1 |
Xiang L, Li Q, Li C, Yang Q, Xu F, Mai Y. Block Copolymer Self-Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. Adv Mater 2023;35:e2207684. [PMID: 36255138 DOI: 10.1002/adma.202207684] [Reference Citation Analysis]
|
2 |
Pramanik A, Xu Z, Ingram N, Coletta PL, Millner PA, Tyler AII, Hughes TA. Hyaluronic-Acid-Tagged Cubosomes Deliver Cytotoxics Specifically to CD44-Positive Cancer Cells. Mol Pharm 2022;19:4601-11. [PMID: 35938983 DOI: 10.1021/acs.molpharmaceut.2c00439] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
3 |
Rizi KS, Rezayi M, Aryan E, Meshkat Z, Mobarhan MG. Nanotechnology Applications in Food and Nutrition Science. Nanomaterials and Nanotechnology in Medicine 2022. [DOI: 10.1002/9781119558026.ch8] [Reference Citation Analysis]
|
4 |
Balestri A, Lonetti B, Harrisson S, Farias-mancilla B, Zhang J, Amenitsch H, Schubert U, Guerrero-sanchez C, Montis C, Berti D. Thermo-responsive lipophilic NIPAM-based block copolymers as stabilizers for lipid-based cubic nanoparticles. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112884] [Reference Citation Analysis]
|
5 |
Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. Nanomaterials 2022;12:2672. [DOI: 10.3390/nano12152672] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-santos P, Botelho CM. A Versatile Nanocarrier—Cubosomes, Characterization, and Applications. Nanomaterials 2022;12:2224. [DOI: 10.3390/nano12132224] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
7 |
Chountoulesi M, Pispas S, Tseti IK, Demetzos C. Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals 2022;15:429. [DOI: 10.3390/ph15040429] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
8 |
Pramanik A, Xu Z, Shamsuddin SH, Khaled YS, Ingram N, Maisey T, Tomlinson D, Coletta PL, Jayne D, Hughes TA, Tyler AII, Millner PA. Affimer Tagged Cubosomes: Targeting of Carcinoembryonic Antigen Expressing Colorectal Cancer Cells Using In Vitro and In Vivo Models. ACS Appl Mater Interfaces 2022;14:11078-91. [PMID: 35196008 DOI: 10.1021/acsami.1c21655] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
|
9 |
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022;299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
|
10 |
Marson D, Aulic S, Laurini E, Pricl S. Cubosomes: a promising vesicular system for drug delivery. Systems of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91864-0.00021-8] [Reference Citation Analysis]
|
11 |
Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: A review. Colloid and Interface Science Communications 2022;46:100561. [DOI: 10.1016/j.colcom.2021.100561] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Huang L, Li R, Wang X, Zhang L, Zhang B. Preparation and Characterization of Nanoliposomes Loaded with the Antimicrobial Peptide CGA-N9. Int J Pept Res Ther 2021;27:2727-34. [DOI: 10.1007/s10989-021-10286-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
13 |
Forys A, Chountoulesi M, Mendrek B, Konieczny T, Sentoukas T, Godzierz M, Kordyka A, Demetzos C, Pispas S, Trzebicka B. The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery. Polymers (Basel) 2021;13:2607. [PMID: 34451146 DOI: 10.3390/polym13162607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Bor G, Salentinig S, Şahin E, Nur Ödevci B, Roursgaard M, Liccardo L, Hamerlik P, Moghimi SM, Yaghmur A. Cell medium-dependent dynamic modulation of size and structural transformations of binary phospholipid/ω-3 fatty acid liquid crystalline nano-self-assemblies: Implications in interpretation of cell uptake studies. J Colloid Interface Sci 2021;606:464-79. [PMID: 34399363 DOI: 10.1016/j.jcis.2021.07.149] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
15 |
Naidjonoka P, Fornasier M, Pålsson D, Rudolph G, Al-Rudainy B, Murgia S, Nylander T. Bicontinuous cubic liquid crystalline phase nanoparticles stabilized by softwood hemicellulose. Colloids Surf B Biointerfaces 2021;203:111753. [PMID: 33845421 DOI: 10.1016/j.colsurfb.2021.111753] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
16 |
Pilkington CP, Seddon JM, Elani Y. Microfluidic technologies for the synthesis and manipulation of biomimetic membranous nano-assemblies. Phys Chem Chem Phys 2021;23:3693-706. [PMID: 33533338 DOI: 10.1039/d0cp06226j] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
17 |
Patel B, Thakkar HP. Cubosomes: Novel Nanocarriers for Drug Delivery. Nanocarriers: Drug Delivery System 2021. [DOI: 10.1007/978-981-33-4497-6_9] [Reference Citation Analysis]
|
18 |
Meikle TG, Dharmadana D, Hoffmann SV, Jones NC, Drummond CJ, Conn CE. Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. J Colloid Interface Sci 2021;587:90-100. [PMID: 33360913 DOI: 10.1016/j.jcis.2020.11.124] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
|
19 |
Mehanna MM, Sarieddine R, Alwattar JK, Chouaib R, Gali-Muhtasib H. Anticancer Activity of Thymoquinone Cubic Phase Nanoparticles Against Human Breast Cancer: Formulation, Cytotoxicity and Subcellular Localization. Int J Nanomedicine 2020;15:9557-70. [PMID: 33293807 DOI: 10.2147/IJN.S263797] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
|
20 |
Cytryniak A, Nazaruk E, Bilewicz R, Górzyńska E, Żelechowska-Matysiak K, Walczak R, Mames A, Bilewicz A, Majkowska-Pilip A. Lipidic Cubic-Phase Nanoparticles (Cubosomes) Loaded with Doxorubicin and Labeled with 177Lu as a Potential Tool for Combined Chemo and Internal Radiotherapy for Cancers. Nanomaterials (Basel) 2020;10:E2272. [PMID: 33207760 DOI: 10.3390/nano10112272] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
21 |
Chountoulesi M, Perinelli DR, Forys A, Bonacucina G, Trzebicka B, Pispas S, Demetzos C. Liquid crystalline nanoparticles for drug delivery: The role of gradient and block copolymers on the morphology, internal organisation and release profile. Eur J Pharm Biopharm 2021;158:21-34. [PMID: 33098976 DOI: 10.1016/j.ejpb.2020.08.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
22 |
Strachan JB, Dyett BP, Nasa Z, Valery C, Conn CE. Toxicity and cellular uptake of lipid nanoparticles of different structure and composition. Journal of Colloid and Interface Science 2020;576:241-51. [DOI: 10.1016/j.jcis.2020.05.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
|
23 |
Yu Helvig S, Woythe L, Pham S, Bor G, Andersen H, Moein Moghimi S, Yaghmur A. A structurally diverse library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (mPEG)-lipids showing variable complement activation properties. J Colloid Interface Sci 2021;582:906-17. [PMID: 32919118 DOI: 10.1016/j.jcis.2020.08.085] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
|
24 |
Kim HK, Hwang S, Sung B, Kim YH, Chang Y. Gd-Complex of a Rosmarinic Acid Conjugate as an Anti-Inflammatory Theranostic Agent via Reactive Oxygen Species Scavenging. Antioxidants (Basel) 2020;9:E744. [PMID: 32823673 DOI: 10.3390/antiox9080744] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Mendozza M, Balestri A, Montis C, Berti D. Controlling the Kinetics of an Enzymatic Reaction through Enzyme or Substrate Confinement into Lipid Mesophases with Tunable Structural Parameters. Int J Mol Sci 2020;21:E5116. [PMID: 32698376 DOI: 10.3390/ijms21145116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Zhai J, Tan FH, Luwor RB, Srinivasa Reddy T, Ahmed N, Drummond CJ, Tran N. In Vitro and In Vivo Toxicity and Biodistribution of Paclitaxel-Loaded Cubosomes as a Drug Delivery Nanocarrier: A Case Study Using an A431 Skin Cancer Xenograft Model. ACS Appl Bio Mater 2020;3:4198-207. [DOI: 10.1021/acsabm.0c00269] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
|
27 |
Jenni S, Picci G, Fornasier M, Mamusa M, Schmidt J, Talmon Y, Sour A, Heitz V, Murgia S, Caltagirone C. Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochem Photobiol Sci 2020;19:674-80. [PMID: 32314755 DOI: 10.1039/c9pp00449a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
28 |
Kepsutlu B, Wycisk V, Achazi K, Kapishnikov S, Pérez-Berná AJ, Guttmann P, Cossmer A, Pereiro E, Ewers H, Ballauff M, Schneider G, McNally JG. Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS Nano 2020;14:2248-64. [PMID: 31951375 DOI: 10.1021/acsnano.9b09264] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
|
29 |
Zhang L, Li J, Tian D, Sun L, Wang X, Tian M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis 2020;11:1. [PMID: 31911576 DOI: 10.1038/s41419-019-2182-0] [Cited by in Crossref: 189] [Cited by in F6Publishing: 226] [Article Influence: 63.0] [Reference Citation Analysis]
|
30 |
Barriga HMG, Ces O, Law RV, Seddon JM, Brooks NJ. Engineering Swollen Cubosomes Using Cholesterol and Anionic Lipids. Langmuir 2019;35:16521-7. [PMID: 31702159 DOI: 10.1021/acs.langmuir.9b02336] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
31 |
Maiorova LA, Erokhina SI, Pisani M, Barucca G, Marcaccio M, Koifman OI, Salnikov DS, Gromova OA, Astolfi P, Ricci V, Erokhin V. Encapsulation of vitamin B12 into nanoengineered capsules and soft matter nanosystems for targeted delivery. Colloids Surf B Biointerfaces 2019;182:110366. [PMID: 31351273 DOI: 10.1016/j.colsurfb.2019.110366] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
|
32 |
Zhai J, Fong C, Tran N, Drummond CJ. Non-Lamellar Lyotropic Liquid Crystalline Lipid Nanoparticles for the Next Generation of Nanomedicine. ACS Nano 2019;13:6178-206. [PMID: 31082192 DOI: 10.1021/acsnano.8b07961] [Cited by in Crossref: 96] [Cited by in F6Publishing: 104] [Article Influence: 24.0] [Reference Citation Analysis]
|
33 |
Godlewska M, Majkowska-pilip A, Stachurska A, Biernat JF, Gaweł D, Nazaruk E. Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases. Electrochimica Acta 2019;299:1-11. [DOI: 10.1016/j.electacta.2018.12.164] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
|
34 |
Meikle TG, Strachan JB, Conn CE. Lipid nanomaterials for the delivery of antimicrobial peptides. Nanotechnology. Elsevier; 2019. pp. 173-95. [DOI: 10.1016/bs.mim.2019.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
35 |
Daengmankhong J, Ross S, Mahasaranon S, Chang H, Ross GM. Effect of Precursor Structure on Unibody Core-Shell Properties and the in-vitro Study of a Dual Anti-drug/ Drug System. Materials Today: Proceedings 2019;17:1964-1970. [DOI: 10.1016/j.matpr.2019.06.242] [Reference Citation Analysis]
|
36 |
Ray S, Li Z, Hsu CH, Hwang LP, Lin YC, Chou PT, Lin YY. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 2018;8:6322-49. [PMID: 30613300 DOI: 10.7150/thno.27828] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 9.2] [Reference Citation Analysis]
|
37 |
Rezvani M, Hesari J, Peighambardoust SH, Manconi M, Hamishehkar H. Development and Characterization of Nanostructured Pharmacosomal Mesophases: An Innovative Delivery System for Bioactive Peptides. Adv Pharm Bull 2018;8:609-15. [PMID: 30607333 DOI: 10.15171/apb.2018.069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
|
38 |
von Halling Laier C, Gibson B, van de Weert M, Boyd BJ, Rades T, Boisen A, Hook S, Nielsen LH. Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. International Journal of Pharmaceutics 2018;550:35-44. [DOI: 10.1016/j.ijpharm.2018.08.036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
|
39 |
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019;58:2958-78. [PMID: 29926520 DOI: 10.1002/anie.201804067] [Cited by in Crossref: 211] [Cited by in F6Publishing: 218] [Article Influence: 42.2] [Reference Citation Analysis]
|
40 |
Barriga HMG, Holme MN, Stevens MM. Cubosomen: die nächste Generation intelligenter Lipid‐Nanopartikel? Angew Chem 2019;131:2984-3006. [DOI: 10.1002/ange.201804067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
|
41 |
Garg NK, Tandel N, Jadon RS, Tyagi RK, Katare OP. Lipid–polymer hybrid nanocarrier-mediated cancer therapeutics: current status and future directions. Drug Discovery Today 2018;23:1610-1621. [DOI: 10.1016/j.drudis.2018.05.033] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
|
42 |
Urandur S, Marwaha D, Gautam S, Banala VT, Sharma M, Mishra PR. Nonlamellar liquid crystals: a new paradigm for the delivery of small molecules and bio-macromolecules. Therapeutic Delivery 2018;9:667-89. [DOI: 10.4155/tde-2018-0038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
|
43 |
Saber MM, Al-Mahallawi AM, Nassar NN, Stork B, Shouman SA. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer 2018;18:822. [PMID: 30111296 DOI: 10.1186/s12885-018-4727-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 8.2] [Reference Citation Analysis]
|
44 |
Mangeolle T, Yakavets I, Marchal S, Debayle M, Pons T, Bezdetnaya L, Marchal F. Fluorescent Nanoparticles for the Guided Surgery of Ovarian Peritoneal Carcinomatosis. Nanomaterials (Basel) 2018;8:E572. [PMID: 30050022 DOI: 10.3390/nano8080572] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
|
45 |
Thapa RK, Choi JY, Gupta B, Ramasamy T, Poudel BK, Ku SK, Youn YS, Choi HG, Yong CS, Kim JO. Liquid crystalline nanoparticles encapsulating cisplatin and docetaxel combination for targeted therapy of breast cancer. Biomater Sci 2016;4:1340-50. [PMID: 27412822 DOI: 10.1039/c6bm00376a] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
|
46 |
Ding Y, Chow SH, Liu G, Wang B, Lin T, Hsu H, Duff AP, Le Brun AP, Shen H. Annexin V-containing cubosomes for targeted early detection of apoptosis in degenerative retinal tissue. J Mater Chem B 2018;6:7652-61. [DOI: 10.1039/c8tb02465k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
|
47 |
Alcaraz N, Liu Q, Hanssen E, Johnston A, Boyd BJ. Clickable Cubosomes for Antibody-Free Drug Targeting and Imaging Applications. Bioconjug Chem 2018;29:149-57. [PMID: 29182866 DOI: 10.1021/acs.bioconjchem.7b00659] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
|
48 |
Tian Y, Li JC, Zhu JX, Zhu N, Zhang HM, Liang L, Sun L. Folic Acid-Targeted Etoposide Cubosomes for Theranostic Application of Cancer Cell Imaging and Therapy. Med Sci Monit 2017;23:2426-35. [PMID: 28529305 DOI: 10.12659/msm.904683] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 5.5] [Reference Citation Analysis]
|
49 |
Meikle TG, Zabara A, Waddington LJ, Separovic F, Drummond CJ, Conn CE. Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids and Surfaces B: Biointerfaces 2017;152:143-51. [DOI: 10.1016/j.colsurfb.2017.01.004] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 8.8] [Reference Citation Analysis]
|
50 |
Deshpande S, Singh N. Influence of Cubosome Surface Architecture on Its Cellular Uptake Mechanism. Langmuir 2017;33:3509-16. [DOI: 10.1021/acs.langmuir.6b04423] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 4.5] [Reference Citation Analysis]
|
51 |
Haque A, Faizi MSH, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorg Med Chem 2017;25:2017-34. [PMID: 28284863 DOI: 10.1016/j.bmc.2017.02.061] [Cited by in Crossref: 126] [Cited by in F6Publishing: 131] [Article Influence: 21.0] [Reference Citation Analysis]
|
52 |
Roy B, Hazra P. Dynamics of different steps of the photopyrolytic cycle of an eminent anticancer drug topotecan inside biocompatible lyotropic liquid crystalline systems. RSC Adv 2017;7:379-388. [DOI: 10.1039/c6ra25200a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
|
53 |
Meli V, Caltagirone C, Sinico C, Lai F, Falchi AM, Monduzzi M, Obiols-rabasa M, Picci G, Rosa A, Schmidt J, Talmon Y, Murgia S. Theranostic hexosomes for cancer treatments: an in vitro study. New J Chem 2017;41:1558-65. [DOI: 10.1039/c6nj03232j] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
|
54 |
Meikle T, Drummond C, Separovic F, Conn C. Membrane-Mimetic Inverse Bicontinuous Cubic Phase Systems for Encapsulation of Peptides and Proteins. Elsevier; 2017. pp. 63-94. [DOI: 10.1016/bs.abl.2017.01.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
|
55 |
Sadeghpour A, Sanver D, Rappolt M. Interactions of Flavonoids With Lipidic Mesophases. Advances in Biomembranes and Lipid Self-Assembly 2017. [DOI: 10.1016/bs.abl.2016.12.002] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
56 |
Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, Lorenzon A, Macor P, Meli V, Monduzzi M, Obiols-Rabasa M, Petrizza L, Prodi L, Rosa A, Schmidt J, Talmon Y, Murgia S. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology 2017;28:055102. [PMID: 28032617 DOI: 10.1088/1361-6528/28/5/055102] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 5.0] [Reference Citation Analysis]
|
57 |
Sadeghpour A. Lyotropic Liquid Crystalline Phases for the Formulation of Future Functional Foods. JNHFE 2016;5. [DOI: 10.15406/jnhfe.2016.05.00157] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
|
58 |
Stewart PL. Cryo-electron microscopy and cryo-electron tomography of nanoparticles: Cryo-electron microscopy and cryo-electron tomography of nanoparticles. WIREs Nanomed Nanobiotechnol 2017;9:e1417. [DOI: 10.1002/wnan.1417] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
|
59 |
Kamalapuram SK, Kanwar RK, Roy K, Chaudhary R, Sehgal R, Kanwar JR. Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int J Nanomedicine 2016;11:1349-66. [PMID: 27099495 DOI: 10.2147/IJN.S95253] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
|
60 |
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today 2016;21:789-801. [PMID: 26780385 DOI: 10.1016/j.drudis.2016.01.004] [Cited by in Crossref: 174] [Cited by in F6Publishing: 122] [Article Influence: 24.9] [Reference Citation Analysis]
|
61 |
Farace C, Sánchez-Moreno P, Orecchioni M, Manetti R, Sgarrella F, Asara Y, Peula-García JM, Marchal JA, Madeddu R, Delogu LG. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol. Sci Rep 2016;6:18423. [PMID: 26728491 DOI: 10.1038/srep18423] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 7.9] [Reference Citation Analysis]
|
62 |
Miceli V, Meli V, Blanchard-desce M, Bsaibess T, Pampalone M, Conaldi PG, Caltagirone C, Obiols-rabasa M, Schmidt J, Talmon Y, Casu A, Murgia S. In vitro imaging of β-cells using fluorescent cubic bicontinuous liquid crystalline nanoparticles. RSC Adv 2016;6:62119-27. [DOI: 10.1039/c6ra09616f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
|
63 |
Azmi ID, Moghimi SM, Yaghmur A. Cubosomes and hexosomes as versatile platforms for drug delivery. Therapeutic Delivery 2015;6:1347-64. [DOI: 10.4155/tde.15.81] [Cited by in Crossref: 109] [Cited by in F6Publishing: 111] [Article Influence: 13.6] [Reference Citation Analysis]
|
64 |
Aleandri S, Bandera D, Mezzenga R, Landau EM. Biotinylated Cubosomes: A Versatile Tool for Active Targeting and Codelivery of Paclitaxel and a Fluorescein-Based Lipid Dye. Langmuir 2015;31:12770-6. [PMID: 26513646 DOI: 10.1021/acs.langmuir.5b03469] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 5.5] [Reference Citation Analysis]
|
65 |
Salim M, Zahid NI, Liew CY, Hashim R. Cubosome particles of a novel Guerbet branched chain glycolipid. Liquid Crystals 2015;43:168-74. [DOI: 10.1080/02678292.2015.1085104] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
|
66 |
Rosa A, Murgia S, Putzu D, Meli V, Falchi AM. Monoolein-based cubosomes affect lipid profile in HeLa cells. Chemistry and Physics of Lipids 2015;191:96-105. [DOI: 10.1016/j.chemphyslip.2015.08.017] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
|
67 |
Meli V, Caltagirone C, Falchi AM, Hyde ST, Lippolis V, Monduzzi M, Obiols-Rabasa M, Rosa A, Schmidt J, Talmon Y, Murgia S. Docetaxel-Loaded Fluorescent Liquid-Crystalline Nanoparticles for Cancer Theranostics. Langmuir 2015;31:9566-75. [PMID: 26293620 DOI: 10.1021/acs.langmuir.5b02101] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 7.3] [Reference Citation Analysis]
|
68 |
Mat Azmi ID, Wu L, Wibroe PP, Nilsson C, Østergaard J, Stürup S, Gammelgaard B, Urtti A, Moghimi SM, Yaghmur A. Modulatory Effect of Human Plasma on the Internal Nanostructure and Size Characteristics of Liquid-Crystalline Nanocarriers. Langmuir 2015;31:5042-9. [DOI: 10.1021/acs.langmuir.5b00830] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 6.0] [Reference Citation Analysis]
|
69 |
An TH, La Y, Cho A, Jeong MG, Shin TJ, Park C, Kim KT. Solution self-assembly of block copolymers containing a branched hydrophilic block into inverse bicontinuous cubic mesophases. ACS Nano 2015;9:3084-96. [PMID: 25731603 DOI: 10.1021/nn507338s] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
|
70 |
Murgia S, Falchi AM, Meli V, Schillén K, Lippolis V, Monduzzi M, Rosa A, Schmidt J, Talmon Y, Bizzarri R, Caltagirone C. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf B Biointerfaces 2015;129:87-94. [PMID: 25829131 DOI: 10.1016/j.colsurfb.2015.03.025] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
|
71 |
Das S, Magut PKS, Zhao L, Hasan F, Karki AB, Jin R, Warner IM. Multimodal theranostic nanomaterials derived from phthalocyanine-based organic salt. RSC Adv 2015;5:30227-33. [DOI: 10.1039/c5ra00872g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
|
72 |
Falchi AM, Rosa A, Atzeri A, Incani A, Lampis S, Meli V, Caltagirone C, Murgia S. Effects of monoolein-based cubosome formulations on lipid droplets and mitochondria of HeLa cells. Toxicol Res 2015;4:1025-36. [DOI: 10.1039/c5tx00078e] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
|
73 |
Ho L, Hsu C, Ou C, Wang C, Liu T, Hwang L, Lin Y, Chang H. Unibody core–shell smart polymer as a theranostic nanoparticle for drug delivery and MR imaging. Biomaterials 2015;37:436-46. [DOI: 10.1016/j.biomaterials.2014.10.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
|
74 |
Tran N, Mulet X, Hawley AM, Hinton TM, Mudie ST, Muir BW, Giakoumatos EC, Waddington LJ, Kirby NM, Drummond CJ. Nanostructure and cytotoxicity of self-assembled monoolein–capric acid lyotropic liquid crystalline nanoparticles. RSC Adv 2015;5:26785-95. [DOI: 10.1039/c5ra02604k] [Cited by in Crossref: 73] [Cited by in F6Publishing: 76] [Article Influence: 9.1] [Reference Citation Analysis]
|
75 |
Caltagirone C, Arca M, Falchi AM, Lippolis V, Meli V, Monduzzi M, Nylander T, Rosa A, Schmidt J, Talmon Y, Murgia S. Solvatochromic fluorescent BODIPY derivative as imaging agent in camptothecin loaded hexosomes for possible theranostic applications. RSC Adv 2015;5:23443-9. [DOI: 10.1039/c5ra01025j] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
|
76 |
Chong JY, Mulet X, Boyd BJ, Drummond CJ. Steric Stabilizers for Cubic Phase Lyotropic Liquid Crystal Nanodispersions (Cubosomes). Advances in Planar Lipid Bilayers and Liposomes 2015. [DOI: 10.1016/bs.adplan.2014.11.001] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 4.8] [Reference Citation Analysis]
|
77 |
Deshpande S, Venugopal E, Ramagiri S, Bellare JR, Kumaraswamy G, Singh N. Enhancing Cubosome Functionality by Coating with a Single Layer of Poly-ε-lysine. ACS Appl Mater Interfaces 2014;6:17126-33. [DOI: 10.1021/am5047872] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 4.3] [Reference Citation Analysis]
|