BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen KJ, Chaung EY, Wey SP, Lin KJ, Cheng F, Lin CC, Liu HL, Tseng HW, Liu CP, Wei MC, Liu CM, Sung HW. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS Nano 2014;8:5105-15. [PMID: 24742221 DOI: 10.1021/nn501162x] [Cited by in Crossref: 132] [Cited by in F6Publishing: 140] [Article Influence: 14.7] [Reference Citation Analysis]
Number Citing Articles
1 Du F, Guo R, Feng Z, Wang Z, Xiang X, Zhu B, Rodriguez RD, Qiu L. Precision gas therapy by ultrasound‐triggered for anticancer therapeutics. MedComm – Oncology 2023;2. [DOI: 10.1002/mog2.27] [Reference Citation Analysis]
2 Bariana M, Zhang B, Sun J, Wang W, Wang J, Cassella E, Myint F, Anuncio SA, Ouk S, Liou HC, Tan M, Wang H, Zakrzewski JL. Targeted Lymphoma Therapy Using a Gold Nanoframework-Based Drug Delivery System. ACS Appl Mater Interfaces 2023;15:6312-25. [PMID: 36701696 DOI: 10.1021/acsami.2c17214] [Reference Citation Analysis]
3 Rana A, Adhikary M, Singh PK, Das BC, Bhatnagar S. "Smart" drug delivery: A window to future of translational medicine. Front Chem 2022;10:1095598. [PMID: 36688039 DOI: 10.3389/fchem.2022.1095598] [Reference Citation Analysis]
4 Liao J, Qian Y, Sun Z, Wang J, Zhang Q, Zheng Q, Wei S, Liu N, Yang H. In Vitro Binding and Release Mechanisms of Doxorubicin from Nanoclays. J Phys Chem Lett 2022;:8429-35. [PMID: 36053048 DOI: 10.1021/acs.jpclett.2c02272] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Advances in Colloid and Interface Science 2022. [DOI: 10.1016/j.cis.2022.102757] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Natalia Krasteva, Milena Georgieva. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022;14:1213. [PMID: 35745786 DOI: 10.3390/pharmaceutics14061213] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
7 Rather AM, Xu Y, Chang Y, Dupont RL, Borbora A, Kara UI, Fang JC, Mamtani R, Zhang M, Yao Y, Adera S, Bao X, Manna U, Wang X. Stimuli-Responsive Liquid-Crystal-Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. Adv Mater 2022;34:e2110085. [PMID: 35089623 DOI: 10.1002/adma.202110085] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang R, Liu P, Yu X, Sun X, Lai H, Cheng Z. Electrically Induced Underwater Superaerophilicity/Superaerophobicity Switching on Polypyrrole-Coated Mesh Films for Selective Bubble Permeation. Chempluschem 2022;87:e202100491. [PMID: 35023641 DOI: 10.1002/cplu.202100491] [Reference Citation Analysis]
9 Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound‐controlled drug release and drug activation for cancer therapy. Exploration 2021;1:20210023. [DOI: 10.1002/exp.20210023] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
10 Liu W, Miao W, Li Y, He D, Tang Y, Guan X, Li C, Wu F, Tang J, Wang S. Hybridized double-shell periodic mesoporous organosilica nanotheranostics for ultrasound imaging guided photothermal therapy. J Colloid Interface Sci 2021:S0021-9797(21)01904-4. [PMID: 34799047 DOI: 10.1016/j.jcis.2021.11.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
11 Sun H, Ma W, Duan S, Huang J, Jia R, Cheng H, Chen B, He X, Wang K. An endogenous stimulus detonated nanocluster-bomb for contrast-enhanced cancer imaging and combination therapy. Chem Sci 2021;12:12118-29. [PMID: 34667577 DOI: 10.1039/d1sc03847h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
12 Lu TY, Lu WF, Wang YH, Liao MY, Wei Y, Fan YJ, Chuang EY, Yu J. Keratin-Based Nanoparticles with Tumor-Targeting and Cascade Catalytic Capabilities for the Combinational Oxidation Phototherapy of Breast Cancer. ACS Appl Mater Interfaces 2021;13:38074-89. [PMID: 34351754 DOI: 10.1021/acsami.1c10160] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
13 Day NB, Wixson WC, Shields CW 4th. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021;11:2172-96. [PMID: 34522583 DOI: 10.1016/j.apsb.2021.03.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
14 Du Q, Lv F, Huang J, Tang X, Zhao Z, Chen J. A multiple environment-sensitive prodrug nanomicelle strategy based on chitosan graftomer for enhanced tumor therapy of gambogic acid. Carbohydr Polym 2021;267:118229. [PMID: 34119182 DOI: 10.1016/j.carbpol.2021.118229] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. Nano Today 2021;38:101146. [PMID: 33897805 DOI: 10.1016/j.nantod.2021.101146] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
16 Datta B, Paul D, Pal U, Rakshit T. Intriguing Biomedical Applications of Synthetic and Natural Cell-Derived Vesicles: A Comparative Overview. ACS Appl Bio Mater 2021;4:2863-85. [PMID: 35014382 DOI: 10.1021/acsabm.0c01480] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021;11:6370-92. [PMID: 33995663 DOI: 10.7150/thno.57828] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
18 Zhu Y, Marin LM, Xiao Y, Gillies ER, Siqueira WL. pH-Sensitive Chitosan Nanoparticles for Salivary Protein Delivery. Nanomaterials (Basel) 2021;11:1028. [PMID: 33920657 DOI: 10.3390/nano11041028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
19 Lee H, Kim MA, Lee C. Near-Infrared Laser-Responsive Photothermal Bubble-Generating PLA Nanoparticles for Controlled Drug Release. Macromol Res 2021;29:224-9. [DOI: 10.1007/s13233-021-9026-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomaterials (Basel) 2021;11:746. [PMID: 33809633 DOI: 10.3390/nano11030746] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
21 Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, Jabar A, Khan S, Elhissi A, Hussain Z, Aziz HC, Sohail M, Khan M, Thu HE. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers (Basel) 2021;13:670. [PMID: 33562376 DOI: 10.3390/cancers13040670] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
22 Chen T, Jiang Y, Wang C, Cai Z, Chen H, Zhu J, Tao P, Wu M. The pH-triggered drug release and simultaneous carrier decomposition of effervescent SiO2-drug-Na2CO3 composite nanoparticles: to improve the antitumor activity of hydrophobic drugs. RSC Adv 2021;11:5335-47. [PMID: 35423073 DOI: 10.1039/d0ra07896d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Sheng D, Deng L, Li P, Wang Z, Zhang Q. Perfluorocarbon Nanodroplets with Deep Tumor Penetration and Controlled Drug Delivery for Ultrasound/Fluorescence Imaging Guided Breast Cancer Therapy. ACS Biomater Sci Eng 2021;7:605-16. [DOI: 10.1021/acsbiomaterials.0c01333] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
24 Xiao D, Zhou R. Application of Nano Drug Delivery Systems in Inhibition of Tumors and Cancer Stem Cells. Advances in Nanomaterials-based Cell Biology Research 2021. [DOI: 10.1007/978-981-16-2666-1_4] [Reference Citation Analysis]
25 Juszkiewicz K, Sikorski AF, Czogalla A. Building Blocks to Design Liposomal Delivery Systems. Int J Mol Sci 2020;21:E9559. [PMID: 33334048 DOI: 10.3390/ijms21249559] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
26 Yang M, Zhang N, Zhang T, Yin X, Shen J. Fabrication of doxorubicin-gated mesoporous polydopamine nanoplatforms for multimode imaging-guided synergistic chemophotothermal therapy of tumors. Drug Deliv 2020;27:367-77. [PMID: 32091284 DOI: 10.1080/10717544.2020.1730523] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
27 Zhang Z, Zhang L, Huang C, Guo Q, Zuo Y, Wang N, Jin X, Zhang L, Zhu D. Gas-generating mesoporous silica nanoparticles with rapid localized drug release for enhanced chemophotothermal tumor therapy. Biomater Sci 2020;8:6754-63. [PMID: 33140761 DOI: 10.1039/d0bm01502d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
28 Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020;49:9057-94. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 19.3] [Reference Citation Analysis]
29 Benyettou F, Das G, Nair AR, Prakasam T, Shinde DB, Sharma SK, Whelan J, Lalatonne Y, Traboulsi H, Pasricha R, Abdullah O, Jagannathan R, Lai Z, Motte L, Gándara F, Sadler KC, Trabolsi A. Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. J Am Chem Soc 2020;142:18782-94. [PMID: 33090806 DOI: 10.1021/jacs.0c05381] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 14.7] [Reference Citation Analysis]
30 Hao Q, Wang Z, Zhao W, Wen L, Wang W, Lu S, Xing D, Zhan M, Hu X. Dual-Responsive Polyprodrug Nanoparticles with Cascade-Enhanced Magnetic Resonance Signals for Deep-Penetration Drug Release in Tumor Therapy. ACS Appl Mater Interfaces 2020;12:49489-501. [PMID: 33079514 DOI: 10.1021/acsami.0c16110] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
31 Lin X, Wang Q, Gu C, Li M, Chen K, Chen P, Tang Z, Liu X, Pan H, Liu Z, Tang R, Fan S. Smart Nanosacrificial Layer on the Bone Surface Prevents Osteoporosis through Acid-Base Neutralization Regulated Biocascade Effects. J Am Chem Soc 2020;142:17543-56. [PMID: 32960592 DOI: 10.1021/jacs.0c07309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
32 Zhang H, Xie M, Chen H, Bavi S, Sohail M, Bavi R. Gas-mediated cancer therapy. Environ Chem Lett 2021;19:149-66. [DOI: 10.1007/s10311-020-01062-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
33 He H, Du L, Guo H, An Y, Lu L, Chen Y, Wang Y, Zhong H, Shen J, Wu J, Shuai X. Redox Responsive Metal Organic Framework Nanoparticles Induces Ferroptosis for Cancer Therapy. Small 2020;16:2001251. [DOI: 10.1002/smll.202001251] [Cited by in Crossref: 45] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
34 Zheng J, Li J, Huang Y, Wang S, Chen G, Xu L. Drop expansion driven by bubbling on microscale patterned substrates under low air pressure. Chemical Engineering Journal 2020;391:123547. [DOI: 10.1016/j.cej.2019.123547] [Reference Citation Analysis]
35 Liao H, Zeng Y, Liao S, Chu Y, Zhou Y, Wang Y. Three Birds with One Stone: Injectable CaC2 Nanobombs with Triple Effects for Minimally Invasive Tumor Chemical Ablation. ACS Appl Bio Mater 2020;3:3809-16. [PMID: 35025251 DOI: 10.1021/acsabm.0c00383] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Lin X, Song J, Chen X, Yang H. Ultraschallaktivierte Sensibilisatoren. Angew Chem 2020;132:14316-38. [DOI: 10.1002/ange.201906823] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
37 Lin X, Song J, Chen X, Yang H. Ultrasound-Activated Sensitizers and Applications. Angew Chem Int Ed Engl 2020;59:14212-33. [PMID: 31267634 DOI: 10.1002/anie.201906823] [Cited by in Crossref: 116] [Cited by in F6Publishing: 121] [Article Influence: 38.7] [Reference Citation Analysis]
38 Xiao D, Zhou R. Advances in the Application of Liposomal Nanosystems in Anticancer Therapy. Curr Stem Cell Res Ther 2021;16:14-22. [PMID: 32324519 DOI: 10.2174/1574888X15666200423093906] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
39 Wang J, Sun J, Wang Y, Chou T, Zhang Q, Zhang B, Ren L, Wang H. Gold Nanoframeworks with Mesopores for Raman-Photoacoustic Imaging and Photo-Chemo Tumor Therapy in the Second Near-Infrared Biowindow. Adv Funct Mater 2020;30:1908825. [PMID: 34163312 DOI: 10.1002/adfm.201908825] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 14.3] [Reference Citation Analysis]
40 Ning Y, Zhang D, Ben S, Zhao Z, Zha J, Tian D, Liu K, Jiang L. An Innovative Design by Single‐Layer Superaerophobic Mesh: Continuous Underwater Bubble Antibuoyancy Collection and Transportation. Adv Funct Mater 2020;30:1907027. [DOI: 10.1002/adfm.201907027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
41 Chen L, Zhou SF, Su L, Song J. Gas-Mediated Cancer Bioimaging and Therapy. ACS Nano 2019;13:10887-917. [PMID: 31538764 DOI: 10.1021/acsnano.9b04954] [Cited by in Crossref: 114] [Cited by in F6Publishing: 128] [Article Influence: 28.5] [Reference Citation Analysis]
42 Sun S, Sun S, Sun Y, Wang P, Zhang J, Du W, Wang S, Liang X. Bubble-Manipulated Local Drug Release from a Smart Thermosensitive Cerasome for Dual-Mode Imaging Guided Tumor Chemo-Photothermal Therapy. Theranostics 2019;9:8138-54. [PMID: 31754386 DOI: 10.7150/thno.36762] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
43 Moosavian SA, Bianconi V, Pirro M, Sahebkar A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin Cancer Biol 2021;69:337-48. [PMID: 31585213 DOI: 10.1016/j.semcancer.2019.09.025] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
44 Le-deygen IM, Vlasova KY, Kutsenok EO, Usvaliev AD, Efremova MV, Zhigachev AO, Rudakovskaya PG, Golovin DY, Gribanovsky SL, Kudryashova EV, Majouga AG, Golovin YI, Kabanov AV, Klyachko NL. Magnetic nanorods for remote disruption of lipid membranes by non-heating low frequency magnetic field. Nanomedicine: Nanotechnology, Biology and Medicine 2019;21:102065. [DOI: 10.1016/j.nano.2019.102065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
45 Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019;95:91-111. [PMID: 31004844 DOI: 10.1016/j.actbio.2019.04.032] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
46 Matos AI, Carreira B, Peres C, Moura LI, Conniot J, Fourniols T, Scomparin A, Martínez-barriocanal Á, Arango D, Conde JP, Préat V, Satchi-fainaro R, Florindo HF. Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. Journal of Controlled Release 2019;307:108-38. [DOI: 10.1016/j.jconrel.2019.06.017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
47 Wu J, Williams GR, Niu S, Gao F, Tang R, Zhu LM. A Multifunctional Biodegradable Nanocomposite for Cancer Theranostics. Adv Sci (Weinh) 2019;6:1802001. [PMID: 31380200 DOI: 10.1002/advs.201802001] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 12.8] [Reference Citation Analysis]
48 Zhang Q, Zhang F, Li S, Liu R, Jin T, Dou Y, Zhou Z, Zhang J. A Multifunctional Nanotherapy for Targeted Treatment of Colon Cancer by Simultaneously Regulating Tumor Microenvironment. Theranostics 2019;9:3732-53. [PMID: 31281510 DOI: 10.7150/thno.34377] [Cited by in Crossref: 28] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
49 Wang H, Han X, Dong Z, Xu J, Wang J, Liu Z. Hyaluronidase with pH‐responsive Dextran Modification as an Adjuvant Nanomedicine for Enhanced Photodynamic‐Immunotherapy of Cancer. Adv Funct Mater 2019;29:1902440. [DOI: 10.1002/adfm.201902440] [Cited by in Crossref: 110] [Cited by in F6Publishing: 113] [Article Influence: 27.5] [Reference Citation Analysis]
50 Sun L, Hou M, Zhang L, Qian D, Yang Q, Xu Z, Kang Y, Xue P. PEGylated mesoporous Bi2S3 nanostars loaded with chlorin e6 and doxorubicin for fluorescence/CT imaging-guided multimodal therapy of cancer. Nanomedicine: Nanotechnology, Biology and Medicine 2019;17:1-12. [DOI: 10.1016/j.nano.2018.12.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
51 Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019;143:134-60. [PMID: 31170428 DOI: 10.1016/j.addr.2019.05.012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 13.8] [Reference Citation Analysis]
52 Jose G, Lu Y, Chen H, Hsu H, Hung J, Anilkumar T, Chen J. Hyaluronic acid modified bubble-generating magnetic liposomes for targeted delivery of doxorubicin. Journal of Magnetism and Magnetic Materials 2019;474:355-64. [DOI: 10.1016/j.jmmm.2018.11.019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
53 Li Y, He D, Tu J, Wang R, Zu C, Chen Y, Yang W, Shi D, Webster TJ, Shen Y. The comparative effect of wrapping solid gold nanoparticles and hollow gold nanoparticles with doxorubicin-loaded thermosensitive liposomes for cancer thermo-chemotherapy. Nanoscale 2018;10:8628-41. [PMID: 29697100 DOI: 10.1039/c7nr09083h] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
54 Jiang Y. The Application of Nucleic Acid Amplification Strategies in Theranostics. Nucleic Acid Amplification Strategies for Biosensing, Bioimaging and Biomedicine 2019. [DOI: 10.1007/978-981-13-7044-1_14] [Reference Citation Analysis]
55 Lin X, Qiu Y, Song L, Chen S, Chen X, Huang G, Song J, Chen X, Yang H. Ultrasound activation of liposomes for enhanced ultrasound imaging and synergistic gas and sonodynamic cancer therapy. Nanoscale Horiz 2019;4:747-56. [DOI: 10.1039/c8nh00340h] [Cited by in Crossref: 62] [Cited by in F6Publishing: 64] [Article Influence: 15.5] [Reference Citation Analysis]
56 Li D, Zhang M, Yao J, Zhang Z. Rapid release from near-infrared polymer loaded liposomes for photothermal and chemo-combined therapy. New J Chem 2019;43:2274-2277. [DOI: 10.1039/c8nj04778b] [Reference Citation Analysis]
57 Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv Drug Deliv Rev 2019;138:259-75. [PMID: 30947810 DOI: 10.1016/j.addr.2018.10.012] [Cited by in Crossref: 103] [Cited by in F6Publishing: 105] [Article Influence: 25.8] [Reference Citation Analysis]
58 Le DL, Ferdinandus, Tnee CK, Vo Doan TT, Arai S, Suzuki M, Sou K, Sato H. Neurotransmitter-Loaded Nanocapsule Triggers On-Demand Muscle Relaxation in Living Organism. ACS Appl Mater Interfaces 2018;10:37812-9. [DOI: 10.1021/acsami.8b11079] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
59 Dalal M, Das A, Das D, Ningthoujam RS, Chakrabarti PK. Studies of magnetic, Mössbauer spectroscopy, microwave absorption and hyperthermia behavior of Ni-Zn-Co-ferrite nanoparticles encapsulated in multi-walled carbon nanotubes. Journal of Magnetism and Magnetic Materials 2018;460:12-27. [DOI: 10.1016/j.jmmm.2018.03.048] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
60 Zhu D, Fan F, Huang C, Zhang Z, Qin Y, Lu L, Wang H, Jin X, Zhao H, Yang H, Zhang C, Yang J, Liu Z, Sun H, Leng X, Kong D, Zhang L. Bubble-generating polymersomes loaded with both indocyanine green and doxorubicin for effective chemotherapy combined with photothermal therapy. Acta Biomater 2018;75:386-97. [PMID: 29793073 DOI: 10.1016/j.actbio.2018.05.033] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
61 Li M, Sun X, Zhang N, Wang W, Yang Y, Jia H, Liu W. NIR-Activated Polydopamine-Coated Carrier-Free "Nanobomb" for In Situ On-Demand Drug Release. Adv Sci (Weinh) 2018;5:1800155. [PMID: 30027047 DOI: 10.1002/advs.201800155] [Cited by in Crossref: 92] [Cited by in F6Publishing: 94] [Article Influence: 18.4] [Reference Citation Analysis]
62 Chen M, Song F, Feng M, Liu Y, Liu Y, Tian J, Lv F, Zhang Q. pH-sensitive charge-conversional and NIR responsive bubble-generating liposomal system for synergetic thermo-chemotherapy. Colloids and Surfaces B: Biointerfaces 2018;167:104-14. [DOI: 10.1016/j.colsurfb.2018.04.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
63 Pei C, Peng Y, Zhang Y, Tian D, Liu K, Jiang L. An Integrated Janus Mesh: Underwater Bubble Antibuoyancy Unidirectional Penetration. ACS Nano 2018;12:5489-94. [PMID: 29851457 DOI: 10.1021/acsnano.8b01001] [Cited by in Crossref: 67] [Cited by in F6Publishing: 69] [Article Influence: 13.4] [Reference Citation Analysis]
64 Abraham T, Mao M, Tan C. Engineering approaches of smart, bio-inspired vesicles for biomedical applications. Phys Biol 2018;15:061001. [DOI: 10.1088/1478-3975/aac7a2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
65 Zhang L, Cui H. HAase-sensitive dual-targeting irinotecan liposomes enhance the therapeutic efficacy of lung cancer in animals. Nanotheranostics 2018;2:280-94. [PMID: 29977740 DOI: 10.7150/ntno.25555] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
66 Lu N, Fan W, Yi X, Wang S, Wang Z, Tian R, Jacobson O, Liu Y, Yung BC, Zhang G, Teng Z, Yang K, Zhang M, Niu G, Lu G, Chen X. Biodegradable Hollow Mesoporous Organosilica Nanotheranostics for Mild Hyperthermia-Induced Bubble-Enhanced Oxygen-Sensitized Radiotherapy. ACS Nano 2018;12:1580-91. [PMID: 29384652 DOI: 10.1021/acsnano.7b08103] [Cited by in Crossref: 126] [Cited by in F6Publishing: 136] [Article Influence: 25.2] [Reference Citation Analysis]
67 Luo J, Wu X, Zhou F, Zhou Y, Huang T, Liu F, Han G, Chen L, Bai W, Wu X, Sun J, Yang X. Radiofrequency hyperthermia promotes the therapeutic effects on chemotherapeutic-resistant breast cancer when combined with heat shock protein promoter-controlled HSV-TK gene therapy: Toward imaging-guided interventional gene therapy. Oncotarget 2016;7:65042-51. [PMID: 27542255 DOI: 10.18632/oncotarget.11346] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
68 Li C, Zhang Y, Li Z, Mei E, Lin J, Li F, Chen C, Qing X, Hou L, Xiong L, Hao H, Yang Y, Huang P. Light-Responsive Biodegradable Nanorattles for Cancer Theranostics. Adv Mater 2018;30. [PMID: 29271515 DOI: 10.1002/adma.201706150] [Cited by in Crossref: 85] [Cited by in F6Publishing: 93] [Article Influence: 17.0] [Reference Citation Analysis]
69 Kang K, Ma J, Yi Q, Gu Z. Localized drug release and effective chemotherapy by hyperthermia-governed bubble-generating hybrid nanocapsule system. Nanomedicine 2017;12:2763-83. [DOI: 10.2217/nnm-2017-0265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
70 Dalal M, Greneche JM, Satpati B, Ghzaiel TB, Mazaleyrat F, Ningthoujam RS, Chakrabarti PK. Microwave Absorption and the Magnetic Hyperthermia Applications of Li0.3Zn0.3Co0.1Fe2.3O4 Nanoparticles in Multiwalled Carbon Nanotube Matrix. ACS Appl Mater Interfaces 2017;9:40831-45. [PMID: 29072442 DOI: 10.1021/acsami.7b12091] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 7.8] [Reference Citation Analysis]
71 Benyettou F, Alhashimi M, O’connor M, Pasricha R, Brandel J, Traboulsi H, Mazher J, Olsen J, Trabolsi A. Sequential Delivery of Doxorubicin and Zoledronic Acid to Breast Cancer Cells by CB[7]-Modified Iron Oxide Nanoparticles. ACS Appl Mater Interfaces 2017;9:40006-16. [DOI: 10.1021/acsami.7b11423] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
72 Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017;117:13566-638. [DOI: 10.1021/acs.chemrev.7b00258] [Cited by in Crossref: 993] [Cited by in F6Publishing: 1059] [Article Influence: 165.5] [Reference Citation Analysis]
73 Zhou F, Feng B, Wang T, Wang D, Cui Z, Wang S, Ding C, Zhang Z, Liu J, Yu H, Li Y. Theranostic Prodrug Vesicles for Reactive Oxygen Species-Triggered Ultrafast Drug Release and Local-Regional Therapy of Metastatic Triple-Negative Breast Cancer. Adv Funct Mater 2017;27:1703674. [DOI: 10.1002/adfm.201703674] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 9.2] [Reference Citation Analysis]
74 Ji T, Lang J, Wang J, Cai R, Zhang Y, Qi F, Zhang L, Zhao X, Wu W, Hao J, Qin Z, Zhao Y, Nie G. Designing Liposomes To Suppress Extracellular Matrix Expression To Enhance Drug Penetration and Pancreatic Tumor Therapy. ACS Nano 2017;11:8668-78. [PMID: 28806504 DOI: 10.1021/acsnano.7b01026] [Cited by in Crossref: 119] [Cited by in F6Publishing: 128] [Article Influence: 19.8] [Reference Citation Analysis]
75 Tiefenboeck P, Kim JA, Trunk F, Leroux J. Comment on “A Liposomal System Capable of Generating CO2 Bubbles to Induce Transient Cavitation, Lysosomal Rupturing and Cell Necrosis”. Angew Chem 2017;129:11846-11849. [DOI: 10.1002/ange.201703740] [Reference Citation Analysis]
76 Tiefenboeck P, Kim JA, Trunk F, Leroux JC. Comment on "A Liposomal System Capable of Generating CO2 Bubbles to Induce Transient Cavitation, Lysosomal Rupturing and Cell Necrosis". Angew Chem Int Ed Engl 2017;56:11686-9. [PMID: 28681973 DOI: 10.1002/anie.201703740] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
77 Lin Y, Huang C, Wan W, Chiang C, Chang Y, Sung H. Recent advances in CO2 bubble-generating carrier systems for localized controlled release. Biomaterials 2017;133:154-64. [DOI: 10.1016/j.biomaterials.2017.04.018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
78 Feng G, Hao L, Xu C, Ran H, Zheng Y, Li P, Cao Y, Wang Q, Xia J, Wang Z. High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring. Int J Nanomedicine 2017;12:4647-59. [PMID: 28721041 DOI: 10.2147/IJN.S135391] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
79 Chen MM, Liu YY, Su GH, Song FF, Liu Y, Zhang QQ. NIR responsive liposomal system for rapid release of drugs in cancer therapy. Int J Nanomedicine 2017;12:4225-39. [PMID: 28652729 DOI: 10.2147/IJN.S130861] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
80 Alamoudi K, Martins P, Croissant JG, Patil S, Omar H, Khashab NM. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape. Nanomedicine (Lond) 2017;12:1421-33. [PMID: 28524721 DOI: 10.2217/nnm-2017-0021] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
81 Sun Y, Zhang J, Han J, Tian B, Shi Y, Ding Y, Wang L, Han J. Galactose-Containing Polymer-DOX Conjugates for Targeting Drug Delivery. AAPS PharmSciTech 2017;18:749-58. [PMID: 27287244 DOI: 10.1208/s12249-016-0557-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
82 Guo X, You J. Near infrared light-controlled therapeutic molecules release of nanocarriers in cancer therapy. Journal of Pharmaceutical Investigation 2017;47:297-316. [DOI: 10.1007/s40005-017-0321-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
83 Zhang X, Manica R, Tchoukov P, Liu Q, Xu Z. Effect of Approach Velocity on Thin Liquid Film Drainage between an Air Bubble and a Flat Solid Surface. J Phys Chem C 2017;121:5573-84. [DOI: 10.1021/acs.jpcc.6b11502] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
84 Zhang S, Meng X, Wang Z, Fan A, Wang G, Zhao Y, Tang Y. Engineering hot-melt extruded solid dispersion for controlled release of hydrophilic drugs. Eur J Pharm Sci 2017;100:109-15. [PMID: 28087352 DOI: 10.1016/j.ejps.2017.01.009] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
85 Benyettou F, Fahs H, Elkharrag R, Bilbeisi RA, Asma B, Rezgui R, Motte L, Magzoub M, Brandel J, Olsen J, Piano F, Gunsalus KC, Platas-iglesias C, Trabolsi A. Selective growth inhibition of cancer cells with doxorubicin-loaded CB[7]-modified iron-oxide nanoparticles. RSC Adv 2017;7:23827-34. [DOI: 10.1039/c7ra02693e] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
86 Tomitaka A, Arami H, Takemura Y, Nair M. Image-Guided Therapy. Advances in Personalized Nanotherapeutics 2017. [DOI: 10.1007/978-3-319-63633-7_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
87 Kwan JJ, Coussios CC. Triggered Drug Release and Enhanced Drug Transport from Ultrasound-Responsive Nanoparticles. Design and Applications of Nanoparticles in Biomedical Imaging 2017. [DOI: 10.1007/978-3-319-42169-8_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
88 Adamo G, Campora S, Ghersi G. Functionalization of nanoparticles in specific targeting and mechanism release. Nanostructures for Novel Therapy 2017. [DOI: 10.1016/b978-0-323-46142-9.00003-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
89 Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017;46:6024-45. [DOI: 10.1039/c7cs00219j] [Cited by in Crossref: 296] [Cited by in F6Publishing: 312] [Article Influence: 49.3] [Reference Citation Analysis]
90 Kumar V, Wen D, Mahato R. 4.28 Non-Viral Delivery of Nucleic Acid Complexes ☆. Comprehensive Biomaterials II 2017. [DOI: 10.1016/b978-0-12-803581-8.09287-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
91 Li M, Luo Z, Xia Z, Shen X, Cai K. Time-sequenced drug delivery approaches towards effective chemotherapeutic treatment of glioma. Mater Horiz 2017;4:977-96. [DOI: 10.1039/c7mh00342k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
92 Huang C, Liao Z, Lu H, Pan W, Wan W, Chen C, Sung H. Cellular Organelle-Dependent Cytotoxicity of Iron Oxide Nanoparticles and Its Implications for Cancer Diagnosis and Treatment: A Mechanistic Investigation. Chem Mater 2016;28:9017-25. [DOI: 10.1021/acs.chemmater.6b03905] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
93 van Elk M, Murphy BP, Eufrásio-da-silva T, O’reilly DP, Vermonden T, Hennink WE, Duffy GP, Ruiz-hernández E. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. International Journal of Pharmaceutics 2016;515:132-64. [DOI: 10.1016/j.ijpharm.2016.10.013] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 9.9] [Reference Citation Analysis]
94 Heidegger S, Gössl D, Schmidt A, Niedermayer S, Argyo C, Endres S, Bein T, Bourquin C. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 2016;8:938-48. [PMID: 26659601 DOI: 10.1039/c5nr06122a] [Cited by in Crossref: 75] [Cited by in F6Publishing: 79] [Article Influence: 10.7] [Reference Citation Analysis]
95 Zhu X, Huang H, Zhang Y, Zhang H, Hou L, Zhang Z. Cit/CuS@Fe3O4-based and enzyme-responsive magnetic nanoparticles for tumor chemotherapy, photothermal, and photodynamic therapy. J Biomater Appl 2017;31:1010-25. [PMID: 28178904 DOI: 10.1177/0885328216676159] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
96 Wang S, Huang P, Chen X. Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization. Adv Mater 2016;28:7340-64. [PMID: 27255214 DOI: 10.1002/adma.201601498] [Cited by in Crossref: 259] [Cited by in F6Publishing: 275] [Article Influence: 37.0] [Reference Citation Analysis]
97 Timin AS, Lepik KV, Muslimov AR, Gorin DA, Afanasyev BV, Sukhorukov GB. Intracellular redox induced drug release in cancerous and mesenchymal stem cells. Colloids Surf B Biointerfaces 2016;147:450-8. [PMID: 27573039 DOI: 10.1016/j.colsurfb.2016.08.034] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
98 Chen C, Chen L, Wang P, Wu LF, Song T. Magnetically-induced elimination of Staphylococcus aureus by magnetotactic bacteria under a swing magnetic field. Nanomedicine 2017;13:363-70. [PMID: 27562212 DOI: 10.1016/j.nano.2016.08.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
99 Sheng Z, Zheng M, Cai L. Nano-Photosensitizer for Imaging-Guided Tumor Phototherapy. Biomedical Nanomaterials 2016. [DOI: 10.1002/9783527694396.ch7] [Reference Citation Analysis]
100 Cisterna BA, Kamaly N, Choi WI, Tavakkoli A, Farokhzad OC, Vilos C. Targeted nanoparticles for colorectal cancer. Nanomedicine (Lond) 2016;11:2443-56. [PMID: 27529192 DOI: 10.2217/nnm-2016-0194] [Cited by in Crossref: 89] [Cited by in F6Publishing: 95] [Article Influence: 12.7] [Reference Citation Analysis]
101 Yang L, Wen Z, Long Y, Huang N, Cheng Y, Zhao L, Zheng H. A H(+)-triggered bubble-generating nanosystem for killing cancer cells. Chem Commun (Camb) 2016;52:10838-41. [PMID: 27488856 DOI: 10.1039/c6cc04511a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
102 Li Z, Ye E, David, Lakshminarayanan R, Loh XJ. Recent Advances of Using Hybrid Nanocarriers in Remotely Controlled Therapeutic Delivery. Small 2016;12:4782-806. [DOI: 10.1002/smll.201601129] [Cited by in Crossref: 206] [Cited by in F6Publishing: 207] [Article Influence: 29.4] [Reference Citation Analysis]
103 Yang G, Liu J, Wu Y, Feng L, Liu Z. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coordination Chemistry Reviews 2016;320-321:100-17. [DOI: 10.1016/j.ccr.2016.04.004] [Cited by in Crossref: 122] [Cited by in F6Publishing: 99] [Article Influence: 17.4] [Reference Citation Analysis]
104 Yi Q, Ma J, Kang K, Gu Z. Dual cellular stimuli-responsive hydrogel nanocapsules for delivery of anticancer drugs. J Mater Chem B 2016;4:4922-33. [PMID: 32263151 DOI: 10.1039/c6tb00651e] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
105 Chuang E, Lin C, Chen K, Wan D, Lin K, Ho Y, Lin P, Sung H. A FRET-guided, NIR-responsive bubble-generating liposomal system for in vivo targeted therapy with spatially and temporally precise controlled release. Biomaterials 2016;93:48-59. [DOI: 10.1016/j.biomaterials.2016.03.040] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 7.1] [Reference Citation Analysis]
106 Liu D, Yang F, Xiong F, Gu N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016;6:1306-23. [PMID: 27375781 DOI: 10.7150/thno.14858] [Cited by in Crossref: 517] [Cited by in F6Publishing: 543] [Article Influence: 73.9] [Reference Citation Analysis]
107 Li M, Luo Z, Zhao Y. Hybrid Nanoparticles as Drug Carriers for Controlled Chemotherapy of Cancer. Chem Rec 2016;16:1833-51. [PMID: 27258402 DOI: 10.1002/tcr.201600029] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
108 Sou K, Chan LY, Lee CK. Temperature Tracking in a Three-Dimensional Matrix Using Thermosensitive Liposome Platform. ACS Sens 2016;1:650-5. [DOI: 10.1021/acssensors.6b00222] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
109 Hao W, Xia T, Shang Y, Xu S, Liu H. Characterization and release kinetics of liposomes inserted by pH-responsive bola-polymer. Colloid Polym Sci 2016;294:1107-16. [DOI: 10.1007/s00396-016-3871-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
110 Song G, Liang C, Yi X, Zhao Q, Cheng L, Yang K, Liu Z. Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer. Adv Mater 2016;28:2716-23. [PMID: 26848553 DOI: 10.1002/adma.201504617] [Cited by in Crossref: 420] [Cited by in F6Publishing: 440] [Article Influence: 60.0] [Reference Citation Analysis]
111 Jeong K, Kang CS, Kim Y, Lee Y, Kwon IC, Kim S. Development of highly efficient nanocarrier-mediated delivery approaches for cancer therapy. Cancer Letters 2016;374:31-43. [DOI: 10.1016/j.canlet.2016.01.050] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 6.6] [Reference Citation Analysis]
112 Ji T, Li S, Zhang Y, Lang J, Ding Y, Zhao X, Zhao R, Li Y, Shi J, Hao J. An MMP-2 Responsive Liposome Integrating Antifibrosis and Chemotherapeutic Drugs for Enhanced Drug Perfusion and Efficacy in Pancreatic Cancer. ACS Appl Mater Interfaces. 2016;8:3438-3445. [PMID: 26759926 DOI: 10.1021/acsami.5b11619] [Cited by in Crossref: 91] [Cited by in F6Publishing: 99] [Article Influence: 13.0] [Reference Citation Analysis]
113 Ma M, Lei M, Tan X, Tan F, Li N. Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery. RSC Adv 2016;6:1945-57. [DOI: 10.1039/c5ra24485d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
114 Ohnishi T. Enhancement of Hyperthermia on Anti-tumor Drug Sensitivity. Hyperthermic Oncology from Bench to Bedside 2016. [DOI: 10.1007/978-981-10-0719-4_10] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
115 Patra S, Roy E, Madhuri R, Sharma PK. Retracted Article: Creation of ultrasound and temperature-triggered bubble liposomes from economical precursors to enhance the therapeutic efficacy of curcumin in cancer cells. RSC Adv 2016;6:85473-85. [DOI: 10.1039/c6ra14584a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
116 Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2016;116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Cited by in Crossref: 208] [Cited by in F6Publishing: 211] [Article Influence: 26.0] [Reference Citation Analysis]
117 Zhong X, Yang K, Dong Z, Yi X, Wang Y, Ge C, Zhao Y, Liu Z. Polydopamine as a Biocompatible Multifunctional Nanocarrier for Combined Radioisotope Therapy and Chemotherapy of Cancer. Adv Funct Mater 2015;25:7327-36. [DOI: 10.1002/adfm.201503587] [Cited by in Crossref: 184] [Cited by in F6Publishing: 186] [Article Influence: 23.0] [Reference Citation Analysis]
118 Yu M, Guo F, Tan F, Li N. Dual-targeting nanocarrier system based on thermosensitive liposomes and gold nanorods for cancer thermo-chemotherapy. Journal of Controlled Release 2015;215:91-100. [DOI: 10.1016/j.jconrel.2015.08.003] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 7.4] [Reference Citation Analysis]
119 Zhao P, Zheng M, Luo Z, Gong P, Gao G, Sheng Z, Zheng C, Ma Y, Cai L. NIR-driven Smart Theranostic Nanomedicine for On-demand Drug Release and Synergistic Antitumour Therapy. Sci Rep 2015;5:14258. [PMID: 26400780 DOI: 10.1038/srep14258] [Cited by in Crossref: 70] [Cited by in F6Publishing: 79] [Article Influence: 8.8] [Reference Citation Analysis]
120 Chen Q, Ke H, Dai Z, Liu Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 2015;73:214-30. [PMID: 26410788 DOI: 10.1016/j.biomaterials.2015.09.018] [Cited by in Crossref: 155] [Cited by in F6Publishing: 162] [Article Influence: 19.4] [Reference Citation Analysis]
121 Chuang E, Lin K, Lin P, Chen H, Wey S, Mi F, Hsiao H, Chen C, Sung H. Self-assembling bubble carriers for oral protein delivery. Biomaterials 2015;64:115-24. [DOI: 10.1016/j.biomaterials.2015.06.035] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
122 Chung MF, Liu HY, Lin KJ, Chia WT, Sung HW. A pH-Responsive Carrier System that Generates NO Bubbles to Trigger Drug Release and Reverse P-Glycoprotein-Mediated Multidrug Resistance. Angew Chem Int Ed Engl 2015;54:9890-3. [PMID: 26136242 DOI: 10.1002/anie.201504444] [Cited by in Crossref: 127] [Cited by in F6Publishing: 131] [Article Influence: 15.9] [Reference Citation Analysis]
123 Chung M, Liu H, Lin K, Chia W, Sung H. A pH-Responsive Carrier System that Generates NO Bubbles to Trigger Drug Release and Reverse P-Glycoprotein-Mediated Multidrug Resistance. Angew Chem 2015;127:10028-31. [DOI: 10.1002/ange.201504444] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
124 Hsiao C, Chuang E, Chen H, Wan D, Korupalli C, Liao Z, Chiu Y, Chia W, Lin K, Sung H. Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ. Biomaterials 2015;56:26-35. [DOI: 10.1016/j.biomaterials.2015.03.060] [Cited by in Crossref: 71] [Cited by in F6Publishing: 68] [Article Influence: 8.9] [Reference Citation Analysis]
125 Chen Q, Wang X, Wang C, Feng L, Li Y, Liu Z. Drug-Induced Self-Assembly of Modified Albumins as Nano-theranostics for Tumor-Targeted Combination Therapy. ACS Nano 2015;9:5223-33. [PMID: 25950506 DOI: 10.1021/acsnano.5b00640] [Cited by in Crossref: 255] [Cited by in F6Publishing: 277] [Article Influence: 31.9] [Reference Citation Analysis]
126 Pattni BS, Chupin VV, Torchilin VP. New Developments in Liposomal Drug Delivery. Chem Rev 2015;115:10938-66. [PMID: 26010257 DOI: 10.1021/acs.chemrev.5b00046] [Cited by in Crossref: 937] [Cited by in F6Publishing: 977] [Article Influence: 117.1] [Reference Citation Analysis]
127 Rejinold NS, Jayakumar R, Kim Y. Radio frequency responsive nano-biomaterials for cancer therapy. Journal of Controlled Release 2015;204:85-97. [DOI: 10.1016/j.jconrel.2015.02.036] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
128 Yadavalli T, Ramasamy S, Chandrasekaran G, Michael I, Therese HA, Chennakesavulu R. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery. Journal of Magnetism and Magnetic Materials 2015;380:315-20. [DOI: 10.1016/j.jmmm.2014.09.035] [Cited by in Crossref: 69] [Cited by in F6Publishing: 69] [Article Influence: 8.6] [Reference Citation Analysis]
129 Shi H, Liu T, Fu C, Li L, Tan L, Wang J, Ren X, Ren J, Wang J, Meng X. Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy. Biomaterials 2015;44:91-102. [DOI: 10.1016/j.biomaterials.2014.12.035] [Cited by in Crossref: 55] [Cited by in F6Publishing: 58] [Article Influence: 6.9] [Reference Citation Analysis]
130 Li Y, Liu R, Yang J, Shi Y, Ma G, Zhang Z, Zhang X. Enhanced retention and anti-tumor efficacy of liposomes by changing their cellular uptake and pharmacokinetics behavior. Biomaterials 2015;41:1-14. [DOI: 10.1016/j.biomaterials.2014.11.010] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 7.4] [Reference Citation Analysis]
131 Liao ZX, Chuang EY, Lin CC, Ho YC, Lin KJ, Cheng PY, Chen KJ, Wei HJ, Sung HW. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J Control Release 2015;208:42-51. [PMID: 25637705 DOI: 10.1016/j.jconrel.2015.01.032] [Cited by in Crossref: 86] [Cited by in F6Publishing: 83] [Article Influence: 10.8] [Reference Citation Analysis]
132 Shi C, Cui X, Xie L, Liu Q, Chan DY, Israelachvili JN, Zeng H. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity. ACS Nano 2015;9:95-104. [PMID: 25514470 DOI: 10.1021/nn506601j] [Cited by in Crossref: 135] [Cited by in F6Publishing: 138] [Article Influence: 16.9] [Reference Citation Analysis]
133 Schönherr H. Forces and thin water film drainage in deformable asymmetric nanoscale contacts. ACS Nano 2015;9:12-5. [PMID: 25623914 DOI: 10.1021/acsnano.5b00177] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
134 Bian Y, Gao D, Liu Y, Li N, Zhang X, Zheng RY, Wang Q, Luo L, Dai K. Preparation and study on anti-tumor effect of chitosan-coated oleanolic acid liposomes. RSC Adv 2015;5:18725-32. [DOI: 10.1039/c4ra13860k] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
135 Xu Y, Zhu Y, Kaskel S. A smart magnetic nanosystem with controllable drug release and hyperthermia for potential cancer therapy. RSC Adv 2015;5:99875-83. [DOI: 10.1039/c5ra17053b] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
136 Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53:12320-12364. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Cited by in Crossref: 558] [Cited by in F6Publishing: 699] [Article Influence: 62.0] [Reference Citation Analysis]
137 Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014;13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Cited by in Crossref: 1037] [Cited by in F6Publishing: 1072] [Article Influence: 115.2] [Reference Citation Analysis]
138 Torchilin VP. Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2012;64:302-15. [DOI: 10.1016/j.addr.2012.09.031] [Cited by in Crossref: 262] [Cited by in F6Publishing: 262] [Article Influence: 29.1] [Reference Citation Analysis]
139 Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem 2014;126:12520-68. [DOI: 10.1002/ange.201403036] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 8.2] [Reference Citation Analysis]
140 Menter DG, Patterson SL, Logsdon CD, Kopetz S, Sood AK, Hawk ET. Convergence of nanotechnology and cancer prevention: are we there yet? Cancer Prev Res (Phila) 2014;7:973-92. [PMID: 25060262 DOI: 10.1158/1940-6207.CAPR-14-0079] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
141 Zhang L, Xiao SJ, Zheng LL, Li YF, Huang CZ. Aptamer-mediated nanocomposites of semiconductor quantum dots and graphene oxide as well as their applications in intracellular imaging and targeted drug delivery. J Mater Chem B 2014;2:8558-65. [DOI: 10.1039/c4tb01310g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.2] [Reference Citation Analysis]