BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nycholat CM, Duan S, Knuplez E, Worth C, Elich M, Yao A, O'Sullivan J, McBride R, Wei Y, Fernandes SM, Zhu Z, Schnaar RL, Bochner BS, Paulson JC. A Sulfonamide Sialoside Analogue for Targeting Siglec-8 and -F on Immune Cells. J Am Chem Soc 2019;141:14032-7. [PMID: 31460762 DOI: 10.1021/jacs.9b05769] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021;9:669969. [PMID: 34046397 DOI: 10.3389/fchem.2021.669969] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Fan Z, Yao B, Ding Y, Xie M, Zhao J, Zhang K, Huang W. Electrochemiluminescence aptasensor for Siglec-5 detection based on MoS2@Au nanocomposites emitter and exonuclease III-powered DNA walker. Sens Actuators B Chem 2021;334:129592. [PMID: 33584010 DOI: 10.1016/j.snb.2021.129592] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
3 Metelkina O, Huck B, O'Connor JS, Koch M, Manz A, Lehr CM, Titz A. Targeting extracellular lectins of Pseudomonas aeruginosa with glycomimetic liposomes. J Mater Chem B 2022;10:537-48. [PMID: 34985094 DOI: 10.1039/d1tb02086b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 McCord KA, Macauley MS. Transgenic mouse models to study the physiological and pathophysiological roles of human Siglecs. Biochem Soc Trans 2022:BST20211203. [PMID: 35383825 DOI: 10.1042/BST20211203] [Reference Citation Analysis]
5 Lenza MP, Atxabal U, Oyenarte I, Jiménez-Barbero J, Ereño-Orbea J. Current Status on Therapeutic Molecules Targeting Siglec Receptors. Cells 2020;9:E2691. [PMID: 33333862 DOI: 10.3390/cells9122691] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
6 Yuge S, Tateishi A, Numata K, Ohmae M. Chemoenzymatic Synthesis of Sialyl Sulfo-Oligosaccharides as Potent Siglec-8 Ligands via Transglycosylation Catalyzed by Keratanase II. Biomacromolecules 2021. [PMID: 34914356 DOI: 10.1021/acs.biomac.1c01289] [Reference Citation Analysis]
7 Movsisyan LD, Macauley MS. Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem 2020;18:5784-97. [PMID: 32756649 DOI: 10.1039/d0ob01116a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Gonzalez-Gil A, Schnaar RL. Siglec Ligands. Cells 2021;10:1260. [PMID: 34065256 DOI: 10.3390/cells10051260] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Kroezen BS, Conti G, Girardi B, Cramer J, Jiang X, Rabbani S, Müller J, Kokot M, Luisoni E, Ricklin D, Schwardt O, Ernst B. A Potent Mimetic of the Siglec-8 Ligand 6'-Sulfo-Sialyl Lewisx. ChemMedChem 2020;15:1706-19. [PMID: 32744401 DOI: 10.1002/cmdc.202000417] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Jacobsen EA. Divergent Siglec-F(eights) of mouse and human eosinophil death. J Leukoc Biol 2020;108:9-11. [PMID: 32557797 DOI: 10.1002/JLB.5CE0520-108R] [Reference Citation Analysis]
11 van Houtum EJH, Büll C, Cornelissen LAM, Adema GJ. Siglec Signaling in the Tumor Microenvironment. Front Immunol 2021;12:790317. [PMID: 34966391 DOI: 10.3389/fimmu.2021.790317] [Reference Citation Analysis]
12 Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021;26:1040. [PMID: 33669465 DOI: 10.3390/molecules26041040] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina-Martin JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Emerging glyco-based strategies to steer immune responses. FEBS J 2021;288:4746-72. [PMID: 33752265 DOI: 10.1111/febs.15830] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Delaveris CS, Chiu SH, Riley NM, Bertozzi CR. Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc Natl Acad Sci U S A 2021;118:e2012408118. [PMID: 33431669 DOI: 10.1073/pnas.2012408118] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
15 Duan S, Arlian BM, Nycholat CM, Wei Y, Tateno H, Smith SA, Macauley MS, Zhu Z, Bochner BS, Paulson JC. Nanoparticles Displaying Allergen and Siglec-8 Ligands Suppress IgE-FcεRI-Mediated Anaphylaxis and Desensitize Mast Cells to Subsequent Antigen Challenge. J Immunol 2021;206:2290-300. [PMID: 33911007 DOI: 10.4049/jimmunol.1901212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Trebo A, Ditsch N, Degenhardt T, Kuhn C, Rahmeh M, Schmoeckel E, Mayr D, Czogalla B, Kolben T, Meister S, Mahner S, Jeschke U, Hester A. First Evidence for a Role of Siglec-8 in Breast Cancer. Int J Mol Sci 2021;22:2000. [PMID: 33670444 DOI: 10.3390/ijms22042000] [Reference Citation Analysis]
17 Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Reference Citation Analysis]
18 Youngblood BA, Leung J, Falahati R, Williams J, Schanin J, Brock EC, Singh B, Chang AT, O'Sullivan JA, Schleimer RP, Tomasevic N, Bebbington CR, Bochner BS. Discovery, Function, and Therapeutic Targeting of Siglec-8. Cells 2020;10:E19. [PMID: 33374255 DOI: 10.3390/cells10010019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
19 Knuplez E, Krier-Burris R, Cao Y, Marsche G, O'Sullivan J, Bochner BS. Frontline Science: Superior mouse eosinophil depletion in vivo targeting transgenic Siglec-8 instead of endogenous Siglec-F: Mechanisms and pitfalls. J Leukoc Biol 2020;108:43-58. [PMID: 32134149 DOI: 10.1002/JLB.3HI0120-381R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
20 Gotlib J, George TI, Carter MC, Austen KF, Bochner B, Dwyer DF, Lyons JJ, Hamilton MJ, Butterfield J, Bonadonna P, Weiler C, Galli SJ, Schwartz LB, Elberink HO, Maitland A, Theoharides T, Ustun C, Horny HP, Orfao A, Deininger M, Radia D, Jawhar M, Kluin-Nelemans H, Metcalfe DD, Arock M, Sperr WR, Valent P, Castells M, Akin C. Proceedings from the Inaugural American Initiative in Mast Cell Diseases (AIM) Investigator Conference. J Allergy Clin Immunol 2021;147:2043-52. [PMID: 33745886 DOI: 10.1016/j.jaci.2021.03.008] [Reference Citation Analysis]
21 O'Sullivan JA, Chang AT, Youngblood BA, Bochner BS. Eosinophil and mast cell Siglecs: From biology to drug target. J Leukoc Biol 2020;108:73-81. [PMID: 31965606 DOI: 10.1002/JLB.2MR0120-352RR] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
22 Biessen EAL, Van Berkel TJC. N-Acetyl Galactosamine Targeting: Paving the Way for Clinical Application of Nucleotide Medicines in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2021;41:2855-65. [PMID: 34645280 DOI: 10.1161/ATVBAHA.121.316290] [Reference Citation Analysis]
23 Pallister E, Gray CJ, Flitsch SL. Enzyme promiscuity of carbohydrate active enzymes and their applications in biocatalysis. Curr Opin Struct Biol 2020;65:184-92. [PMID: 32942240 DOI: 10.1016/j.sbi.2020.07.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]