Pro-inflammatory Cytokine TNF-α. ACS Appl Mater Interfaces 2021;13:9390-401. [PMID: 33155813 DOI: 10.1021/acsami.0c15727] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
517 |
Berkenbrock JA, Grecco-Machado R, Achenbach S. Microfluidic devices for the detection of viruses: aspects of emergency fabrication during the COVID-19 pandemic and other outbreaks. Proc Math Phys Eng Sci 2020;476:20200398. [PMID: 33363440 DOI: 10.1098/rspa.2020.0398] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
|
518 |
Lin M, Zhang J, Wan H, Yan C, Xia F. Rationally Designed Multivalent Aptamers Targeting Cell Surface for Biomedical Applications. ACS Appl Mater Interfaces 2021;13:9369-89. [PMID: 33146988 DOI: 10.1021/acsami.0c15644] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
|
519 |
Song Y, Wang Z, Jiang J, Piao Y, Li L, Xu C, Piao H, Li L, Yan G. DEK-targeting aptamer DTA-64 attenuates bronchial EMT-mediated airway remodelling by suppressing TGF-β1/Smad, MAPK and PI3K signalling pathway in asthma. J Cell Mol Med 2020;24:13739-50. [PMID: 33124760 DOI: 10.1111/jcmm.15942] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
520 |
Ding Z, Wang D, Shi W, Yang X, Duan S, Mo F, Hou X, Liu A, Lu X. In vivo Targeting of Liver Cancer with Tissue- and Nuclei-Specific Mesoporous Silica Nanoparticle-Based Nanocarriers in mice. Int J Nanomedicine 2020;15:8383-400. [PMID: 33149582 DOI: 10.2147/IJN.S272495] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
521 |
Ji ML, Jiang H, Wu F, Geng R, Ya LK, Lin YC, Xu JH, Wu XT, Lu J. Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development. Ann Rheum Dis 2020:annrheumdis-2020-218469. [PMID: 33109602 DOI: 10.1136/annrheumdis-2020-218469] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
|
522 |
Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020;12:E3119. [PMID: 33113880 DOI: 10.3390/cancers12113119] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
523 |
Ogloblina AM, Iaccarino N, Capasso D, Di Gaetano S, Garzarella EU, Dolinnaya NG, Yakubovskaya MG, Pagano B, Amato J, Randazzo A. Toward G-Quadruplex-Based Anticancer Agents: Biophysical and Biological Studies of Novel AS1411 Derivatives. Int J Mol Sci 2020;21:E7781. [PMID: 33096752 DOI: 10.3390/ijms21207781] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
524 |
Zhang Y, He J, Shen L, Wang T, Yang J, Li Y, Wang Y, Quan D. Brain-targeted delivery of obidoxime, using aptamer-modified liposomes, for detoxification of organophosphorus compounds. J Control Release 2021;329:1117-28. [PMID: 33096123 DOI: 10.1016/j.jconrel.2020.10.039] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
|
525 |
Tao SC, Guo SC. Role of extracellular vesicles in tumour microenvironment. Cell Commun Signal 2020;18:163. [PMID: 33081785 DOI: 10.1186/s12964-020-00643-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
|
526 |
Navien TN, Thevendran R, Hamdani HY, Tang TH, Citartan M. In silico molecular docking in DNA aptamer development. Biochimie 2021;180:54-67. [PMID: 33086095 DOI: 10.1016/j.biochi.2020.10.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
|
527 |
Song MK, Lee JH, Kim J, Kim JH, Hwang S, Kim YS, Kim YJ. Neuroprotective effect of NXP031 in the MPTP-induced Parkinson's disease model. Neurosci Lett 2021;740:135425. [PMID: 33075422 DOI: 10.1016/j.neulet.2020.135425] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
528 |
Noh JY, Yang Y, Jung H. Molecular Mechanisms and Emerging Therapeutics for Osteoporosis. Int J Mol Sci 2020;21:E7623. [PMID: 33076329 DOI: 10.3390/ijms21207623] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 16.0] [Reference Citation Analysis]
|
529 |
Alkhamis O, Yang W, Farhana R, Yu H, Xiao Y. Label-free profiling of DNA aptamer-small molecule binding using T5 exonuclease. Nucleic Acids Res 2020;48:e120. [PMID: 33053182 DOI: 10.1093/nar/gkaa849] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
530 |
Kimoto M, Hirao I. Genetic alphabet expansion technology by creating unnatural base pairs. Chem Soc Rev 2020;49:7602-26. [PMID: 33015699 DOI: 10.1039/d0cs00457j] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
|
531 |
Zhang N, Liu B, Cui X, Li Y, Tang J, Wang H, Zhang D, Li Z. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta 2021;223:121729. [PMID: 33303172 DOI: 10.1016/j.talanta.2020.121729] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
|
532 |
Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020;41:755-75. [PMID: 32893005 DOI: 10.1016/j.tips.2020.08.004] [Cited by in Crossref: 108] [Cited by in F6Publishing: 107] [Article Influence: 36.0] [Reference Citation Analysis]
|
533 |
Uemachi H, Kasahara Y, Tanaka K, Okuda T, Yoneda Y, Obika S. Discovery of cell-internalizing artificial nucleic acid aptamers for lung fibroblasts and targeted drug delivery. Bioorg Chem 2020;105:104321. [PMID: 33074117 DOI: 10.1016/j.bioorg.2020.104321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
|
534 |
Krissanaprasit A, Key CM, Froehlich K, Pontula S, Mihalko E, Dupont DM, Andersen ES, Kjems J, Brown AC, Labean TH. Enhanced Anticoagulation Activity of Functional RNA Origami.. [DOI: 10.1101/2020.09.29.319590] [Reference Citation Analysis]
|
535 |
Banerjee S, Nilsen-hamilton M. Aptamers for Infectious Disease Diagnosis. E. Coli Infections - Importance of Early Diagnosis and Efficient Treatment 2020. [DOI: 10.5772/intechopen.86945] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
536 |
Sun W, Luo L, Fang D, Tang T, Ni W, Dai B, Sun H, Jiang L. A Novel DNA Aptamer Targeting S100P Induces Antitumor Effects in Colorectal Cancer Cells. Nucleic Acid Ther 2020;30:402-13. [PMID: 32991252 DOI: 10.1089/nat.2020.0863] [Reference Citation Analysis]
|
537 |
Ravichandran G, Rengan AK. Aptamer-Mediated Nanotheranostics for Cancer Treatment: A Review. ACS Appl Nano Mater 2020;3:9542-59. [DOI: 10.1021/acsanm.0c01785] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
538 |
Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in Cancer Immunotherapy. Mol Cancer. 2020;19:145. [PMID: 32972405 DOI: 10.1186/s12943-020-01258-7] [Cited by in Crossref: 226] [Cited by in F6Publishing: 222] [Article Influence: 75.3] [Reference Citation Analysis]
|
539 |
Liu M, Zhang B, Li Z, Wang Z, Li S, Liu H, Deng Y, He N. Precise discrimination of Luminal A breast cancer subtype using an aptamer in vitro and in vivo. Nanoscale 2020;12:19689-701. [PMID: 32966497 DOI: 10.1039/d0nr03324c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
540 |
Kim DH, Ahn J, Kang HK, Kim MS, Kim NG, Kook MG, Choi SW, Jeon NL, Woo HM, Kang KS. Development of highly functional bioengineered human liver with perfusable vasculature. Biomaterials 2021;265:120417. [PMID: 32987272 DOI: 10.1016/j.biomaterials.2020.120417] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
541 |
Mu Z, Ma L, Wang J, Zhou J, Yuan Y, Bai L. A target-induced amperometic aptasensor for sensitive zearalenone detection by CS@AB-MWCNTs nanocomposite as enhancers. Food Chem 2021;340:128128. [PMID: 33010646 DOI: 10.1016/j.foodchem.2020.128128] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
|
542 |
Cesarini V, Scopa C, Silvestris DA, Scafidi A, Petrera V, Del Baldo G, Gallo A. Aptamer-Based In Vivo Therapeutic Targeting of Glioblastoma. Molecules 2020;25:E4267. [PMID: 32957732 DOI: 10.3390/molecules25184267] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
543 |
Caroli J, Forcato M, Bicciato S. APTANI2: update of aptamer selection through sequence-structure analysis. Bioinformatics 2020;36:2266-8. [PMID: 31778141 DOI: 10.1093/bioinformatics/btz897] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
544 |
Jose J, Thomas AM, Mendonsa D, Al-Sanea MM, Uddin MS, Parambi DGT, Charyulu RN, Mathew B. Aptamers in Drug Design: An Emerging Weapon to Fight a Losing Battle. Curr Drug Targets 2019;20:1624-35. [PMID: 31362673 DOI: 10.2174/1389450120666190729121747] [Reference Citation Analysis]
|
545 |
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 2021;64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 40] [Article Influence: 10.7] [Reference Citation Analysis]
|
546 |
Esmaeili Y, Zarrabi A, Mirahmadi-zare SZ, Bidram E. Hierarchical multifunctional graphene oxide cancer nanotheranostics agent for synchronous switchable fluorescence imaging and chemical therapy. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04490-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
547 |
Camorani S, Passariello M, Agnello L, Esposito S, Collina F, Cantile M, Di Bonito M, Ulasov IV, Fedele M, Zannetti A, De Lorenzo C, Cerchia L. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J Exp Clin Cancer Res 2020;39:180. [PMID: 32892748 DOI: 10.1186/s13046-020-01694-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
548 |
Zhang J, Wang XY, Wang YH, Wang DD, Song Z, Zhang CD, Wang HS. Colorable Zeolitic Imidazolate Frameworks for Colorimetric Detection of Biomolecules. Anal Chem 2020;92:12670-7. [PMID: 32842725 DOI: 10.1021/acs.analchem.0c02895] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
549 |
Miszuk JM, Hu J, Sun H. Biomimetic Nanofibrous 3D Materials for Craniofacial Bone Tissue Engineering. ACS Appl Bio Mater 2020;3:6538-45. [PMID: 33163910 DOI: 10.1021/acsabm.0c00946] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
550 |
Duffy K, Arangundy-Franklin S, Holliger P. Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 2020;18:112. [PMID: 32878624 DOI: 10.1186/s12915-020-00803-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 13.0] [Reference Citation Analysis]
|
551 |
Abdel-Ghany S, Raslan S, Tombuloglu H, Shamseddin A, Cevik E, Said OA, Madyan EF, Senel M, Bozkurt A, Rehman S, Sabit H. Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. 3 Biotech 2020;10:407. [PMID: 32904337 DOI: 10.1007/s13205-020-02391-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
|
552 |
Chen S, Yang X, Fu S, Qin X, Yang T, Man C, Jiang Y. A novel AuNPs colorimetric sensor for sensitively detecting viable Salmonella typhimurium based on dual aptamers. Food Control 2020;115:107281. [DOI: 10.1016/j.foodcont.2020.107281] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
|
553 |
Yang Y, Yin Y, Li X, Wang S, Dong Y. Development of a chimeric aptamer and an AuNPs aptasensor for highly sensitive and specific identification of Aflatoxin B1. Sensors and Actuators B: Chemical 2020;319:128250. [DOI: 10.1016/j.snb.2020.128250] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
|
554 |
Li L, Xu S, Peng X, Ji Y, Yan H, Cui C, Li X, Pan X, Yang L, Qiu L, Jiang J, Tan W. Engineering G-quadruplex aptamer to modulate its binding specificity. Natl Sci Rev 2021;8:nwaa202. [PMID: 33936748 DOI: 10.1093/nsr/nwaa202] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
555 |
Marshall ML, Wagstaff KM. Internalized Functional DNA Aptamers as Alternative Cancer Therapies. Front Pharmacol 2020;11:1115. [PMID: 32848740 DOI: 10.3389/fphar.2020.01115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
|
556 |
Rotoli D, Santana-Viera L, Ibba ML, Esposito CL, Catuogno S. Advances in Oligonucleotide Aptamers for NSCLC Targeting. Int J Mol Sci 2020;21:E6075. [PMID: 32842557 DOI: 10.3390/ijms21176075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
557 |
Rehmani H, Li Y, Li T, Padia R, Calbay O, Jin L, Chen H, Huang S. Addiction to protein kinase Cɩ due to PRKCI gene amplification can be exploited for an aptamer-based targeted therapy in ovarian cancer. Signal Transduct Target Ther 2020;5:140. [PMID: 32820156 DOI: 10.1038/s41392-020-0197-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
558 |
He X, Lian Z, Yang Y, Wang Z, Fu X, Liu Y, Li M, Tian J, Yu T, Xin H. Long Non-coding RNA PEBP1P2 Suppresses Proliferative VSMCs Phenotypic Switching and Proliferation in Atherosclerosis. Mol Ther Nucleic Acids 2020;22:84-98. [PMID: 32916601 DOI: 10.1016/j.omtn.2020.08.013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
|
559 |
Mohammadinezhad R, Jalali SAH, Farahmand H. Evaluation of different direct and indirect SELEX monitoring methods and implementation of melt-curve analysis for rapid discrimination of variant aptamer sequences. Anal Methods 2020;12:3823-35. [PMID: 32676627 DOI: 10.1039/d0ay00491j] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
|
560 |
Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angew Chem Int Ed Engl 2021;60:2221-31. [PMID: 32282107 DOI: 10.1002/anie.202003563] [Cited by in Crossref: 77] [Cited by in F6Publishing: 82] [Article Influence: 25.7] [Reference Citation Analysis]
|
561 |
Li L, Xu S, Yan H, Li X, Yazd HS, Li X, Huang T, Cui C, Jiang J, Tan W. Nucleic Acid Aptamers for Molecular Diagnostics and Therapeutics: Advances and Perspectives. Angew Chem 2021;133:2249-59. [DOI: 10.1002/ange.202003563] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
562 |
Perret G, Boschetti E. Aptamer-Based Affinity Chromatography for Protein Extraction and Purification. Adv Biochem Eng Biotechnol 2020;174:93-139. [PMID: 31485702 DOI: 10.1007/10_2019_106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
563 |
Kaur H, Chaterjee B, Bruno JG, Sharma TK. Defining Target Product Profiles (TPPs) for Aptamer-Based Diagnostics. Adv Biochem Eng Biotechnol 2020;174:195-209. [PMID: 31332450 DOI: 10.1007/10_2019_104] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
564 |
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2021;217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
|
565 |
Li D, Mastaglia FL, Fletcher S, Wilton SD. Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson's disease in the precision medicine era. Med Res Rev 2020;40:2650-81. [PMID: 32767426 DOI: 10.1002/med.21718] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
|
566 |
Wang C, Zhao Q. A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine. Biosens Bioelectron 2020;167:112478. [PMID: 32810704 DOI: 10.1016/j.bios.2020.112478] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
|
567 |
Jamwal S, Elsworth JD, Rahi V, Kumar P. Gene therapy and immunotherapy as promising strategies to combat Huntington's disease-associated neurodegeneration: emphasis on recent updates and future perspectives. Expert Rev Neurother 2020;20:1123-41. [PMID: 32720531 DOI: 10.1080/14737175.2020.1801424] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
568 |
Haupt K, Medina Rangel PX, Bui BTS. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem Rev 2020;120:9554-82. [PMID: 32786424 DOI: 10.1021/acs.chemrev.0c00428] [Cited by in Crossref: 134] [Cited by in F6Publishing: 142] [Article Influence: 44.7] [Reference Citation Analysis]
|
569 |
Gruenke PR, Alam KK, Singh K, Burke DH. 2'-fluoro-modified pyrimidines enhance affinity of RNA oligonucleotides to HIV-1 reverse transcriptase. RNA 2020;26:1667-79. [PMID: 32732393 DOI: 10.1261/rna.077008.120] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
570 |
Filippi L, Bagni O, Nervi C. Aptamer-based technology for radionuclide targeted imaging and therapy: a promising weapon against cancer. Expert Rev Med Devices 2020;17:751-8. [PMID: 32669004 DOI: 10.1080/17434440.2020.1796633] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
|
571 |
Hornung T, O'Neill HA, Logie SC, Fowler KM, Duncan JE, Rosenow M, Bondre AS, Tinder T, Maher V, Zarkovic J, Zhong Z, Richards MN, Wei X, Miglarese MR, Mayer G, Famulok M, Spetzler D. ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes. Nucleic Acids Res 2020;48:4013-27. [PMID: 31989173 DOI: 10.1093/nar/gkaa034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
572 |
Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B 2020;8:5808-25. [PMID: 32538399 DOI: 10.1039/d0tb00705f] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
|
573 |
He F, Wen N, Xiao D, Yan J, Xiong H, Cai S, Liu Z, Liu Y. Aptamer-Based Targeted Drug Delivery Systems: Current Potential and Challenges. Curr Med Chem 2020;27:2189-219. [PMID: 30295183 DOI: 10.2174/0929867325666181008142831] [Cited by in Crossref: 63] [Cited by in F6Publishing: 70] [Article Influence: 21.0] [Reference Citation Analysis]
|
574 |
De Fenza M, Eremeeva E, Troisi R, Yang H, Esposito A, Sica F, Herdewijn P, D'Alonzo D, Guaragna A. Structure-Activity Relationship Study of a Potent α-Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chemistry 2020;26:9589-97. [PMID: 32363791 DOI: 10.1002/chem.202001504] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
575 |
Díaz-Amaya S, Zhao M, Allebach JP, Chiu GT, Stanciu LA. Ionic Strength Influences on Biofunctional Au-Decorated Microparticles for Enhanced Performance in Multiplexed Colorimetric Sensors. ACS Appl Mater Interfaces 2020;12:32397-409. [PMID: 32645268 DOI: 10.1021/acsami.0c07636] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
576 |
Kumar Kulabhusan P, Hussain B, Yüce M. Current Perspectives on Aptamers as Diagnostic Tools and Therapeutic Agents. Pharmaceutics 2020;12:E646. [PMID: 32659966 DOI: 10.3390/pharmaceutics12070646] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 16.3] [Reference Citation Analysis]
|
577 |
Li N, Zong S, Zhang Y, Wang Z, Wang Y, Zhu K, Yang K, Wang Z, Chen B, Cui Y. A SERS-colorimetric dual-mode aptasensor for the detection of cancer biomarker MUC1. Anal Bioanal Chem 2020;412:5707-18. [PMID: 32632516 DOI: 10.1007/s00216-020-02790-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
|
578 |
Winkelsas AM, Fischbeck KH. Nucleic acid therapeutics in neurodevelopmental disease. Curr Opin Genet Dev 2020;65:112-6. [PMID: 32623324 DOI: 10.1016/j.gde.2020.05.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
579 |
Fayazi R, Habibi-Rezaei M, Heiat M, Javadi-Zarnaghi F, Taheri RA. Glycated albumin precipitation using aptamer conjugated magnetic nanoparticles. Sci Rep 2020;10:10716. [PMID: 32612182 DOI: 10.1038/s41598-020-67469-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
580 |
Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, Zhang L, Yang Z, Zhang BT, Lu A, Zhang G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Appl Mater Interfaces 2021;13:9500-19. [PMID: 32603135 DOI: 10.1021/acsami.0c05750] [Cited by in Crossref: 95] [Cited by in F6Publishing: 114] [Article Influence: 31.7] [Reference Citation Analysis]
|
581 |
Chung YJ, Kim J, Park CB. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS Nano 2020;14:6470-97. [PMID: 32441509 DOI: 10.1021/acsnano.0c02114] [Cited by in Crossref: 92] [Cited by in F6Publishing: 100] [Article Influence: 30.7] [Reference Citation Analysis]
|
582 |
Peng P, Wang Q, Du Y, Wang H, Shi L, Li T. Extracellular Ion-Responsive Logic Sensors Utilizing DNA Dimeric Nanoassemblies on Cell Surface and Application to Boosting AS1411 Internalization. Anal Chem 2020;92:9273-80. [PMID: 32521996 DOI: 10.1021/acs.analchem.0c01612] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
583 |
Wang D, Peng Y, Deng Z, Tan Y, Su Y, Kuai H, Ai L, Huang Z, Wang X, Zhang X, Tan W. Modularly Engineered Solid‐Phase Synthesis of Aptamer‐Functionalized Small Molecule Drugs for Targeted Cancer Therapy. Adv Therap 2020;3:2000074. [DOI: 10.1002/adtp.202000074] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
584 |
Smith MH, Fologea D. Kinetic Exclusion Assay of Biomolecules by Aptamer Capture. Sensors (Basel) 2020;20:E3442. [PMID: 32570818 DOI: 10.3390/s20123442] [Reference Citation Analysis]
|
585 |
James BD, Guerin P, Iverson Z, Allen JB. Mineralized DNA-collagen complex-based biomaterials for bone tissue engineering. Int J Biol Macromol 2020;161:1127-39. [PMID: 32561285 DOI: 10.1016/j.ijbiomac.2020.06.126] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
586 |
Zhu S, Gilbert JC, Liang Z, Kang D, Li M, Tarantino PM, Jilma B. Potent and rapid reversal of the von Willebrand factor inhibitor aptamer BT200. J Thromb Haemost 2020;18:1695-704. [PMID: 32275107 DOI: 10.1111/jth.14822] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
587 |
Sun B, Xu F, Zhang Y, Hu Y, Chen Y. Dual-Probe Approach for Mass Spectrometric Quantification of MUC1-Specific Terminal Gal/GalNAc In Situ. Anal Chem 2020;92:8340-9. [PMID: 32502344 DOI: 10.1021/acs.analchem.0c00807] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
588 |
Saad M, Chinerman D, Tabrizian M, Faucher SP. Identification of two aptamers binding to Legionella pneumophila with high affinity and specificity. Sci Rep 2020;10:9145. [PMID: 32499557 DOI: 10.1038/s41598-020-65973-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
589 |
Guo Y, Zhang J, Pan G, Choi CHJ, Wang P, Li Y, Zhu X, Zhang C. Grafting multi-maleimides on antisense oligonucleotide to enhance its cellular uptake and gene silencing capability. Chem Commun (Camb) 2020;56:7439-42. [PMID: 32494799 DOI: 10.1039/d0cc02548h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
590 |
Esposito CL, Nuzzo S, Ibba ML, Ricci-Vitiani L, Pallini R, Condorelli G, Catuogno S, de Franciscis V. Combined Targeting of Glioblastoma Stem-Like Cells by Neutralizing RNA-Bio-Drugs for STAT3. Cancers (Basel) 2020;12:E1434. [PMID: 32486489 DOI: 10.3390/cancers12061434] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
591 |
Riccardi C, Meyer A, Vasseur JJ, Cavasso D, Russo Krauss I, Paduano L, Morvan F, Montesarchio D. Design, Synthesis and Characterization of Cyclic NU172 Analogues: A Biophysical and Biological Insight. Int J Mol Sci 2020;21:E3860. [PMID: 32485818 DOI: 10.3390/ijms21113860] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
592 |
Zhou J, Li Y, Wang W, Tan X, Lu Z, Han H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens Bioelectron 2020;164:112332. [PMID: 32553355 DOI: 10.1016/j.bios.2020.112332] [Cited by in Crossref: 44] [Cited by in F6Publishing: 49] [Article Influence: 14.7] [Reference Citation Analysis]
|
593 |
Zhao Q, Tao J, Feng W, Uppal JS, Peng H, Le XC. Aptamer binding assays and molecular interaction studies using fluorescence anisotropy - A review. Anal Chim Acta 2020;1125:267-78. [PMID: 32674773 DOI: 10.1016/j.aca.2020.05.061] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
|
594 |
Wan Q, Liu X, Zeng Z, Chen Z, Liu Y, Zu Y. Aptamer Cocktail to Detect Multiple Species of Mycoplasma in Cell Culture. Int J Mol Sci 2020;21:E3784. [PMID: 32471128 DOI: 10.3390/ijms21113784] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
|
595 |
Santana-Viera L, Ibba ML, Rotoli D, Catuogno S, Esposito CL. Emerging Therapeutic RNAs for the Targeting of Cancer Associated Fibroblasts. Cancers (Basel) 2020;12:E1365. [PMID: 32466591 DOI: 10.3390/cancers12061365] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
596 |
Tans R, van Rijswijck DMH, Davidson A, Hannam R, Ricketts B, Tack CJ, Wessels HJCT, Gloerich J, van Gool AJ. Affimers as an alternative to antibodies for protein biomarker enrichment. Protein Expr Purif 2020;174:105677. [PMID: 32461183 DOI: 10.1016/j.pep.2020.105677] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
597 |
Sola M, Menon AP, Moreno B, Meraviglia-Crivelli D, Soldevilla MM, Cartón-García F, Pastor F. Aptamers Against Live Targets: Is In Vivo SELEX Finally Coming to the Edge? Mol Ther Nucleic Acids 2020;21:192-204. [PMID: 32585627 DOI: 10.1016/j.omtn.2020.05.025] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 11.7] [Reference Citation Analysis]
|
598 |
Peng H, Borg RE, Nguyen ABN, Chen IA. Chimeric Phage Nanoparticles for Rapid Characterization of Bacterial Pathogens: Detection in Complex Biological Samples and Determination of Antibiotic Sensitivity. ACS Sens 2020;5:1491-9. [PMID: 32314570 DOI: 10.1021/acssensors.0c00654] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
|
599 |
Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, Zhang R, Zhu J, Ren Y, Tan Y, Qin C, Li Y, Li X, Chen Y, Zhu F. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 2020;48:D1031-41. [PMID: 31691823 DOI: 10.1093/nar/gkz981] [Cited by in Crossref: 188] [Cited by in F6Publishing: 288] [Article Influence: 62.7] [Reference Citation Analysis]
|
600 |
Bukari B, Samarasinghe RM, Noibanchong J, Shigdar SL. Non-Invasive Delivery of Therapeutics into the Brain: The Potential of Aptamers for Targeted Delivery. Biomedicines 2020;8:E120. [PMID: 32422973 DOI: 10.3390/biomedicines8050120] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
601 |
Zhang N, Zhang ZK, Yu Y, Zhuo Z, Zhang G, Zhang BT. Pros and Cons of Denosumab Treatment for Osteoporosis and Implication for RANKL Aptamer Therapy. Front Cell Dev Biol 2020;8:325. [PMID: 32478071 DOI: 10.3389/fcell.2020.00325] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 6.7] [Reference Citation Analysis]
|
602 |
Wang L, Lee JY, Gao L, Yin J, Duan Y, Jimenez LA, Adkins GB, Ren W, Li L, Fang J, Wang Y, Song J, Zhong W. A DNA aptamer for binding and inhibition of DNA methyltransferase 1. Nucleic Acids Res 2019;47:11527-37. [PMID: 31733056 DOI: 10.1093/nar/gkz1083] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
|
603 |
Zhang D, Zheng Y, Lin Z, Liu X, Li J, Yang H, Tan W. Equipping Natural Killer Cells with Specific Targeting and Checkpoint Blocking Aptamers for Enhanced Adoptive Immunotherapy in Solid Tumors. Angew Chem Int Ed Engl 2020;59:12022-8. [PMID: 32246555 DOI: 10.1002/anie.202002145] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 22.0] [Reference Citation Analysis]
|
604 |
Zhang D, Zheng Y, Lin Z, Liu X, Li J, Yang H, Tan W. Equipping Natural Killer Cells with Specific Targeting and Checkpoint Blocking Aptamers for Enhanced Adoptive Immunotherapy in Solid Tumors. Angew Chem 2020;132:12120-6. [DOI: 10.1002/ange.202002145] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
605 |
Jin JO, Kim G, Hwang J, Han KH, Kwak M, Lee PCW. Nucleic acid nanotechnology for cancer treatment. Biochim Biophys Acta Rev Cancer 2020;1874:188377. [PMID: 32418899 DOI: 10.1016/j.bbcan.2020.188377] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
|
606 |
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020;39:4491-506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
|
607 |
Thevendran R, Sarah S, Tang TH, Citartan M. Strategies to bioengineer aptamer-driven nanovehicles as exceptional molecular tools for targeted therapeutics: A review. J Control Release 2020;323:530-48. [PMID: 32380206 DOI: 10.1016/j.jconrel.2020.04.051] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
|
608 |
Jiang H, Lv X, Zhao K. Progress of Aptamer Screening Techniques Based on Microfluidic Chips. Chinese Journal of Analytical Chemistry 2020;48:590-600. [DOI: 10.1016/s1872-2040(20)60015-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
609 |
Tran PHL, Xiang D, Tran TTD, Yin W, Zhang Y, Kong L, Chen K, Sun M, Li Y, Hou Y, Zhu Y, Duan W. Exosomes and Nanoengineering: A Match Made for Precision Therapeutics. Adv Mater 2020;32:e1904040. [PMID: 31531916 DOI: 10.1002/adma.201904040] [Cited by in Crossref: 79] [Cited by in F6Publishing: 82] [Article Influence: 26.3] [Reference Citation Analysis]
|
610 |
Abe Y, Ukai K, Michida M. Development of Highly Efficient Divergent Synthesis for 2’-<i>O</i>,4’-<i>C</i>-Ethylene-bridged Nucleic Acid (ENA) Phosphoramidites. J Synth Org Chem Jpn 2020;78:435-445. [DOI: 10.5059/yukigoseikyokaishi.78.435] [Reference Citation Analysis]
|
611 |
Zhao L, Yang G, Zhang X, Qu F. Development of Aptamer Screening against Proteins and Its Applications. Chinese Journal of Analytical Chemistry 2020;48:560-72. [DOI: 10.1016/s1872-2040(20)60012-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
|
612 |
Oberhaus FV, Frense D, Beckmann D. Immobilization Techniques for Aptamers on Gold Electrodes for the Electrochemical Detection of Proteins: A Review. Biosensors (Basel) 2020;10:E45. [PMID: 32354207 DOI: 10.3390/bios10050045] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
|
613 |
Le TT, Bruckbauer A, Tahirbegi B, Magness AJ, Ying L, Ellington AD, Cass AEG. A highly stable RNA aptamer probe for the retinoblastoma protein in live cells. Chem Sci 2020;11:4467-74. [PMID: 34122904 DOI: 10.1039/d0sc01613f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
614 |
Laham-Karam N, Pinto GP, Poso A, Kokkonen P. Transcription and Translation Inhibitors in Cancer Treatment. Front Chem 2020;8:276. [PMID: 32373584 DOI: 10.3389/fchem.2020.00276] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
|
615 |
Yu XX, Ge KL, Liu N, Zhang JY, Xue ML, Ge YL. Selection and Characterization of a Novel DNA Aptamer, Apt-07S Specific to Hepatocellular Carcinoma Cells. Drug Des Devel Ther 2020;14:1535-45. [PMID: 32368012 DOI: 10.2147/DDDT.S244149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
616 |
Dunn MR, McCloskey CM, Buckley P, Rhea K, Chaput JC. Generating Biologically Stable TNA Aptamers that Function with High Affinity and Thermal Stability. J Am Chem Soc 2020;142:7721-4. [PMID: 32298104 DOI: 10.1021/jacs.0c00641] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 15.0] [Reference Citation Analysis]
|
617 |
Fu Z, Xiang J. Aptamers, the Nucleic Acid Antibodies, in Cancer Therapy. Int J Mol Sci 2020;21:E2793. [PMID: 32316469 DOI: 10.3390/ijms21082793] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 17.3] [Reference Citation Analysis]
|
618 |
Feng XN, Cui YX, Zhang J, Tang AN, Mao HB, Kong DM. Chiral Interaction Is a Decisive Factor To Replace d-DNA with l-DNA Aptamers. Anal Chem 2020;92:6470-7. [PMID: 32249564 DOI: 10.1021/acs.analchem.9b05676] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
|
619 |
Goyon A, Yehl P, Zhang K. Characterization of therapeutic oligonucleotides by liquid chromatography. J Pharm Biomed Anal 2020;182:113105. [PMID: 32004766 DOI: 10.1016/j.jpba.2020.113105] [Cited by in Crossref: 49] [Cited by in F6Publishing: 33] [Article Influence: 16.3] [Reference Citation Analysis]
|
620 |
Zhao Q, Bai Y, Wang H. Directing a rational design of aptamer-based fluorescence anisotropy assay for sensitive detection of immunoglobulin E by site-specific binding study. Talanta 2020;217:121018. [PMID: 32498825 DOI: 10.1016/j.talanta.2020.121018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
621 |
Pecoraro A, Virgilio A, Esposito V, Galeone A, Russo G, Russo A. uL3 Mediated Nucleolar Stress Pathway as a New Mechanism of Action of Antiproliferative G-quadruplex TBA Derivatives in Colon Cancer Cells. Biomolecules 2020;10:E583. [PMID: 32290083 DOI: 10.3390/biom10040583] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
622 |
Xu Y, Deng M, Zhang H, Tan S, Li D, Li S, Luo L, Liao G, Wang Q, Huang J, Liu J, Yang X, Wang K. Selection of Affinity Reagents to Neutralize the Hemolytic Toxicity of Melittin Based on a Self-Assembled Nanoparticle Library. ACS Appl Mater Interfaces 2020;12:16040-9. [PMID: 32174109 DOI: 10.1021/acsami.0c00303] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
623 |
Troisi R, Balasco N, Vitagliano L, Sica F. Molecular dynamics simulations of human α-thrombin in different structural contexts: evidence for an aptamer-guided cooperation between the two exosites. J Biomol Struct Dyn 2021;39:2199-209. [PMID: 32202471 DOI: 10.1080/07391102.2020.1746693] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
624 |
Li F, Li Q, Zuo X, Fan C. DNA framework-engineered electrochemical biosensors. Sci China Life Sci 2020;63:1130-41. [PMID: 32253588 DOI: 10.1007/s11427-019-1621-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
|
625 |
Ueki R, Uchida S, Kanda N, Yamada N, Ueki A, Akiyama M, Toh K, Cabral H, Sando S. A chemically unmodified agonistic DNA with growth factor functionality for in vivo therapeutic application. Sci Adv 2020;6:eaay2801. [PMID: 32270033 DOI: 10.1126/sciadv.aay2801] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
626 |
Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. Adv Mater 2020;32:e1902007. [PMID: 31559665 DOI: 10.1002/adma.201902007] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 23.3] [Reference Citation Analysis]
|
627 |
You M, Yang S, An Y, Zhang F, He P. A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. Journal of Electroanalytical Chemistry 2020;862:114017. [DOI: 10.1016/j.jelechem.2020.114017] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
|
628 |
Crijns H, Vanheule V, Proost P. Targeting Chemokine-Glycosaminoglycan Interactions to Inhibit Inflammation. Front Immunol 2020;11:483. [PMID: 32296423 DOI: 10.3389/fimmu.2020.00483] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 14.0] [Reference Citation Analysis]
|
629 |
Bell DR, Weber JK, Yin W, Huynh T, Duan W, Zhou R. In silico design and validation of high-affinity RNA aptamers targeting epithelial cellular adhesion molecule dimers. Proc Natl Acad Sci U S A 2020;117:8486-93. [PMID: 32234785 DOI: 10.1073/pnas.1913242117] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
|
630 |
Liu X, Mao D, Deng G, Song Y, Zhang F, Yang S, Li G, Liu F, Cao W, Zhu X. Nondestructive analysis of tumor-associated membrane protein MUC1 in living cells based on dual-terminal amplification of a DNA ternary complex. Theranostics 2020;10:4410-21. [PMID: 32292504 DOI: 10.7150/thno.42951] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
631 |
Drzazgowska J, Schmid B, Süssmuth RD, Altintas Z. Self-Assembled Monolayer Epitope Bridges for Molecular Imprinting and Cancer Biomarker Sensing. Anal Chem 2020;92:4798-806. [DOI: 10.1021/acs.analchem.9b03813] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
|
632 |
Han Z, Lv W, Li Y, Chang J, Zhang W, Liu C, Sun J. Improving Tumor Targeting of Exosomal Membrane-Coated Polymeric Nanoparticles by Conjugation with Aptamers. ACS Appl Bio Mater 2020;3:2666-73. [DOI: 10.1021/acsabm.0c00181] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
|
633 |
Camorani S, Granata I, Collina F, Leonetti F, Cantile M, Botti G, Fedele M, Guarracino MR, Cerchia L. Novel Aptamers Selected on Living Cells for Specific Recognition of Triple-Negative Breast Cancer. iScience 2020;23:100979. [PMID: 32222697 DOI: 10.1016/j.isci.2020.100979] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
634 |
Teixeira SPB, Domingues RMA, Shevchuk M, Gomes ME, Peppas NA, Reis RL. Biomaterials for Sequestration of Growth Factors and Modulation of Cell Behavior. Adv Funct Mater 2020;30:1909011. [DOI: 10.1002/adfm.201909011] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
|
635 |
Jaremko W, Huang Z, Karl N, Pierce VD, Lynch J, Niu L. A kainate receptor-selective RNA aptamer. J Biol Chem 2020;295:6280-8. [PMID: 32161119 DOI: 10.1074/jbc.RA119.011649] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
636 |
Shen R, Tan J, Yuan Q. Chemically Modified Aptamers in Biological Analysis. ACS Appl Bio Mater 2020;3:2816-26. [DOI: 10.1021/acsabm.0c00062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
637 |
Yang L, Yin X, Gai P, Li F. A label-free homogeneous electrochemical cytosensor for the ultrasensitive detection of cancer cells based on multiaptamer-functionalized DNA tetrahedral nanostructures. Chem Commun (Camb) 2020;56:3883-6. [PMID: 32134083 DOI: 10.1039/d0cc00788a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
638 |
Murakami K, Obata Y, Sekikawa A, Ueda H, Izuo N, Awano T, Takabe K, Shimizu T, Irie K. An RNA aptamer with potent affinity for a toxic dimer of amyloid β42 has potential utility for histochemical studies of Alzheimer's disease. J Biol Chem 2020;295:4870-80. [PMID: 32127399 DOI: 10.1074/jbc.RA119.010955] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
|
639 |
Kholafazad Kordasht H, Pazhuhi M, Pashazadeh-panahi P, Hasanzadeh M, Shadjou N. Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: Recent advances. TrAC Trends in Analytical Chemistry 2020;124:115778. [DOI: 10.1016/j.trac.2019.115778] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
|
640 |
Le Bagge S, Fotheringham AK, Leung SS, Forbes JM. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med Res Rev 2020;40:1200-19. [PMID: 32112452 DOI: 10.1002/med.21654] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
|
641 |
Chen R, Sun P, Chu X, Pu X, Yang Y, Zhang N, Zhao Y. Synergistic Treatment of Tumor by Targeted Biotherapy and Chemotherapy via Site-Specific Anchoring of Aptamers on DNA Nanotubes. Int J Nanomedicine 2020;15:1309-20. [PMID: 32161460 DOI: 10.2147/IJN.S225142] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
642 |
Chandola C, Neerathilingam M. Aptamers for Targeted Delivery: Current Challenges and Future Opportunities. Role of Novel Drug Delivery Vehicles in Nanobiomedicine 2020. [DOI: 10.5772/intechopen.84217] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
643 |
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020;12:E192. [PMID: 32102252 DOI: 10.3390/pharmaceutics12020192] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
644 |
Tran PH, Xiang D, Nguyen TN, Tran TT, Chen Q, Yin W, Zhang Y, Kong L, Duan A, Chen K, Sun M, Li Y, Hou Y, Zhu Y, Ma Y, Jiang G, Duan W. Aptamer-guided extracellular vesicle theranostics in oncology. Theranostics 2020;10:3849-66. [PMID: 32226524 DOI: 10.7150/thno.39706] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 10.0] [Reference Citation Analysis]
|
645 |
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020;598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
|
646 |
Li Q, Chen J, Trajkovski M, Zhou Y, Fan C, Lu K, Tang P, Su X, Plavec J, Xi Z, Zhou C. 4′-Fluorinated RNA: Synthesis, Structure, and Applications as a Sensitive 19 F NMR Probe of RNA Structure and Function. J Am Chem Soc 2020;142:4739-48. [DOI: 10.1021/jacs.9b13207] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
|
647 |
Medina-Cruz D, Mostafavi E, Vernet-Crua A, Cheng J, Shah V, Cholula-Diaz JL, Guisbiers G, Tao J, García-Martín JM, Webster TJ. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv 2020;17:341-56. [PMID: 32064959 DOI: 10.1080/17425247.2020.1727441] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
|
648 |
Xiao F, Wei Z, Wang M, Hoff A, Bao Y, Tian L. Oligonucleotide-Polymer Conjugates: From Molecular Basics to Practical Application. Top Curr Chem (Cham) 2020;378:24. [PMID: 32064539 DOI: 10.1007/s41061-020-0286-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
649 |
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 2019;15:327-45. [PMID: 30894700 DOI: 10.1038/s41581-019-0135-6] [Cited by in Crossref: 162] [Cited by in F6Publishing: 168] [Article Influence: 54.0] [Reference Citation Analysis]
|
650 |
Zaitseva SO, Baleeva NS, Zatsepin TS, Myasnyanko IN, Turaev AV, Pozmogova GE, Khrulev AA, Varizhuk AM, Baranov MS, Aralov AV. Short Duplex Module Coupled to G-Quadruplexes Increases Fluorescence of Synthetic GFP Chromophore Analogues. Sensors (Basel) 2020;20:E915. [PMID: 32050425 DOI: 10.3390/s20030915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
651 |
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based immunoassay and aptamer assay: A review. Electrophoresis 2020;41:414-33. [PMID: 31975407 DOI: 10.1002/elps.201900426] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
|
652 |
Tang Z, Luo C, Jun Y, Yao M, Zhang M, He K, Jin L, Ma J, Chen S, Sun S, Tao M, Ding L, Sun X, Chen X, Zhang L, Gao Y, Wang QL. Nanovector Assembled from Natural Egg Yolk Lipids for Tumor-Targeted Delivery of Therapeutics. ACS Appl Mater Interfaces 2020;12:7984-94. [PMID: 31971362 DOI: 10.1021/acsami.9b22293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
|
653 |
Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. TrAC Trends in Analytical Chemistry 2020;123:115759. [DOI: 10.1016/j.trac.2019.115759] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
|
654 |
Wang D, Chuen Loo JF, Lin W, Geng Q, Shan Ngan EK, Kong SK, Yam Y, Chen S, Ho HP. Development of a sensitive DMD-based 2D SPR sensor array using single-point detection strategy for multiple aptamer screening. Sensors and Actuators B: Chemical 2020;305:127240. [DOI: 10.1016/j.snb.2019.127240] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
655 |
Kiggins C, Skinner A, Resendiz MJE. 7,8-Dihydro-8-oxoguanosine Lesions Inhibit the Theophylline Aptamer or Change Its Selectivity. Chembiochem 2020;21:1347-55. [PMID: 31845489 DOI: 10.1002/cbic.201900684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
656 |
Li X, Yang Y, Zhao H, Zhu T, Yang Z, Xu H, Fu Y, Lin F, Pan X, Li L, Cui C, Hong M, Yang L, Wang KK, Tan W. Enhanced in Vivo Blood–Brain Barrier Penetration by Circular Tau–Transferrin Receptor Bifunctional Aptamer for Tauopathy Therapy. J Am Chem Soc 2020;142:3862-72. [DOI: 10.1021/jacs.9b11490] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 12.3] [Reference Citation Analysis]
|
657 |
Alqaraghuli HGJ, Kashanian S, Rafipour R. A Review on Targeting Nanoparticles for Breast Cancer. Curr Pharm Biotechnol 2019;20:1087-107. [PMID: 31364513 DOI: 10.2174/1389201020666190731130001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
658 |
Yang Q, Deng Z, Wang D, He J, Zhang D, Tan Y, Peng T, Wang XQ, Tan W. Conjugating Aptamer and Mitomycin C with Reductant-Responsive Linker Leading to Synergistically Enhanced Anticancer Effect. J Am Chem Soc 2020;142:2532-40. [PMID: 31910340 DOI: 10.1021/jacs.9b12409] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
|
659 |
Самохвалов АВ, Сафенкова ИВ, Еремин СА, Жердев АВ, Дзантиев ББ. Применение наночастиц золота для высокочувствительного поляризационного флуоресцентного аптамерного анализа охратоксина А. Rossijskie nanotehnologii 2020;14:91-99. [DOI: 10.21517/1992-7223-2019-7-8-91-99] [Reference Citation Analysis]
|
660 |
He J, Peng T, Peng Y, Ai L, Deng Z, Wang XQ, Tan W. Molecularly Engineering Triptolide with Aptamers for High Specificity and Cytotoxicity for Triple-Negative Breast Cancer. J Am Chem Soc 2020;142:2699-703. [PMID: 31910009 DOI: 10.1021/jacs.9b10510] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 15.7] [Reference Citation Analysis]
|
661 |
Liu Q, Zhang W, Chen S, Zhuang Z, Zhang Y, Jiang L, Lin JS. SELEX tool: a novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J Biol Eng 2020;14:1. [PMID: 31956340 DOI: 10.1186/s13036-019-0223-y] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
|
662 |
Rosch JC, Balikov DA, Gong F, Lippmann ES. A systematic evolution of ligands by exponential enrichment workflow with consolidated counterselection to efficiently isolate high‐affinity aptamers. Engineering Reports 2020;2. [DOI: 10.1002/eng2.12089] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
663 |
Jeevanandam J, Tan KX, Danquah MK, Guo H, Turgeson A. Advancing Aptamers as Molecular Probes for Cancer Theranostic Applications-The Role of Molecular Dynamics Simulation. Biotechnol J 2020;15:e1900368. [PMID: 31840436 DOI: 10.1002/biot.201900368] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
|
664 |
Xiao Y, Lin L, Shen M, Shi X. Design of DNA Aptamer-Functionalized Magnetic Short Nanofibers for Efficient Capture and Release of Circulating Tumor Cells. Bioconjug Chem 2020;31:130-8. [PMID: 31855600 DOI: 10.1021/acs.bioconjchem.9b00816] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
|
665 |
Afrasiabi S, Pourhajibagher M, Raoofian R, Tabarzad M, Bahador A. Therapeutic applications of nucleic acid aptamers in microbial infections. J Biomed Sci 2020;27:6. [PMID: 31900238 DOI: 10.1186/s12929-019-0611-0] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
|
666 |
Reid R, Chatterjee B, Das SJ, Ghosh S, Sharma TK. Application of aptamers as molecular recognition elements in lateral flow assays. Anal Biochem 2020;593:113574. [PMID: 31911046 DOI: 10.1016/j.ab.2020.113574] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
|
667 |
Alizadeh L, Alizadeh E, Zarebkohan A, Ahmadi E, Rahmati-yamchi M, Salehi R. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-019-4735-7] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
|
668 |
Li J, Wang L, Tian J, Zhou Z, Li J, Yang H. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem Soc Rev 2020;49:1545-68. [DOI: 10.1039/c9cs00473d] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
|
669 |
Mandala JP, Pittala S, Srivani G. Cancer Stem Cells as Therapeutic Targets for Gastrointestinal Cancers. Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers 2020. [DOI: 10.1007/978-3-030-48405-7_3] [Reference Citation Analysis]
|
670 |
Wan Y, Zhao J, He J, Lou X. Nano-Affi: a solution-phase, label-free, colorimetric aptamer affinity assay based on binding-inhibited aggregation of gold nanoparticles. Analyst 2020;145:4276-82. [DOI: 10.1039/d0an00827c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
671 |
Peng T, Deng Z, He J, Li Y, Tan Y, Peng Y, Wang X, Tan W. Functional nucleic acids for cancer theranostics. Coordination Chemistry Reviews 2020;403:213080. [DOI: 10.1016/j.ccr.2019.213080] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
672 |
Bignold LP. Specific aspects of cytotoxic and hormonal drug therapies. Principles of Tumors 2020. [DOI: 10.1016/b978-0-12-816920-9.00015-8] [Reference Citation Analysis]
|
673 |
Al-sudani B, Ragazzon-smith AH, Aziz A, Alansari R, Ferry N, Krstic-demonacos M, Ragazzon PA. Circular and linear: a tale of aptamer selection for the activation of SIRT1 to induce death in cancer cells. RSC Adv 2020;10:45008-45018. [DOI: 10.1039/d0ra07857c] [Reference Citation Analysis]
|
674 |
Deluca M, Shi Z, Castro CE, Arya G. Dynamic DNA nanotechnology: toward functional nanoscale devices. Nanoscale Horiz 2020;5:182-201. [DOI: 10.1039/c9nh00529c] [Cited by in Crossref: 94] [Cited by in F6Publishing: 100] [Article Influence: 31.3] [Reference Citation Analysis]
|
675 |
Nosaz Z, Rasoulinejad S, Mousavi Gargari SL. Development of a DNA aptamer to detect Brucella abortus and Brucella melitensis through cell SELEX. Iran J Vet Res 2020;21:294-300. [PMID: 33584842] [Reference Citation Analysis]
|
676 |
Ren Q, Ga L, Lu Z, Ai J, Wang T. Aptamer-functionalized nanomaterials for biological applications. Mater Chem Front 2020;4:1569-85. [DOI: 10.1039/c9qm00779b] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
|
677 |
Leonardi A, Pacifico F, Crescenzi E. Potential Applications of Aptamers for Targeting Senescent Cells. Healthy Ageing and Longevity 2020. [DOI: 10.1007/978-3-030-44903-2_10] [Reference Citation Analysis]
|
678 |
Vanden Eynde JJ, Mangoni AA, Rautio J, Leprince J, Azuma YT, García-Sosa AT, Hulme C, Jampilek J, Karaman R, Li W, Gomes PAC, Hadjipavlou-Litina D, Capasso R, Geronikaki A, Cerchia L, Sabatier JM, Ragno R, Tuccinardi T, Trabocchi A, Winum JY, Luque FJ, Prokai-Tatrai K, Spetea M, Gütschow M, Kosalec I, Guillou C, Vasconcelos MH, Kokotos G, Rastelli G, de Sousa ME, Manera C, Gemma S, Mangani S, Siciliano C, Galdiero S, Liu H, Scott PJH, de Los Ríos C, Agrofoglio LA, Collina S, Guedes RC, Muñoz-Torrero D. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes-6. Molecules 2019;25:E119. [PMID: 31905602 DOI: 10.3390/molecules25010119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
679 |
James BD, Saenz S, van Gent A, Allen JB. Oligomer Length Defines the Self-Assembly of Single-Stranded DNA-Collagen Complex Fibers. ACS Biomater Sci Eng 2020;6:213-8. [PMID: 33463189 DOI: 10.1021/acsbiomaterials.9b01435] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
680 |
Pourshahian S. THERAPEUTIC OLIGONUCLEOTIDES, IMPURITIES, DEGRADANTS, AND THEIR CHARACTERIZATION BY MASS SPECTROMETRY. Mass Spectrom Rev 2021;40:75-109. [PMID: 31840864 DOI: 10.1002/mas.21615] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
|
681 |
Deng Z, Yang Q, Peng Y, He J, Xu S, Wang D, Peng T, Wang R, Wang XQ, Tan W. Polymeric Engineering of Aptamer-Drug Conjugates for Targeted Cancer Therapy. Bioconjug Chem 2020;31:37-42. [PMID: 31815437 DOI: 10.1021/acs.bioconjchem.9b00715] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
|
682 |
Coyne J, Zhao N, Olubode A, Menon M, Wang Y. Development of hydrogel-like biomaterials via nanoparticle assembly and solid-hydrogel transformation. J Control Release 2020;318:185-96. [PMID: 31857102 DOI: 10.1016/j.jconrel.2019.12.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
683 |
Kimoto M, Shermane Lim YW, Hirao I. Molecular affinity rulers: systematic evaluation of DNA aptamers for their applicabilities in ELISA. Nucleic Acids Res 2019;47:8362-74. [PMID: 31392985 DOI: 10.1093/nar/gkz688] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]
|
684 |
Zhou X, Wang S, Zhu Y, Pan Y, Zhang L, Yang Z. Overcoming the delivery barrier of oligonucleotide drugs and enhancing nucleoside drug efficiency: The use of nucleolipids. Med Res Rev 2020;40:1178-99. [PMID: 31820472 DOI: 10.1002/med.21652] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
685 |
Pan M, Jiang Q, Sun J, Xu Z, Zhou Y, Zhang L, Liu X. Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2020;59:1897-905. [PMID: 31696593 DOI: 10.1002/anie.201912574] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 15.5] [Reference Citation Analysis]
|
686 |
Pan M, Jiang Q, Sun J, Xu Z, Zhou Y, Zhang L, Liu X. Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angew Chem 2019;132:1913-21. [DOI: 10.1002/ange.201912574] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
|
687 |
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019;24:69. [PMID: 31867046 DOI: 10.1186/s11658-019-0196-3] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 12.3] [Reference Citation Analysis]
|
688 |
Bauer M, Strom M, Hammond DS, Shigdar S. Anything You Can Do, I Can Do Better: Can Aptamers Replace Antibodies in Clinical Diagnostic Applications? Molecules 2019;24:E4377. [PMID: 31801185 DOI: 10.3390/molecules24234377] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
|
689 |
Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS Nano 2019;13:12301-21. [PMID: 31664817 DOI: 10.1021/acsnano.9b06522] [Cited by in Crossref: 71] [Cited by in F6Publishing: 73] [Article Influence: 17.8] [Reference Citation Analysis]
|
690 |
Matos CO, Passos YM, do Amaral MJ, Macedo B, Tempone MH, Bezerra OCL, Moraes MO, Almeida MS, Weber G, Missailidis S, Silva JL, Uversky VN, Pinheiro AS, Cordeiro Y. Liquid-liquid phase separation and fibrillation of the prion protein modulated by a high-affinity DNA aptamer. FASEB J 2020;34:365-85. [PMID: 31914616 DOI: 10.1096/fj.201901897R] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
|
691 |
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018;39:2704-16. [PMID: 28430919 DOI: 10.1093/eurheartj/ehx165] [Cited by in Crossref: 169] [Cited by in F6Publishing: 194] [Article Influence: 42.3] [Reference Citation Analysis]
|
692 |
Segal M, Biscans A, Gilles ME, Anastasiadou E, De Luca R, Lim J, Khvorova A, Slack FJ. Hydrophobically Modified let-7b miRNA Enhances Biodistribution to NSCLC and Downregulates HMGA2 In Vivo. Mol Ther Nucleic Acids 2020;19:267-77. [PMID: 31855835 DOI: 10.1016/j.omtn.2019.11.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
|
693 |
Wang T, Hong S, Luo Y, Lv H, Zhang Y, Pei R. Self-Assembled saRNA Delivery System Based on Rolling Circle Transcription for Aptamer-Targeting Cancer Therapy. ACS Appl Bio Mater 2019;2:4737-4746. [DOI: 10.1021/acsabm.9b00433] [Reference Citation Analysis]
|
694 |
Yazdian-Robati R, Bayat P, Oroojalian F, Zargari M, Ramezani M, Taghdisi SM, Abnous K. Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol 2020;155:1420-31. [PMID: 31734366 DOI: 10.1016/j.ijbiomac.2019.11.118] [Cited by in Crossref: 82] [Cited by in F6Publishing: 89] [Article Influence: 20.5] [Reference Citation Analysis]
|
695 |
Wu PH, Opadele AE, Onodera Y, Nam JM. Targeting Integrins in Cancer Nanomedicine: Applications in Cancer Diagnosis and Therapy. Cancers (Basel) 2019;11:E1783. [PMID: 31766201 DOI: 10.3390/cancers11111783] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 11.8] [Reference Citation Analysis]
|
696 |
Smestad J, Wilbanks B, Maher LJ 3rd. An in Vitro Selection Strategy Identifying Naked DNA That Localizes to Cell Nuclei. J Am Chem Soc 2019;141:18375-9. [PMID: 31702902 DOI: 10.1021/jacs.9b06736] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
697 |
Bing T, Zhang N, Shangguan D. Cell-SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. Adv Biosyst 2019;3:e1900193. [PMID: 32648677 DOI: 10.1002/adbi.201900193] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
|
698 |
Akbari M, Hassan-Zadeh V. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology 2020;28:345-62. [PMID: 31707555 DOI: 10.1007/s10787-019-00663-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
|
699 |
Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 2019;18:421-46. [PMID: 30846871 DOI: 10.1038/s41573-019-0017-4] [Cited by in Crossref: 572] [Cited by in F6Publishing: 603] [Article Influence: 143.0] [Reference Citation Analysis]
|
700 |
Vandghanooni S, Eskandani M, Barar J, Omidi Y. Antisense LNA-loaded nanoparticles of star-shaped glucose-core PCL-PEG copolymer for enhanced inhibition of oncomiR-214 and nucleolin-mediated therapy of cisplatin-resistant ovarian cancer cells. Int J Pharm 2020;573:118729. [PMID: 31705975 DOI: 10.1016/j.ijpharm.2019.118729] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
|
701 |
Safarpour H, Dehghani S, Nosrati R, Zebardast N, Alibolandi M, Mokhtarzadeh A, Ramezani M. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens Bioelectron 2020;148:111833. [PMID: 31733465 DOI: 10.1016/j.bios.2019.111833] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 9.5] [Reference Citation Analysis]
|
702 |
Luo ZW, Li FX, Liu YW, Rao SS, Yin H, Huang J, Chen CY, Hu Y, Zhang Y, Tan YJ, Yuan LQ, Chen TH, Liu HM, Cao J, Liu ZZ, Wang ZX, Xie H. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration. Nanoscale. 2019;11:20884-20892. [PMID: 31660556 DOI: 10.1039/c9nr02791b] [Cited by in Crossref: 85] [Cited by in F6Publishing: 96] [Article Influence: 21.3] [Reference Citation Analysis]
|
703 |
Tejavibulya N, Colburn DAM, Marcogliese FA, Yang KA, Guo V, Chowdhury S, Stojanovic MN, Sia SK. Hydrogel Microfilaments toward Intradermal Health Monitoring. iScience 2019;21:328-40. [PMID: 31698247 DOI: 10.1016/j.isci.2019.10.036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
704 |
Wang W, Yu S, Huang S, Bi S, Han H, Zhang JR, Lu Y, Zhu JJ. Bioapplications of DNA nanotechnology at the solid-liquid interface. Chem Soc Rev 2019;48:4892-920. [PMID: 31402369 DOI: 10.1039/c8cs00402a] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 11.8] [Reference Citation Analysis]
|
705 |
Pol L, Acosta LK, Ferré-Borrull J, Marsal LF. Aptamer-Based Nanoporous Anodic Alumina Interferometric Biosensor for Real-Time Thrombin Detection. Sensors (Basel) 2019;19:E4543. [PMID: 31635027 DOI: 10.3390/s19204543] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
706 |
Wang R, Zhang Q, Zhang Y, Shi H, Nguyen KT, Zhou X. Unconventional Split Aptamers Cleaved at Functionally Essential Sites Preserve Biorecognition Capability. Anal Chem 2019;91:15811-7. [DOI: 10.1021/acs.analchem.9b04115] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
|
707 |
Zhai Q, Gao C, Ding J, Zhang Y, Islam B, Lan W, Hou H, Deng H, Li J, Hu Z, Mohamed HI, Xu S, Cao C, Haider SM, Wei D. Selective recognition of c-MYC Pu22 G-quadruplex by a fluorescent probe. Nucleic Acids Res 2019;47:2190-204. [PMID: 30759259 DOI: 10.1093/nar/gkz059] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 12.8] [Reference Citation Analysis]
|
708 |
Nuzzo S, Roscigno G, Affinito A, Ingenito F, Quintavalle C, Condorelli G. Potential and Challenges of Aptamers as Specific Carriers of Therapeutic Oligonucleotides for Precision Medicine in Cancer. Cancers (Basel) 2019;11:E1521. [PMID: 31636244 DOI: 10.3390/cancers11101521] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
|
709 |
Hacohen A, Cohen R, Efroni S, Barzel B, Bachelet I. Digitizable therapeutics for decentralized mitigation of global pandemics. Sci Rep 2019;9:14345. [PMID: 31586137 DOI: 10.1038/s41598-019-50553-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
710 |
Sansaloni-Pastor S, Bouilloux J, Lange N. The Dark Side: Photosensitizer Prodrugs. Pharmaceuticals (Basel) 2019;12:E148. [PMID: 31590223 DOI: 10.3390/ph12040148] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
|
711 |
Aspesi A, Borsotti C, Follenzi A. Emerging Therapeutic Approaches for Diamond Blackfan Anemia. Curr Gene Ther 2018;18:327-35. [PMID: 30411682 DOI: 10.2174/1566523218666181109124538] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
|
712 |
Lee J, Le Q, Yang G, Oh Y. Cas9-edited immune checkpoint blockade PD-1 DNA polyaptamer hydrogel for cancer immunotherapy. Biomaterials 2019;218:119359. [DOI: 10.1016/j.biomaterials.2019.119359] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
|
713 |
Yamaguchi T, Obika S. Derivative Synthesis toward Enhancement of the Biophysical Properties of 2′,4′-Bridged Nucleic Acids. J Synth Org Chem Jpn 2019;77:994-1004. [DOI: 10.5059/yukigoseikyokaishi.77.994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
714 |
Liu B, Liu J. Interface-Driven Hybrid Materials Based on DNA-Functionalized Gold Nanoparticles. Matter 2019;1:825-47. [DOI: 10.1016/j.matt.2019.08.008] [Cited by in Crossref: 92] [Cited by in F6Publishing: 97] [Article Influence: 23.0] [Reference Citation Analysis]
|
715 |
Misawa N, Osaki T, Takeuchi S. Membrane protein-based biosensors. J R Soc Interface 2018;15:20170952. [PMID: 29669891 DOI: 10.1098/rsif.2017.0952] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
|
716 |
Li D, Li X, Shen B, Li P, Chen Y, Ding S, Chen W. Aptamer recognition and proximity-induced entropy-driven circuit for enzyme-free and rapid amplified detection of platelet-derived growth factor-BB. Anal Chim Acta 2019;1092:102-7. [PMID: 31708022 DOI: 10.1016/j.aca.2019.09.046] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
717 |
Engelberg S, Netzer E, Assaraf YG, Livney YD. Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death Dis 2019;10:702. [PMID: 31541073 DOI: 10.1038/s41419-019-1870-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
|
718 |
Liu Y, Ji X, He Z. Organic-inorganic nanoflowers: from design strategy to biomedical applications. Nanoscale 2019;11:17179-94. [PMID: 31532431 DOI: 10.1039/c9nr05446d] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 8.8] [Reference Citation Analysis]
|
719 |
Li L, Xing H, Zhang J, Lu Y. Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications. Acc Chem Res 2019;52:2415-26. [PMID: 31411853 DOI: 10.1021/acs.accounts.9b00167] [Cited by in Crossref: 88] [Cited by in F6Publishing: 90] [Article Influence: 22.0] [Reference Citation Analysis]
|
720 |
Yu S, Wang Y, Li Y, Jiang L, Bi S, Zhu J. Multifunctional DNA Polycatenane Nanocarriers for Synergistic Targeted Therapy of Multidrug‐Resistant Human Leukemia. Adv Funct Mater 2019;29:1905659. [DOI: 10.1002/adfm.201905659] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
|
721 |
Brosel-Oliu S, Abramova N, Uria N, Bratov A. Impedimetric transducers based on interdigitated electrode arrays for bacterial detection - A review. Anal Chim Acta 2019;1088:1-19. [PMID: 31623704 DOI: 10.1016/j.aca.2019.09.026] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 10.8] [Reference Citation Analysis]
|
722 |
Liang ZM, Peng YH, Chen Y, Long LL, Luo HJ, Chen YJ, Liang YL, Tian YH, Li SJ, Shi YS, Zhang XM. The BACE1-Specific DNA Aptamer A1 Rescues Amyloid-β Pathology and Behavioral Deficits in a Mouse Model of Alzheimer's Disease. Nucleic Acid Ther 2019;29:359-66. [PMID: 31513457 DOI: 10.1089/nat.2019.0812] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
723 |
Nakamura N, Matsui T, Nishino Y, Sotokawauchi A, Higashimoto Y, Yamagishi SI. Long-Term Local Injection of RAGE-Aptamer Suppresses the Growth of Malignant Melanoma in Nude Mice. J Oncol 2019;2019:7387601. [PMID: 31565056 DOI: 10.1155/2019/7387601] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
724 |
Jacovetti C, Regazzi R. Rôle et potentiel thérapeutique des microARNs dans le diabète. Médecine des Maladies Métaboliques 2019;13:427-432. [DOI: 10.1016/s1957-2557(19)30115-4] [Reference Citation Analysis]
|
725 |
Teng Y, Liu S, Yang S, Guo X, Zhang Y, Song Y, Cui Y. Computer-designed orthogonal RNA aptamers programmed to recognize Ebola virus glycoproteins. Biosafety and Health 2019;1:105-111. [DOI: 10.1016/j.bsheal.2019.11.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
726 |
Fan J, Wang HH, Xie S, Wang M, Nie Z. Engineering Cell-Surface Receptors with DNA Nanotechnology for Cell Manipulation. Chembiochem 2020;21:282-93. [PMID: 31364788 DOI: 10.1002/cbic.201900315] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
|
727 |
Yoon S, Huang KW, Andrikakou P, Vasconcelos D, Swiderski P, Reebye V, Sodergren M, Habib N, Rossi JJ. Targeted Delivery of C/EBPα-saRNA by RNA Aptamers Shows Anti-tumor Effects in a Mouse Model of Advanced PDAC. Mol Ther Nucleic Acids 2019;18:142-54. [PMID: 31546149 DOI: 10.1016/j.omtn.2019.08.017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
728 |
Xu J, Cai Y, Jiang B, Li X, Jin H, Liu W, Kong Z, Hong J, Sealy JE, Iqbal M, Li Y. An optimized aptamer-binding viral tegument protein VP8 inhibits the production of Bovine Herpesvirus-1 through blocking nucleocytoplasmic shuttling. Int J Biol Macromol 2019;140:1226-38. [PMID: 31445153 DOI: 10.1016/j.ijbiomac.2019.08.165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
729 |
Zhu C, Yang G, Ghulam M, Li L, Qu F. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers. Biotechnol Adv 2019;37:107432. [PMID: 31437572 DOI: 10.1016/j.biotechadv.2019.107432] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 10.3] [Reference Citation Analysis]
|
730 |
Wang Y, Hoinka J, Liang Y, Adamus T, Swiderski P, Przytycka TM. AptaBlocks: Designing RNA complexes and accelerating RNA-based drug delivery systems. Nucleic Acids Res 2018;46:8133-42. [PMID: 29986050 DOI: 10.1093/nar/gky577] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
731 |
Yu X, He L, Pentok M, Yang H, Yang Y, Li Z, He N, Deng Y, Li S, Liu T, Chen X, Luo H. An aptamer-based new method for competitive fluorescence detection of exosomes. Nanoscale 2019;11:15589-95. [PMID: 31403149 DOI: 10.1039/c9nr04050a] [Cited by in Crossref: 92] [Cited by in F6Publishing: 99] [Article Influence: 23.0] [Reference Citation Analysis]
|
732 |
Seelam Prabhakar P, A Manderville R, D Wetmore S. Impact of the Position of the Chemically Modified 5-Furyl-2'-Deoxyuridine Nucleoside on the Thrombin DNA Aptamer-Protein Complex: Structural Insights into Aptamer Response from MD Simulations. Molecules 2019;24:E2908. [PMID: 31405145 DOI: 10.3390/molecules24162908] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
733 |
Ponzo I, Möller FM, Daub H, Matscheko N. A DNA-Based Biosensor Assay for the Kinetic Characterization of Ion-Dependent Aptamer Folding and Protein Binding. Molecules 2019;24:E2877. [PMID: 31398834 DOI: 10.3390/molecules24162877] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
|
734 |
Weerathunge P, Behera BK, Zihara S, Singh M, Prasad SN, Hashmi S, Mariathomas PRD, Bansal V, Ramanathan R. Dynamic interactions between peroxidase-mimic silver NanoZymes and chlorpyrifos-specific aptamers enable highly-specific pesticide sensing in river water. Anal Chim Acta 2019;1083:157-65. [PMID: 31493806 DOI: 10.1016/j.aca.2019.07.066] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 10.3] [Reference Citation Analysis]
|
735 |
Madhysatha S, Marquardt R. 12: Mycotoxins in the feed and animal products. Poultry and pig nutrition 2019. [DOI: 10.3920/978-90-8686-884-1_12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
736 |
Ji W, Yan K, Chen Y, Gao J, Zhang J. A visible light-induced self-powered aptasensing platform for kanamycin detection based on mediator-free photofuel cell. Sensors and Actuators B: Chemical 2019;292:129-35. [DOI: 10.1016/j.snb.2019.04.125] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
737 |
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019;200:124-44. [DOI: 10.1016/j.talanta.2019.03.015] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 16.0] [Reference Citation Analysis]
|
738 |
Wang X, Song X, Li T, Chen J, Cheng G, Yang L, Chen C. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. Am J Sports Med 2019;47:2316-26. [PMID: 31233332 DOI: 10.1177/0363546519856355] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 8.5] [Reference Citation Analysis]
|
739 |
Soldevilla MM, Villanueva H, Meraviglia-Crivelli D, Menon AP, Ruiz M, Cebollero J, Villalba M, Moreno B, Lozano T, Llopiz D, Pejenaute Á, Sarobe P, Pastor F. ICOS Costimulation at the Tumor Site in Combination with CTLA-4 Blockade Therapy Elicits Strong Tumor Immunity. Mol Ther 2019;27:1878-91. [PMID: 31405808 DOI: 10.1016/j.ymthe.2019.07.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
|
740 |
Dovgan I, Koniev O, Kolodych S, Wagner A. Antibody-Oligonucleotide Conjugates as Therapeutic, Imaging, and Detection Agents. Bioconjug Chem 2019;30:2483-501. [PMID: 31339691 DOI: 10.1021/acs.bioconjchem.9b00306] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 13.3] [Reference Citation Analysis]
|
741 |
Donia T, Jyoti B, Suizu F, Hirata N, Tanaka T, Ishigaki S, F PTJ, Nio-Kobayashi J, Iwanaga T, Chiorini JA, Noguchi M. Identification of RNA aptamer which specifically interacts with PtdIns(3)P. Biochem Biophys Res Commun 2019;517:146-54. [PMID: 31351587 DOI: 10.1016/j.bbrc.2019.07.034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
742 |
Zhou F, Wang P, Peng Y, Zhang P, Huang Q, Sun W, He N, Fu T, Zhao Z, Fang X, Tan W. Molecular Engineering‐Based Aptamer–Drug Conjugates with Accurate Tunability of Drug Ratios for Drug Combination Targeted Cancer Therapy. Angew Chem 2019;131:11787-91. [DOI: 10.1002/ange.201903807] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
743 |
Zhou F, Wang P, Peng Y, Zhang P, Huang Q, Sun W, He N, Fu T, Zhao Z, Fang X, Tan W. Molecular Engineering-Based Aptamer-Drug Conjugates with Accurate Tunability of Drug Ratios for Drug Combination Targeted Cancer Therapy. Angew Chem Int Ed Engl 2019;58:11661-5. [PMID: 31125154 DOI: 10.1002/anie.201903807] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 10.3] [Reference Citation Analysis]
|
744 |
Shi X, Song P, Tao S, Zhang X, Chu CQ. Silencing RORγt in Human CD4+ T cells with CD30 aptamer-RORγt shRNA Chimera. Sci Rep 2019;9:10375. [PMID: 31316164 DOI: 10.1038/s41598-019-46855-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
745 |
Moutsiopoulou A, Broyles D, Dikici E, Daunert S, Deo SK. Molecular Aptamer Beacons and Their Applications in Sensing, Imaging, and Diagnostics. Small 2019;15:e1902248. [PMID: 31313884 DOI: 10.1002/smll.201902248] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 9.3] [Reference Citation Analysis]
|
746 |
Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res 2018;46:1584-600. [PMID: 29240946 DOI: 10.1093/nar/gkx1239] [Cited by in Crossref: 354] [Cited by in F6Publishing: 368] [Article Influence: 88.5] [Reference Citation Analysis]
|
747 |
Troisi R, Napolitano V, Spiridonova V, Russo Krauss I, Sica F. Several structural motifs cooperate in determining the highly effective anti-thrombin activity of NU172 aptamer. Nucleic Acids Res 2018;46:12177-85. [PMID: 30357392 DOI: 10.1093/nar/gky990] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
|
748 |
Figueiredo J, Lopes-Nunes J, Carvalho J, Antunes F, Ribeiro M, Campello MPC, Paulo A, Paiva A, Salgado GF, Queiroz JA, Mergny JL, Cruz C. AS1411 derivatives as carriers of G-quadruplex ligands for cervical cancer cells. Int J Pharm 2019;568:118511. [PMID: 31301466 DOI: 10.1016/j.ijpharm.2019.118511] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
|
749 |
Pang KM, Castanotto D, Li H, Scherer L, Rossi JJ. Incorporation of aptamers in the terminal loop of shRNAs yields an effective and novel combinatorial targeting strategy. Nucleic Acids Res 2018;46:e6. [PMID: 29077949 DOI: 10.1093/nar/gkx980] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
|
750 |
Gao S, Hu W, Zheng X, Cai S, Wu J. Functionalized aptamer with an antiparallel G-quadruplex: Structural remodeling, recognition mechanism, and diagnostic applications targeting CTGF. Biosens Bioelectron 2019;142:111475. [PMID: 31288216 DOI: 10.1016/j.bios.2019.111475] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
|
751 |
Samokhvalov AV, Safenkova IV, Eremin SA, Zherdev AV, Dzantiev BB. Application of Gold Nanoparticles for High-Sensitivity Fluorescence Polarization Aptamer Assay for Ochratoxin A. Nanotechnol Russia 2019;14:397-404. [DOI: 10.1134/s1995078019040116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
752 |
Zhu C, Li L, Yang G, Irfan M, Wang Z, Fang S, Qu F. High-efficiency selection of aptamers for bovine lactoferrin by capillary electrophoresis and its aptasensor application in milk powder. Talanta 2019;205:120088. [PMID: 31450439 DOI: 10.1016/j.talanta.2019.06.088] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
|
753 |
Wu Q, Lin N, Tian T, Zhu Z, Wu L, Wang H, Wang D, Kang D, Tian R, Yang C. Evolution of Nucleic Acid Aptamers Capable of Specifically Targeting Glioma Stem Cells via Cell-SELEX. Anal Chem 2019;91:8070-7. [PMID: 31179688 DOI: 10.1021/acs.analchem.8b05941] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
|
754 |
Serrano CM, Freeman R, Godbe J, Lewis JA, Stupp SI. DNA-Peptide Amphiphile Nanofibers Enhance Aptamer Function. ACS Appl Bio Mater 2019;2:2955-63. [PMID: 32999996 DOI: 10.1021/acsabm.9b00310] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
755 |
Kacherovsky N, Cardle II, Cheng EL, Yu JL, Baldwin ML, Salipante SJ, Jensen MC, Pun SH. Traceless aptamer-mediated isolation of CD8+ T cells for chimeric antigen receptor T-cell therapy. Nat Biomed Eng 2019;3:783-95. [PMID: 31209354 DOI: 10.1038/s41551-019-0411-6] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
|
756 |
Li X, Wu X, Yang H, Li L, Ye Z, Rao Y. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed Pharmacother 2019;117:109072. [PMID: 31202169 DOI: 10.1016/j.biopha.2019.109072] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 11.0] [Reference Citation Analysis]
|
757 |
An K, Lu X, Wang C, Qian J, Chen Q, Hao N, Wang K. Porous Gold Nanocages: High Atom Utilization for Thiolated Aptamer Immobilization to Well Balance the Simplicity, Sensitivity, and Cost of Disposable Aptasensors. Anal Chem 2019;91:8660-6. [DOI: 10.1021/acs.analchem.9b02145] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
|
758 |
Bing T, Shen L, Wang J, Wang L, Liu X, Zhang N, Xiao X, Shangguan D. Aptameric Probe Specifically Binding Protein Heterodimer Rather Than Monomers. Adv Sci (Weinh) 2019;6:1900143. [PMID: 31179220 DOI: 10.1002/advs.201900143] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
|
759 |
Ali A, Bullen GA, Cross B, Dafforn TR, Little HA, Manchester J, Peacock AFA, Tucker JHR. Light-controlled thrombin catalysis and clot formation using a photoswitchable G-quadruplex DNA aptamer. Chem Commun (Camb) 2019;55:5627-30. [PMID: 31025680 DOI: 10.1039/c9cc01540j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
760 |
Taylor AI, Houlihan G, Holliger P. Beyond DNA and RNA: The Expanding Toolbox of Synthetic Genetics. Cold Spring Harb Perspect Biol 2019;11:a032490. [PMID: 31160351 DOI: 10.1101/cshperspect.a032490] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
|
761 |
Matos CO, Passos YM, do Amaral MJ, Macedo B, Tempone M, Bezerra OCL, Moraes MO, Almeida MS, Weber G, Missailidis S, Silva JL, Pinheiro AS, Cordeiro Y. Liquid-liquid phase separation and aggregation of the prion protein globular domain modulated by a high-affinity DNA aptamer.. [DOI: 10.1101/659037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
762 |
Xie AW, Murphy WL. Engineered biomaterials to mitigate growth factor cost in cell biomanufacturing. Current Opinion in Biomedical Engineering 2019;10:1-10. [DOI: 10.1016/j.cobme.2018.12.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
|
763 |
Appaturi JN, Pulingam T, Muniandy S, Dinshaw IJ, Fen LB, Johan MR. Supported cobalt nanoparticles on graphene oxide/mesoporous silica for oxidation of phenol and electrochemical detection of H2O2 and Salmonella spp. Materials Chemistry and Physics 2019;232:493-505. [DOI: 10.1016/j.matchemphys.2018.12.025] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
|
764 |
Pleiko K, Saulite L, Parfejevs V, Miculis K, Vjaters E, Riekstina U. Differential binding cell-SELEX method to identify cell-specific aptamers using high-throughput sequencing. Sci Rep 2019;9:8142. [PMID: 31148584 DOI: 10.1038/s41598-019-44654-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
765 |
Breuers S, Bryant LL, Legen T, Mayer G. Robotic assisted generation of 2'-deoxy-2'-fluoro-modifed RNA aptamers - High performance enabling strategies in aptamer selection. Methods 2019;161:3-9. [PMID: 31152781 DOI: 10.1016/j.ymeth.2019.05.022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
766 |
Fechter P, Cruz Da Silva E, Mercier MC, Noulet F, Etienne-Seloum N, Guenot D, Lehmann M, Vauchelles R, Martin S, Lelong-Rebel I, Ray AM, Seguin C, Dontenwill M, Choulier L. RNA Aptamers Targeting Integrin α5β1 as Probes for Cyto- and Histofluorescence in Glioblastoma. Mol Ther Nucleic Acids 2019;17:63-77. [PMID: 31226519 DOI: 10.1016/j.omtn.2019.05.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
|
767 |
Jiang Y, Wu J. Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 2019;40:2084-97. [PMID: 31081120 DOI: 10.1002/elps.201900066] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
|
768 |
Ossipov DA. Hyaluronan-based delivery of therapeutic oligonucleotides for treatment of human diseases. Expert Opin Drug Deliv 2019;16:621-37. [PMID: 31072142 DOI: 10.1080/17425247.2019.1617693] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
769 |
Chen K, Fu T, Sun W, Huang Q, Zhang P, Zhao Z, Zhang X, Tan W. DNA-supramolecule conjugates in theranostics. Theranostics 2019;9:3262-79. [PMID: 31244953 DOI: 10.7150/thno.31885] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
|
770 |
Moss KH, Popova P, Hadrup SR, Astakhova K, Taskova M. Lipid Nanoparticles for Delivery of Therapeutic RNA Oligonucleotides. Mol Pharm 2019;16:2265-77. [PMID: 31063396 DOI: 10.1021/acs.molpharmaceut.8b01290] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 12.3] [Reference Citation Analysis]
|
771 |
Chan HN, Xu D, Ho SL, He D, Wong MS, Li HW. Highly sensitive quantification of Alzheimer's disease biomarkers by aptamer-assisted amplification. Theranostics 2019;9:2939-49. [PMID: 31244934 DOI: 10.7150/thno.29232] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
|
772 |
Mbarek A, Moussa G, Chain JL. Pharmaceutical Applications of Molecular Tweezers, Clefts and Clips. Molecules 2019;24:E1803. [PMID: 31075983 DOI: 10.3390/molecules24091803] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
|
773 |
Wang C, Tan R, Li J, Zhang Z. Double Magnetic Separation-assisted Fluorescence Method for Sensitive Detection of Ochratoxin A. Chem Res Chin Univ 2019;35:382-9. [DOI: 10.1007/s40242-019-8322-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
|
774 |
Lee J, Oh J, Lee E, Kim Y, Lee M. Conjugation of prostate cancer-specific aptamers to polyethylene glycol-grafted polyethylenimine for enhanced gene delivery to prostate cancer cells. Journal of Industrial and Engineering Chemistry 2019;73:182-91. [DOI: 10.1016/j.jiec.2019.01.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
775 |
Díaz-Amaya S, Zhao M, Lin LK, Ostos C, Allebach JP, Chiu GT, Deering AJ, Stanciu LA. Inkjet Printed Nanopatterned Aptamer-Based Sensors for Improved Optical Detection of Foodborne Pathogens. Small 2019;15:e1805342. [PMID: 31033156 DOI: 10.1002/smll.201805342] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
|
776 |
Chernikov IV, Vlassov VV, Chernolovskaya EL. Current Development of siRNA Bioconjugates: From Research to the Clinic. Front Pharmacol 2019;10:444. [PMID: 31105570 DOI: 10.3389/fphar.2019.00444] [Cited by in Crossref: 95] [Cited by in F6Publishing: 99] [Article Influence: 23.8] [Reference Citation Analysis]
|
777 |
Doerflinger A, Quang NN, Gravel E, Ducongé F, Doris E. Aptamer-decorated polydiacetylene micelles with improved targeting of cancer cells. Int J Pharm 2019;565:59-63. [PMID: 31029658 DOI: 10.1016/j.ijpharm.2019.04.071] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
|
778 |
Poiroux G, Barre A, Rougé P, Benoist H. Targeting Glycosylation Aberrations to Improve the Efficiency of Cancer Phototherapy. CCDT 2019;19:349-59. [DOI: 10.2174/1568009618666180628101059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
779 |
Park EJ, Choi J, Lee KC, Na DH. Emerging PEGylated non-biologic drugs. Expert Opin Emerg Drugs 2019;24:107-19. [PMID: 30957581 DOI: 10.1080/14728214.2019.1604684] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
|
780 |
Lin Y, Jiang L, Huang Y, Yang Y, He Y, Lu C, Yang H. DNA-mediated reversible capture and release of circulating tumor cells with a multivalent dual-specific aptamer coating network. Chem Commun (Camb) 2019;55:5387-90. [PMID: 30997454 DOI: 10.1039/c9cc02365h] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
|
781 |
Wakui K, Yoshitomi T, Yamaguchi A, Tsuchida M, Saito S, Shibukawa M, Furusho H, Yoshimoto K. Rapidly Neutralizable and Highly Anticoagulant Thrombin-Binding DNA Aptamer Discovered by MACE SELEX. Mol Ther Nucleic Acids 2019;16:348-59. [PMID: 30986696 DOI: 10.1016/j.omtn.2019.03.002] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
|
782 |
Civit L, Theodorou I, Frey F, Weber H, Lingnau A, Gröber C, Blank M, Dambrune C, Stunden J, Beyer M, Schultze J, Latz E, Ducongé F, Kubbutat MHG, Mayer G. Targeting hormone refractory prostate cancer by in vivo selected DNA libraries in an orthotopic xenograft mouse model. Sci Rep 2019;9:4976. [PMID: 30899039 DOI: 10.1038/s41598-019-41460-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
|
783 |
Flamme M, McKenzie LK, Sarac I, Hollenstein M. Chemical methods for the modification of RNA. Methods 2019;161:64-82. [PMID: 30905751 DOI: 10.1016/j.ymeth.2019.03.018] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 11.3] [Reference Citation Analysis]
|
784 |
Vahed M, Ahmadian G, Ameri N, Vahed M. G-rich VEGF aptamer as a potential inhibitor of chitin trafficking signal in emerging opportunistic yeast infection. Comput Biol Chem 2019;80:168-76. [PMID: 30965174 DOI: 10.1016/j.compbiolchem.2019.03.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
|
785 |
Wilbanks B, Smestad J, Heider RM, Warrington AE, Rodriguez M, Maher LJ 3rd. Optimization of a 40-mer Antimyelin DNA Aptamer Identifies a 20-mer with Enhanced Properties for Potential Multiple Sclerosis Therapy. Nucleic Acid Ther 2019;29:126-35. [PMID: 30855209 DOI: 10.1089/nat.2018.0776] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
786 |
Sun Y, Yuan B, Deng M, Wang Q, Huang J, Guo Q, Liu J, Yang X, Wang K. A light-up fluorescence assay for tumor cell detection based on bifunctional split aptamers. Analyst 2018;143:3579-85. [PMID: 29999048 DOI: 10.1039/c8an01008k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
787 |
Zhang Y, Lai BS, Juhas M. Recent Advances in Aptamer Discovery and Applications. Molecules. 2019;24:pii: E941. [PMID: 30866536 DOI: 10.3390/molecules24050941] [Cited by in Crossref: 261] [Cited by in F6Publishing: 267] [Article Influence: 65.3] [Reference Citation Analysis]
|
788 |
Ueki R, Atsuta S, Ueki A, Hoshiyama J, Li J, Hayashi Y, Sando S. DNA aptamer assemblies as fibroblast growth factor mimics and their application in stem cell culture. Chem Commun (Camb) 2019;55:2672-5. [PMID: 30746545 DOI: 10.1039/c8cc08080a] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 7.5] [Reference Citation Analysis]
|
789 |
Wang L, Wang C, Li H. Selection of DNA aptamers and establishment of an effective aptasensor for highly sensitive detection of cefquinome residues in milk. Analyst. 2018;143:3202-3208. [PMID: 29872833 DOI: 10.1039/c8an00709h] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
|
790 |
Beiderman M, Motiei M, Popovtzer R, Fixler D. Development of local surface plasmon resonance sensor using gold nanoparticles. Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI 2019. [DOI: 10.1117/12.2509667] [Reference Citation Analysis]
|
791 |
Zhang J, Lan T, Lu Y. Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications. Adv Healthc Mater 2019;8:e1801158. [PMID: 30725526 DOI: 10.1002/adhm.201801158] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 9.5] [Reference Citation Analysis]
|
792 |
Lai WY, Wang JW, Huang BT, Lin EP, Yang PC. A Novel TNF-α-Targeting Aptamer for TNF-α-Mediated Acute Lung Injury and Acute Liver Failure. Theranostics 2019;9:1741-51. [PMID: 31037135 DOI: 10.7150/thno.30972] [Cited by in Crossref: 48] [Cited by in F6Publishing: 56] [Article Influence: 12.0] [Reference Citation Analysis]
|
793 |
Andrade H, Lin W, Zhang Y. Specificity from nonspecific interaction: regulation of tumor necrosis factor-α activity by DNA. J Biol Chem 2019;294:6397-404. [PMID: 30814250 DOI: 10.1074/jbc.RA119.007586] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
|
794 |
Han Z, Tang Y, Ren H, Liu K, Xu L. DNA Quadruplex-Based Inhibitor With Flexible Fragments at the 3' Terminal Shows Enhanced Anti-HIV-1 Fusion Activity. J Pharm Sci 2019;108:2243-6. [PMID: 30797782 DOI: 10.1016/j.xphs.2019.02.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
795 |
Derszniak K, Przyborowski K, Matyjaszczyk K, Moorlag M, de Laat B, Nowakowska M, Chlopicki S. Comparison of Effects of Anti-thrombin Aptamers HD1 and HD22 on Aggregation of Human Platelets, Thrombin Generation, Fibrin Formation, and Thrombus Formation Under Flow Conditions. Front Pharmacol 2019;10:68. [PMID: 30842734 DOI: 10.3389/fphar.2019.00068] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
|
796 |
Kim J, Park W, Kim D, Lee ES, Lee DH, Jeong S, Park JM, Na K. Tumor‐Specific Aptamer‐Conjugated Polymeric Photosensitizer for Effective Endo‐Laparoscopic Photodynamic Therapy. Adv Funct Mater 2019;29:1900084. [DOI: 10.1002/adfm.201900084] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
|
797 |
Endoh T, Ohyama T, Sugimoto N. RNA-Capturing Microsphere Particles (R-CAMPs) for Optimization of Functional Aptamers. Small 2019;15:e1805062. [PMID: 30773785 DOI: 10.1002/smll.201805062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
798 |
Ramishetti S, Peer D. Engineering lymphocytes with RNAi. Adv Drug Deliv Rev 2019;141:55-66. [PMID: 30529305 DOI: 10.1016/j.addr.2018.12.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
|
799 |
Zon G. Aptamers and Clinical Applications. Advances in Nucleic Acid Therapeutics 2019. [DOI: 10.1039/9781788015714-00367] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
800 |
Yang L, Ding P, Luo Y, Wang J, Lv H, Li W, Cao Y, Pei R. Exploration of Catalytic Nucleic Acids on Porphyrin Metalation and Peroxidase Activity by in Vitro Selection of Aptamers for N-Methyl Mesoporphyrin IX. ACS Comb Sci 2019;21:83-9. [PMID: 30602113 DOI: 10.1021/acscombsci.8b00129] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
|