BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang Y, Ao H, Wang Y, Lin W, Yang S, Zhang S, Yu Z, Tang T. Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Res 2016;4:16027. [PMID: 27672479 DOI: 10.1038/boneres.2016.27] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 del Olmo R, Czerwiński M, Santos-coquillat A, Dubey V, Dhoble SJ, Michalska-domańska M. Nano-scale Surface Modification of Dental Implants: Fabrication. Surface Modification of Titanium Dental Implants 2023. [DOI: 10.1007/978-3-031-21565-0_4] [Reference Citation Analysis]
2 Yu J, Zhou M, Zhang L, Wei H. Antibacterial Adhesion Strategy for Dental Titanium Implant Surfaces: From Mechanisms to Application. JFB 2022;13:169. [DOI: 10.3390/jfb13040169] [Reference Citation Analysis]
3 Zhao Y, Zhao S, Ma Z, Ding C, Chen J, Li J. Chitosan-Based Scaffolds for Facilitated Endogenous Bone Re-Generation. Pharmaceuticals (Basel) 2022;15:1023. [PMID: 36015171 DOI: 10.3390/ph15081023] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Murugan E, Akshata CR, Ilangovan R, Mohan M. Evaluation of quaternization effect on chitosan-HAP composite for bone tissue engineering application. Colloids Surf B Biointerfaces 2022;218:112767. [PMID: 36007314 DOI: 10.1016/j.colsurfb.2022.112767] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 He R, Sui J, Wang G, Wang Y, Xu K, Qin S, Xu S, Ji F, Zhang H. Polydopamine and hyaluronic acid immobilisation on vancomycin-loaded titanium nanotube for prophylaxis of implant infections. Colloids Surf B Biointerfaces 2022;216:112582. [PMID: 35617877 DOI: 10.1016/j.colsurfb.2022.112582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Zhou C, Yang Z, Xun X, Ma L, Chen Z, Hu X, Wu X, Wan Y, Ao H. De novo strategy with engineering a multifunctional bacterial cellulose-based dressing for rapid healing of infected wounds. Bioactive Materials 2022;13:212-22. [DOI: 10.1016/j.bioactmat.2021.10.043] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
7 Rahimi M, Mir SM, Baghban R, Charmi G, Plummer CM, Shafiei-Irannejad V, Soleymani J, Pietrasik J. Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022;215:346-67. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Tian M, Cai S, Ling L, Zuo Y, Wang Z, Liu P, Bao X, Xu G. Superhydrophilic hydroxyapatite/hydroxypropyltrimethyl ammonium chloride chitosan composite coating for enhancing the antibacterial and corrosion resistance of magnesium alloy. Progress in Organic Coatings 2022;165:106745. [DOI: 10.1016/j.porgcoat.2022.106745] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Wang L, Chen B, Ji M, Guo D, He X, Lashari NUR, Fu C, Zheng J. Development and properties of UV ‐cured poly (propylene fumarate)/hydroxyapatite composites coatings as potential application for bone adhesive tape. J of Applied Polymer Sci. [DOI: 10.1002/app.52289] [Reference Citation Analysis]
10 Hayashi K, Shimabukuro M, Ishikawa K. Antibacterial Honeycomb Scaffolds for Achieving Infection Prevention and Bone Regeneration. ACS Appl Mater Interfaces 2022;14:3762-72. [PMID: 35020349 DOI: 10.1021/acsami.1c20204] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
11 Costa RC, Nagay BE, Bertolini M, Costa-Oliveira BE, Sampaio AA, Retamal-Valdes B, Shibli JA, Feres M, Barão VAR, Souza JGS. Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci 2021;298:102551. [PMID: 34757285 DOI: 10.1016/j.cis.2021.102551] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
12 Hu Y, Zhou W, Zhu C, Zhou Y, Guo Q, Huang X, Yang B, Ren B, Cheng L. The Synergistic Effect of Nicotine and Staphylococcus aureus on Peri-Implant Infections. Front Bioeng Biotechnol 2021;9:658380. [PMID: 34589469 DOI: 10.3389/fbioe.2021.658380] [Reference Citation Analysis]
13 Pathak K, Misra SK, Sehgal A, Singh S, Bungau S, Najda A, Gruszecki R, Behl T. Biomedical Applications of Quaternized Chitosan. Polymers (Basel) 2021;13:2514. [PMID: 34372116 DOI: 10.3390/polym13152514] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
14 Kodama J, Chen H, Zhou T, Kushioka J, Okada R, Tsukazaki H, Tateiwa D, Nakagawa S, Ukon Y, Bal Z, Tian H, Zhao J, Kaito T. Antibacterial efficacy of quaternized chitosan coating on 3D printed titanium cage in rat intervertebral disc space. Spine J 2021;21:1217-28. [PMID: 33621666 DOI: 10.1016/j.spinee.2021.02.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Huang X, Ge Y, Yang B, Han Q, Zhou W, Liang J, Li M, Peng X, Ren B, Yang B, Weir MD, Guo Q, Wang H, Zhou X, Lu X, Oates TW, Xu HHK, Deng D, Zhou X, Cheng L. Novel dental implant modifications with two-staged double benefits for preventing infection and promoting osseointegration in vivo and in vitro. Bioact Mater 2021;6:4568-79. [PMID: 34095616 DOI: 10.1016/j.bioactmat.2021.04.041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Huang C, Liu Y, Ding J, Dai Y, Le L, Wang L, Ding E, Yang J. Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model. Cell Tissue Res 2021;385:65-85. [PMID: 33760948 DOI: 10.1007/s00441-021-03430-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
17 Ding M, Zhang T, Sun C, Zhang H, Zhang Y. A Chitosanase mutant from Streptomyces sp. N174 prefers to produce functional chitopentasaccharide. International Journal of Biological Macromolecules 2020;151:1091-8. [DOI: 10.1016/j.ijbiomac.2019.10.151] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
18 Zhou W, Peng X, Ma Y, Hu Y, Wu Y, Lan F, Weir MD, Li M, Ren B, Oates TW, Xu HHK, Zhou X, Cheng L. Two-staged time-dependent materials for the prevention of implant-related infections. Acta Biomater 2020;101:128-40. [PMID: 31629895 DOI: 10.1016/j.actbio.2019.10.023] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
19 Yang Y, Liu L, Luo H, Zhang D, Lei S, Zhou K. Dual-Purpose Magnesium-Incorporated Titanium Nanotubes for Combating Bacterial Infection and Ameliorating Osteolysis to Realize Better Osseointegration. ACS Biomater Sci Eng 2019;5:5368-83. [DOI: 10.1021/acsbiomaterials.9b00938] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
20 Wang D, Liu Y, Liu Y, Yan L, Zaat SAJ, Wismeijer D, Pathak JL, Wu G. A dual functional bone-defect-filling material with sequential antibacterial and osteoinductive properties for infected bone defect repair. J Biomed Mater Res A 2019;107:2360-70. [PMID: 31173657 DOI: 10.1002/jbm.a.36744] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
21 Lin X, Ge J, Wei D, Liu C, Tan L, Yang H, Yang K, Zhou H, Li B, Luo ZP, Yang L. Surface degradation-enabled osseointegrative, angiogenic and antiinfective properties of magnesium-modified acrylic bone cement. J Orthop Translat 2019;17:121-32. [PMID: 31194022 DOI: 10.1016/j.jot.2019.04.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
22 Heidari Khoee M, Khoee S, Lotfi M. Synthesis of titanium dioxide nanotubes with liposomal covers for carrying and extended release of 5-FU as anticancer drug in the treatment of HeLa cells. Analytical Biochemistry 2019;572:16-24. [DOI: 10.1016/j.ab.2019.02.027] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
23 Yang BC, Zhou XD, Yu HY, Wu Y, Bao CY, Man Y, Cheng L, Sun Y. [Advances in titanium dental implant surface modification]. Hua Xi Kou Qiang Yi Xue Za Zhi 2019;37:124-9. [PMID: 31168977 DOI: 10.7518/hxkq.2019.02.002] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
24 Maher S, Mazinani A, Barati MR, Losic D. Engineered titanium implants for localized drug delivery: recent advances and perspectives of Titania nanotubes arrays. Expert Opin Drug Deliv 2018;15:1021-37. [PMID: 30259776 DOI: 10.1080/17425247.2018.1517743] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
25 Ao H, Yang S, Nie B, Fan Q, Zhang Q, Zong J, Guo S, Zheng X, Tang T. Improved antibacterial properties of collagen I/hyaluronic acid/quaternized chitosan multilayer modified titanium coatings with both contact-killing and release-killing functions. J Mater Chem B 2019;7:1951-61. [DOI: 10.1039/c8tb02425a] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 9.5] [Reference Citation Analysis]
26 Zhang S, Xing M, Li B. Capsule-Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS Appl Mater Interfaces 2018;10:44267-78. [PMID: 30511568 DOI: 10.1021/acsami.8b17264] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
27 Li M, Yang Y. Quaternized chitosan promotes the antiproliferative effect of vemurafenib in melanoma cells by increasing cell permeability. Onco Targets Ther 2018;11:8293-9. [PMID: 30538498 DOI: 10.2147/OTT.S183311] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
28 Gan D, Xu T, Xing W, Ge X, Fang L, Wang K, Ren F, Lu X. Mussel-Inspired Contact-Active Antibacterial Hydrogel with High Cell Affinity, Toughness, and Recoverability. Adv Funct Mater 2019;29:1805964. [DOI: 10.1002/adfm.201805964] [Cited by in Crossref: 218] [Cited by in F6Publishing: 221] [Article Influence: 43.6] [Reference Citation Analysis]
29 Chu L, Yang Y, Yang S, Fan Q, Yu Z, Hu XL, James TD, He XP, Tang T. Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Front Microbiol 2018;9:2219. [PMID: 30333796 DOI: 10.3389/fmicb.2018.02219] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
30 Yang Y, Chu L, Yang S, Zhang H, Qin L, Guillaume O, Eglin D, Richards RG, Tang T. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Acta Biomater 2018;79:265-75. [PMID: 30125670 DOI: 10.1016/j.actbio.2018.08.015] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 17.0] [Reference Citation Analysis]
31 Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat 2019;17:42-54. [PMID: 31194031 DOI: 10.1016/j.jot.2018.09.001] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 13.4] [Reference Citation Analysis]
32 Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM. Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng 2018;9:2041731418789838. [PMID: 30083308 DOI: 10.1177/2041731418789838] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 14.8] [Reference Citation Analysis]
33 Mokhtari H, Ghasemi Z, Kharaziha M, Karimzadeh F, Alihosseini F. Chitosan-58S bioactive glass nanocomposite coatings on TiO2 nanotube: Structural and biological properties. Applied Surface Science 2018;441:138-49. [DOI: 10.1016/j.apsusc.2018.01.314] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 9.8] [Reference Citation Analysis]
34 Li Y, Guo Y, Ge J, Ma PX, Lei B. In situ silica nanoparticles-reinforced biodegradable poly(citrate-siloxane) hybrid elastomers with multifunctional properties for simultaneous bioimaging and bone tissue regeneration. Applied Materials Today 2018;10:153-63. [DOI: 10.1016/j.apmt.2017.11.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 6.4] [Reference Citation Analysis]
35 Anirudhan TS, Nair SS, Sasidharan AV. Methacrylate-Stitched β-Cyclodextrin Embedded with Nanogold/Nanotitania: A Skin Adhesive Device for Enhanced Transdermal Drug Delivery. ACS Appl Mater Interfaces 2017;9:44377-91. [DOI: 10.1021/acsami.7b16686] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
36 Yang S, Han X, Jia Y, Zhang H, Tang T. Hydroxypropyltrimethyl Ammonium Chloride Chitosan Functionalized-PLGA Electrospun Fibrous Membranes as Antibacterial Wound Dressing: In Vitro and In Vivo Evaluation. Polymers (Basel) 2017;9:E697. [PMID: 30965998 DOI: 10.3390/polym9120697] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
37 Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Sadasivuni KK, Kumar SS. The synthesis, characterization and in vivo study of mineral substituted hydroxyapatite for prospective bone tissue rejuvenation applications. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:2661-9. [DOI: 10.1016/j.nano.2017.07.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
38 Zhang L, Zhou Q, Song W, Wu K, Zhang Y, Zhao Y. Dual-Functionalized Graphene Oxide Based siRNA Delivery System for Implant Surface Biomodification with Enhanced Osteogenesis. ACS Appl Mater Interfaces 2017;9:34722-35. [DOI: 10.1021/acsami.7b12079] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.7] [Reference Citation Analysis]
39 Ma Q, Liao J, Tian T, Zhang Q, Cai X. A potential flower-like coating consisting of calcium-phosphate nanosheets on titanium surface. Chinese Chemical Letters 2017;28:1893-6. [DOI: 10.1016/j.cclet.2017.07.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
40 Oliveira WF, Arruda IRS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2017;81:597-606. [PMID: 28888015 DOI: 10.1016/j.msec.2017.08.017] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 9.5] [Reference Citation Analysis]
41 Bariana M, Dwivedi P, Ranjitkar S, Kaidonis JA, Losic D, Anderson PJ. Glypican-based drug releasing titania implants to regulate BMP2 bioactivity as a potential approach for craniosynostosis therapy. Nanomedicine 2018;14:2365-74. [PMID: 28648641 DOI: 10.1016/j.nano.2017.06.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
42 Cotrut C, Parau A, Gherghilescu A, Titorencu I, Pana I, Cojocaru D, Pruna V, Constantin L, Dan I, Vranceanu D, Vladescu A. Mechanical, In Vitro Corrosion Resistance and Biological Compatibility of Cast and Annealed Ti25Nb10Zr Alloy. Metals 2017;7:86. [DOI: 10.3390/met7030086] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]