BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu C, Spongberg AL, Witter JD. Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. J Agric Food Chem 2009;57:4900-5. [PMID: 19441835 DOI: 10.1021/jf900376c] [Cited by in Crossref: 103] [Cited by in F6Publishing: 89] [Article Influence: 7.9] [Reference Citation Analysis]
Number Citing Articles
1 García-santiago X, Franco-uría A, Omil F, Lema JM. Risk assessment of persistent pharmaceuticals in biosolids: Dealing with uncertainty. Journal of Hazardous Materials 2016;302:72-81. [DOI: 10.1016/j.jhazmat.2015.09.035] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
2 Langdon K, Warne M, Smernik R, Shareef A, Kookana R. Degradation of 4-nonylphenol, 4-t-octylphenol, bisphenol A and triclosan following biosolids addition to soil under laboratory conditions. Chemosphere 2011;84:1556-62. [DOI: 10.1016/j.chemosphere.2011.05.053] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
3 Clarke R, Healy MG, Fenton O, Cummins E. A quantitative risk ranking model to evaluate emerging organic contaminants in biosolid amended land and potential transport to drinking water. Human and Ecological Risk Assessment: An International Journal 2016;22:958-90. [DOI: 10.1080/10807039.2015.1121376] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
4 Holzem RM, Gardner CM, Gunsch CK. Evaluating the impacts of triclosan on wastewater treatment performance during startup and acclimation. Water Science and Technology 2018;77:493-503. [DOI: 10.2166/wst.2017.566] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Shu W, Price GW, Jamieson R, Lake C. Biodegradation kinetics of individual and mixture non-steroidal anti-inflammatory drugs in an agricultural soil receiving alkaline treated biosolids. Sci Total Environ 2021;755:142520. [PMID: 33032129 DOI: 10.1016/j.scitotenv.2020.142520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Cantarero R, Richter P, Brown S, Ascar L, Ahumada I. Effects of applying biosolids to soils on the adsorption and bioavailability of 17α-ethinylestradiol and triclosan in wheat plants. Environ Sci Pollut Res 2017;24:12847-59. [DOI: 10.1007/s11356-017-8836-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
7 Duleba AJ, Ahmed MI, Sun M, Gao AC, Villanueva J, Conley AJ, Turgeon JL, Benirschke K, Gee NA, Chen J, Green PG, Lasley BL. Effects of triclocarban on intact immature male rat: augmentation of androgen action. Reprod Sci 2011;18:119-27. [PMID: 20889956 DOI: 10.1177/1933719110382581] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.4] [Reference Citation Analysis]
8 Langdon KA, Warne MS, Smernik RJ, Shareef A, Kookana RS. Field dissipation of 4-nonylphenol, 4-t-octylphenol, triclosan and bisphenol A following land application of biosolids. Chemosphere 2012;86:1050-8. [PMID: 22196087 DOI: 10.1016/j.chemosphere.2011.11.057] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]
9 Cai S, Hu X, Lu D, Zhang L, Jiang C, Cai T. Ferrous-activated persulfate oxidation of triclosan in soil and groundwater: The roles of natural mineral and organic matter. Sci Total Environ 2021;762:143092. [PMID: 33183814 DOI: 10.1016/j.scitotenv.2020.143092] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Chen F, Ying G, Ma Y, Chen Z, Lai H. Field dissipation of four personal care products in biosolids-amended soils in North China: Field dissipation of 4 personal care products. Environ Toxicol Chem 2014;33:2413-21. [DOI: 10.1002/etc.2692] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
11 Shahmohamadloo RS, Lissemore L, Prosser RS, Sibley PK. Evaluating the effects of triclosan on 3 field crops grown in 4 formulations of biosolids. Environ Toxicol Chem 2017;36:1896-908. [PMID: 28008648 DOI: 10.1002/etc.3712] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
12 Wang Y, Teng Y, Wang D, Han K, Wang H, Kang L. The fate of triclocarban in activated sludge and its influence on biological wastewater treatment system. J Environ Manage 2020;276:111237. [PMID: 32866751 DOI: 10.1016/j.jenvman.2020.111237] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Wu C, Huang X, Lin J, Liu J. Occurrence and Fate of Selected Endocrine-Disrupting Chemicals in Water and Sediment from an Urban Lake. Arch Environ Contam Toxicol 2015;68:225-36. [DOI: 10.1007/s00244-014-0087-6] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.4] [Reference Citation Analysis]
14 Usyskin A, Bukhanovsky N, Borisover M. Interactions of triclosan, gemfibrozil and galaxolide with biosolid-amended soils: Effects of the level and nature of soil organic matter. Chemosphere 2015;138:272-80. [DOI: 10.1016/j.chemosphere.2015.05.095] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
15 Borisover M, Keren Y, Usyskin A, Bukhanovsky N. Effects of γ-irradiation of original and organic matter-amended soils on the sorption of triclosan and diuron from aqueous solutions. Chemosphere 2016;152:62-70. [PMID: 26963237 DOI: 10.1016/j.chemosphere.2016.02.091] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
16 Chen X, Zhuang J, Bester K. Degradation of triclosan by environmental microbial consortia and by axenic cultures of microorganisms with concerns to wastewater treatment. Appl Microbiol Biotechnol 2018;102:5403-17. [PMID: 29732474 DOI: 10.1007/s00253-018-9029-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
17 Deo RP. Pharmaceuticals in the Surface Water of the USA: A Review. Curr Envir Health Rpt 2014;1:113-22. [DOI: 10.1007/s40572-014-0015-y] [Cited by in Crossref: 60] [Cited by in F6Publishing: 41] [Article Influence: 7.5] [Reference Citation Analysis]
18 Gangadharan Puthiya Veetil P, Vijaya Nadaraja A, Bhasi A, Khan S, Bhaskaran K. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions. Appl Biochem Biotechnol 2012;167:1603-12. [PMID: 22328252 DOI: 10.1007/s12010-012-9573-3] [Cited by in Crossref: 48] [Cited by in F6Publishing: 37] [Article Influence: 4.8] [Reference Citation Analysis]
19 Olszewski JM, Lozano N, Haines C, Rice CP, Ramirez M, Torrents A. The effect of liming on antibacterial and hormone levels in wastewater biosolids. Journal of Environmental Science and Health, Part A 2013;48:862-70. [DOI: 10.1080/10934529.2013.761488] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
20 Walters E, McClellan K, Halden RU. Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Res 2010;44:6011-20. [PMID: 20728197 DOI: 10.1016/j.watres.2010.07.051] [Cited by in Crossref: 219] [Cited by in F6Publishing: 192] [Article Influence: 18.3] [Reference Citation Analysis]
21 Shahmohamadloo RS, Lissemore L, Prosser RS, Sibley PK. Comparative evaluation of four biosolids formulations on the effects of triclosan on plant-arbuscular mycorrhizal fungal interactions in three crop species. Sci Total Environ 2017;583:292-9. [PMID: 28104329 DOI: 10.1016/j.scitotenv.2017.01.067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
22 Abbott T, Eskicioglu C. Comparison of anaerobic, cycling aerobic/anoxic, and sequential anaerobic/aerobic/anoxic digestion to remove triclosan and triclosan metabolites from municipal biosolids. Science of The Total Environment 2020;745:140953. [DOI: 10.1016/j.scitotenv.2020.140953] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Chen S, Chee-sanford JC, Yang WH, Sanford RA, Chen J, Yan X, Shan J. Effects of triclosan and triclocarban on denitrification and N2O emissions in paddy soil. Science of The Total Environment 2019;695:133782. [DOI: 10.1016/j.scitotenv.2019.133782] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
24 Corrotea Y, Richter P, Brown S, Sepúlveda B, Ascar L, Ahumada I. Determination of the bioavailable fraction of triclosan in biosolid-treated soils using a predictive method and wheat plant bioassays. J Soils Sediments 2016;16:1538-46. [DOI: 10.1007/s11368-015-1348-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
25 Cheng P, Zhao X, El-Ramady H, Elsakhawy T, Waigi MG, Ling W. Formation of environmentally persistent free radicals from photodegradation of triclosan by metal oxides/silica suspensions and particles. Chemosphere 2021;290:133322. [PMID: 34922972 DOI: 10.1016/j.chemosphere.2021.133322] [Reference Citation Analysis]
26 Turner RDR, Warne MSJ, Dawes LA, Thompson K, Will GD. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water. Sci Total Environ 2019;669:570-8. [PMID: 30889446 DOI: 10.1016/j.scitotenv.2019.03.073] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 4.3] [Reference Citation Analysis]
27 Zhang Q, Ying G, Chen Z, Zhao J, Liu Y. Basin-scale emission and multimedia fate of triclosan in whole China. Environ Sci Pollut Res 2015;22:10130-43. [DOI: 10.1007/s11356-015-4218-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
28 Xie J, Zhao N, Zhang Y, Hu H, Zhao M, Jin H. Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea. Chemosphere 2021;287:132218. [PMID: 34509769 DOI: 10.1016/j.chemosphere.2021.132218] [Reference Citation Analysis]
29 Borisover M. The differential Gibbs free energy of sorption of an ionizable organic compound: eliminating the contribution of solute–bulk solvent interactions. Adsorption 2016;22:735-43. [DOI: 10.1007/s10450-016-9769-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
30 Abbott T, Kor-Bicakci G, Islam MS, Eskicioglu C. A Review on the Fate of Legacy and Alternative Antimicrobials and Their Metabolites during Wastewater and Sludge Treatment. Int J Mol Sci 2020;21:E9241. [PMID: 33287448 DOI: 10.3390/ijms21239241] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Souchier M, Benali-raclot D, Benanou D, Boireau V, Gomez E, Casellas C, Chiron S. Screening triclocarban and its transformation products in river sediment using liquid chromatography and high resolution mass spectrometry. Science of The Total Environment 2015;502:199-205. [DOI: 10.1016/j.scitotenv.2014.08.108] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
32 Zaltauskaite J, Miskelyte D. Biochemical and life cycle effects of triclosan chronic toxicity to earthworm Eisenia fetida. Environ Sci Pollut Res 2018;25:18938-46. [DOI: 10.1007/s11356-018-2065-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
33 Thelusmond JR, Kawka E, Strathmann TJ, Cupples AM. Diclofenac, carbamazepine and triclocarban biodegradation in agricultural soils and the microorganisms and metabolic pathways affected. Sci Total Environ 2018;640-641:1393-410. [PMID: 30021306 DOI: 10.1016/j.scitotenv.2018.05.403] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 12.8] [Reference Citation Analysis]
34 Lin H, Hu YY, Zhang XY, Guo YP, Chen GR. Sorption of triclosan onto sediments and its distribution behavior in sediment-water-rhamnolipid systems. Environ Toxicol Chem 2011;30:2416-22. [PMID: 21823162 DOI: 10.1002/etc.642] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
35 Yun H, Liang B, Kong D, Li X, Wang A. Fate, risk and removal of triclocarban: A critical review. J Hazard Mater 2020;387:121944. [PMID: 31901847 DOI: 10.1016/j.jhazmat.2019.121944] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
36 Lozano N, Rice CP, Ramirez M, Torrents A. Fate of triclocarban in agricultural soils after biosolid applications. Environ Sci Pollut Res 2018;25:222-32. [DOI: 10.1007/s11356-017-0433-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
37 Huang X, Wu C, Hu H, Yu Y, Liu J. Sorption and degradation of triclosan in sediments and its effect on microbes. Ecotoxicology and Environmental Safety 2015;116:76-83. [DOI: 10.1016/j.ecoenv.2015.03.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
38 Zhang Y, Price GW, Jamieson R, Burton D, Khosravi K. Sorption and desorption of selected non-steroidal anti-inflammatory drugs in an agricultural loam-textured soil. Chemosphere 2017;174:628-37. [PMID: 28199939 DOI: 10.1016/j.chemosphere.2017.02.027] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 8.6] [Reference Citation Analysis]
39 Gallego S, Martin-laurent F. Impact of PhACs on Soil Microorganisms. In: Pérez Solsona S, Montemurro N, Chiron S, Barceló D, editors. Interaction and Fate of Pharmaceuticals in Soil-Crop Systems. Cham: Springer International Publishing; 2021. pp. 267-310. [DOI: 10.1007/698_2020_616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Langdon KA, Warne MS, Smernik RJ, Shareef A, Kookana RS. Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil. Sci Total Environ 2013;447:56-63. [PMID: 23376516 DOI: 10.1016/j.scitotenv.2012.12.064] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
41 Prosser RS, Lissemore L, Solomon KR, Sibley PK. Toxicity of biosolids-derived triclosan and triclocarban to six crop species: TCS and TCC toxicity to plants. Environ Toxicol Chem 2014;33:1840-8. [DOI: 10.1002/etc.2624] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
42 Deo R, Halden R. Pharmaceuticals in the Built and Natural Water Environment of the United States. Water 2013;5:1346-65. [DOI: 10.3390/w5031346] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 3.3] [Reference Citation Analysis]
43 Shen T, Gao M. Gemini surfactant modified organo-clays for removal of organic pollutants from water: A review. Chemical Engineering Journal 2019;375:121910. [DOI: 10.1016/j.cej.2019.121910] [Cited by in Crossref: 38] [Cited by in F6Publishing: 14] [Article Influence: 12.7] [Reference Citation Analysis]
44 Li M, Ding T, Wang H, Wang W, Ye Q, Li J. Biosolids inhibit uptake and translocation of 14C-carbamazepine by edible vegetables in soil. Environ Sci Pollut Res Int 2020;27:8323-33. [PMID: 31897987 DOI: 10.1007/s11356-019-07429-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Armstrong DL, Lozano N, Rice CP, Ramirez M, Torrents A. Degradation of triclosan and triclocarban and formation of transformation products in activated sludge using benchtop bioreactors. Environ Res 2018;161:17-25. [PMID: 29096316 DOI: 10.1016/j.envres.2017.10.048] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
46 Prosser RS, Lissemore L, Topp E, Sibley PK. Bioaccumulation of triclosan and triclocarban in plants grown in soils amended with municipal dewatered biosolids. Environ Toxicol Chem 2014;33:975-84. [PMID: 24375516 DOI: 10.1002/etc.2505] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 8.1] [Reference Citation Analysis]
47 Mendez MO, Valdez EM, Martinez EM, Saucedo M, Wilson BA. Fate of Triclosan in Irrigated Soil: Degradation in Soil and Translocation into Onion and Tomato. J Environ Qual 2016;45:1029-35. [DOI: 10.2134/jeq2015.07.0386] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
48 Mathews S, Henderson S, Reinhold D. Uptake and accumulation of antimicrobials, triclocarban and triclosan, by food crops in a hydroponic system. Environ Sci Pollut Res 2014;21:6025-33. [DOI: 10.1007/s11356-013-2474-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
49 Healy M, Fenton O, Cormican M, Peyton D, Ordsmith N, Kimber K, Morrison L. Antimicrobial compounds (triclosan and triclocarban) in sewage sludges, and their presence in runoff following land application. Ecotoxicology and Environmental Safety 2017;142:448-53. [DOI: 10.1016/j.ecoenv.2017.04.046] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
50 Wu C, Spongberg AL, Witter JD, Fang M, Ames A, Czajkowski KP. Detection of Pharmaceuticals and Personal Care Products in Agricultural Soils Receiving Biosolids Application. Clean Soil Air Water 2010;38:230-7. [DOI: 10.1002/clen.200900263] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
51 Richter E, Roller E, Kunkel U, Ternes TA, Coors A. Phytotoxicity of wastewater-born micropollutants – Characterisation of three antimycotics and a cationic surfactant. Environmental Pollution 2016;208:512-22. [DOI: 10.1016/j.envpol.2015.10.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
52 Barros S, Montes R, Quintana JB, Rodil R, Oliveira JM, Santos MM, Neuparth T. Chronic effects of triclocarban in the amphipod Gammarus locusta : Behavioural and biochemical impairment. Ecotoxicology and Environmental Safety 2017;135:276-83. [DOI: 10.1016/j.ecoenv.2016.10.013] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
53 Cha J, Cupples AM. Triclocarban and triclosan biodegradation at field concentrations and the resulting leaching potentials in three agricultural soils. Chemosphere 2010;81:494-9. [DOI: 10.1016/j.chemosphere.2010.07.040] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
54 Guan C, Wang C, Li Q, Ji J, Wang G, Jin C, Tong Y. LcSABP2, a salicylic acid binding protein 2 gene from Lycium chinense, confers resistance to triclosan stress in Nicotiana tabacum. Ecotoxicol Environ Saf 2019;183:109516. [PMID: 31394375 DOI: 10.1016/j.ecoenv.2019.109516] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
55 Cha J, Cupples AM. Determination of triclocarban and triclosan in biosolid and soil samples by application of pressurized liquid extraction and liquid chromatography with tandem mass spectrometry. Geosystem Engineering 2012;15:280-91. [DOI: 10.1080/12269328.2012.732316] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
56 Snyder EH, O'Connor GA. Risk assessment of land-applied biosolids-borne triclocarban (TCC). Sci Total Environ 2013;442:437-44. [PMID: 23183124 DOI: 10.1016/j.scitotenv.2012.10.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
57 Liping L, Defu L, Huanyu C, Fang C, Yunfeng H, Guangming T. The change of organic matter in sewage sludge composting and its influence on the adsorption of pentachlorophenol (PCP). Environ Sci Pollut Res 2015;22:4977-84. [DOI: 10.1007/s11356-014-3756-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
58 Mulla SI, Asefi B, Bharagava RN, Saratale GD, Li J, Huang C, Yu C. Processes for the removal of triclosan in the environment and engineered systems: a review. Environ Rev . [DOI: 10.1139/er-2019-0007] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
59 Müller J, Jewell KS, Schulz M, Hermes N, Ternes TA, Drewes JE, Hübner U. Capturing the oxic transformation of iopromide - A useful tool for an improved characterization of predominant redox conditions and the removal of trace organic compounds in biofiltration systems? Water Res 2019;152:274-84. [PMID: 30682571 DOI: 10.1016/j.watres.2018.12.055] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
60 Negahban-azar M, Sharvelle SE, Stromberger ME, Olson C, Roesner LA. Fate of Graywater Constituents After Long-Term Application for Landscape Irrigation. Water Air Soil Pollut 2012;223:4733-49. [DOI: 10.1007/s11270-012-1229-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
61 Clarke R, Healy MG, Fenton O, Cummins E. Quantitative risk assessment of antimicrobials in biosolids applied on agricultural land and potential translocation into food. Food Res Int 2018;106:1049-60. [PMID: 29579897 DOI: 10.1016/j.foodres.2017.12.072] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
62 Miller EL, Nason SL, Karthikeyan KG, Pedersen JA. Root Uptake of Pharmaceuticals and Personal Care Product Ingredients. Environ Sci Technol 2016;50:525-41. [PMID: 26619126 DOI: 10.1021/acs.est.5b01546] [Cited by in Crossref: 182] [Cited by in F6Publishing: 155] [Article Influence: 30.3] [Reference Citation Analysis]
63 Shao Y, Yang K, Jia R, Tian C, Zhu Y. Degradation of Triclosan and Carbamazepine in Two Agricultural and Garden Soils with Different Textures Amended with Composted Sewage Sludge. Int J Environ Res Public Health 2018;15:E2557. [PMID: 30441878 DOI: 10.3390/ijerph15112557] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
64 Prosser RS, Lissemore L, Shahmohamadloo RS, Sibley PK. Effect of biosolids-derived triclosan and triclocarban on the colonization of plant roots by arbuscular mycorrhizal fungi. Sci Total Environ 2015;508:427-34. [PMID: 25497682 DOI: 10.1016/j.scitotenv.2014.12.014] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
65 Revitt DM, Balogh T, Jones H. Sorption behaviours and transport potentials for selected pharmaceuticals and triclosan in two sterilised soils. J Soils Sediments 2015;15:594-606. [DOI: 10.1007/s11368-014-1025-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
66 Aryal N, Reinhold DM. Phytoaccumulation of antimicrobials from biosolids: Impacts on environmental fate and relevance to human exposure. Water Research 2011;45:5545-52. [DOI: 10.1016/j.watres.2011.08.027] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 5.6] [Reference Citation Analysis]
67 Chen X, Gu X, Bao L, Ma S, Mu Y. Comparison of adsorption and desorption of triclosan between microplastics and soil particles. Chemosphere 2021;263:127947. [DOI: 10.1016/j.chemosphere.2020.127947] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
68 He Y, Nie E, Li C, Ye Q, Wang H. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions. Environmental Pollution 2017;220:400-6. [DOI: 10.1016/j.envpol.2016.09.076] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
69 Ng B, Quinete N, Maldonado S, Lugo K, Purrinos J, Briceño H, Gardinali P. Understanding the occurrence and distribution of emerging pollutants and endocrine disruptors in sensitive coastal South Florida Ecosystems. Sci Total Environ 2021;757:143720. [PMID: 33288250 DOI: 10.1016/j.scitotenv.2020.143720] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Bair DA, Anderson CG, Chung Y, Scow KM, Franco RB, Parikh SJ. Impact of biochar on plant growth and uptake of ciprofloxacin, triclocarban and triclosan from biosolids. J Environ Sci Health B 2020;55:990-1001. [PMID: 32877275 DOI: 10.1080/03601234.2020.1807264] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
71 Lozano N, Rice CP, Ramirez M, Torrents A. Fate of Triclosan and Methyltriclosan in soil from biosolids application. Environ Pollut 2012;160:103-8. [PMID: 22035932 DOI: 10.1016/j.envpol.2011.09.020] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 3.5] [Reference Citation Analysis]
72 Kor-Bicakci G, Abbott T, Ubay-Cokgor E, Eskicioglu C. Occurrence and fate of antimicrobial triclocarban and its transformation products in municipal sludge during advanced anaerobic digestion using microwave pretreatment. Sci Total Environ 2020;705:135862. [PMID: 31818554 DOI: 10.1016/j.scitotenv.2019.135862] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
73 Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. J Toxicol Environ Health B Crit Rev 2017;20:447-69. [PMID: 29182464 DOI: 10.1080/10937404.2017.1399306] [Cited by in Crossref: 146] [Cited by in F6Publishing: 118] [Article Influence: 29.2] [Reference Citation Analysis]
74 Zhou S, Shao Y, Gao N, Deng J, Tan C. Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Triclosan onto Multi-Walled Carbon Nanotubes. Clean Soil Air Water 2013;41:539-47. [DOI: 10.1002/clen.201200082] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 4.3] [Reference Citation Analysis]
75 Wang D, Tao L, Yang J, Xu Z, Yang Q, Zhang Y, Liu X, Liu Q, Huang J. Understanding the interaction between triclocarban and denitrifiers. J Hazard Mater 2021;401:123343. [PMID: 32763677 DOI: 10.1016/j.jhazmat.2020.123343] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
76 Waria M, O'connor GA, Toor GS. Biodegradation of triclosan in biosolids-amended soils. Environmental Toxicology and Chemistry 2011;30:2488-96. [DOI: 10.1002/etc.666] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 2.5] [Reference Citation Analysis]
77 Kwon JW, Xia K. Fate of triclosan and triclocarban in soil columns with and without biosolids surface application. Environ Toxicol Chem 2012;31:262-9. [PMID: 22105314 DOI: 10.1002/etc.1703] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
78 Souchier M, Casellas C, Ingrand V, Chiron S. Insights into reductive dechlorination of triclocarban in river sediments: Field measurements and in vitro mechanism investigations. Chemosphere 2016;144:425-32. [DOI: 10.1016/j.chemosphere.2015.08.083] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
79 Lozano N, Rice CP, Ramirez M, Torrents A. Fate of triclosan in agricultural soils after biosolid applications. Chemosphere 2010;78:760-6. [DOI: 10.1016/j.chemosphere.2009.10.043] [Cited by in Crossref: 71] [Cited by in F6Publishing: 64] [Article Influence: 5.9] [Reference Citation Analysis]
80 Huang X, Wu C, Xiong X, Zhang K, Liu J. Partitioning and Degradation of Triclosan and Formation of Methyl-Triclosan in Water-Sediment Systems. Water Air Soil Pollut 2014;225. [DOI: 10.1007/s11270-014-2099-2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
81 Chen F, Ying GG, Ma YB, Chen ZF, Lai HJ, Peng FJ. Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils. Sci Total Environ 2014;470-471:1078-86. [PMID: 24239829 DOI: 10.1016/j.scitotenv.2013.10.080] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
82 Agyin-Birikorang S, Miller M, O'Connor GA. Retention-release characteristics of triclocarban and triclosan in biosolids, soils, and biosolids-amended soils. Environ Toxicol Chem 2010;29:1925-33. [PMID: 20821649 DOI: 10.1002/etc.251] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
83 Verslycke T, Mayfield DB, Tabony JA, Capdevielle M, Slezak B. Human health risk assessment of triclosan in land-applied biosolids: Human health risks of biosolids-borne triclosan. Environ Toxicol Chem 2016;35:2358-67. [DOI: 10.1002/etc.3370] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
84 Fu Q, Sanganyado E, Ye Q, Gan J. Meta-analysis of biosolid effects on persistence of triclosan and triclocarban in soil. Environ Pollut 2016;210:137-44. [PMID: 26708768 DOI: 10.1016/j.envpol.2015.12.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
85 Lam KY, Nélieu S, Benoit P, Passeport E. Optimizing Constructed Wetlands for Safe Removal of Triclosan: A Box-Behnken Approach. Environ Sci Technol 2020;54:225-34. [PMID: 31760744 DOI: 10.1021/acs.est.9b05325] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
86 Narimani M, da Silva G. Pyrolysis of Triclosan and Its Chlorinated Derivatives. J Phys Chem A 2020;124:8050-6. [PMID: 32875798 DOI: 10.1021/acs.jpca.0c06037] [Reference Citation Analysis]
87 Peng FJ, Diepens NJ, Pan CG, Bracewell SA, Ying GG, Salvito D, Selck H, Van den Brink PJ. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms. Aquat Toxicol 2018;202:117-25. [PMID: 30025380 DOI: 10.1016/j.aquatox.2018.07.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
88 Zielińska K. Solid phase microextraction speciation analysis of triclosan in aqueous media containing sorbing nanoparticles. Environ Chem 2014;11:72. [DOI: 10.1071/en13167] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
89 Giudice BD, Young TM, Bibb JP. Modification of GLEAMS for modeling movement of organic contaminants from land-applied biosolids. J Environ Manage 2019;234:484-93. [PMID: 30641359 DOI: 10.1016/j.jenvman.2019.01.011] [Reference Citation Analysis]
90 Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res Int 2012;19:1044-65. [PMID: 22057832 DOI: 10.1007/s11356-011-0632-z] [Cited by in Crossref: 228] [Cited by in F6Publishing: 196] [Article Influence: 20.7] [Reference Citation Analysis]
91 Liu Y, Lu X, Wu F, Deng N. Adsorption and photooxidation of pharmaceuticals and personal care products on clay minerals. Reac Kinet Mech Cat 2011;104:61-73. [DOI: 10.1007/s11144-011-0349-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
92 Schenck K, Rosenblum L, Ramakrishnan B, Carson J, Macke D, Nietch C. Correlation of trace contaminants to wastewater management practices in small watersheds. Environ Sci : Processes Impacts 2015;17:956-64. [DOI: 10.1039/c4em00583j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
93 Jiang J, Pang S, Ma J. Oxidation of Triclosan by Permanganate (Mn(VII)): Importance of Ligands and In Situ Formed Manganese Oxides. Environ Sci Technol 2009;43:8326-31. [DOI: 10.1021/es901663d] [Cited by in Crossref: 138] [Cited by in F6Publishing: 118] [Article Influence: 10.6] [Reference Citation Analysis]
94 Phandanouvong-lozano V, Sun W, Sanders JM, Hay AG. Biochar does not attenuate triclosan's impact on soil bacterial communities. Chemosphere 2018;213:215-25. [DOI: 10.1016/j.chemosphere.2018.08.132] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
95 Rhodes-dicker L, Passeport E. Effects of cold-climate environmental factors temperature and salinity on benzotriazole adsorption and desorption in bioretention cells. Ecological Engineering 2019;127:58-65. [DOI: 10.1016/j.ecoleng.2018.11.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 4.3] [Reference Citation Analysis]
96 Tian H, Ma YJ, Li WY, Wang JW. Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environ Sci Pollut Res 2018;25:8963-75. [DOI: 10.1007/s11356-017-1186-5] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 6.8] [Reference Citation Analysis]
97 Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP. Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ Sci Technol 2010;44:6157-61. [PMID: 20704212 DOI: 10.1021/es1011115] [Cited by in Crossref: 281] [Cited by in F6Publishing: 238] [Article Influence: 23.4] [Reference Citation Analysis]
98 Sipahutar MK, Piapukiew J, Vangnai AS. Efficiency of the formulated plant-growth promoting Pseudomonas fluorescens MC46 inoculant on triclocarban treatment in soil and its effect on Vigna radiata growth and soil enzyme activities. Journal of Hazardous Materials 2018;344:883-92. [DOI: 10.1016/j.jhazmat.2017.11.046] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
99 Olaniyan LW, Mkwetshana N, Okoh AI. Triclosan in water, implications for human and environmental health. Springerplus 2016;5:1639. [PMID: 27722057 DOI: 10.1186/s40064-016-3287-x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 49] [Article Influence: 10.5] [Reference Citation Analysis]
100 Li H, Zhang W, Zhang Z, Zhang X. Sorption of triclosan to carbon nanotubes: The combined effects of sonication, functionalization and solution chemistry. Science of The Total Environment 2017;580:1318-26. [DOI: 10.1016/j.scitotenv.2016.12.095] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]