BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sang JC, Meisl G, Thackray AM, Hong L, Ponjavic A, Knowles TPJ, Bujdoso R, Klenerman D. Direct Observation of Murine Prion Protein Replication in Vitro. J Am Chem Soc 2018;140:14789-98. [PMID: 30351023 DOI: 10.1021/jacs.8b08311] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Sun Y, Jack K, Ercolani T, Sangar D, Hosszu L, Collinge J, Bieschke J. Direct Observation of Competing Prion Protein Fibril Populations with Distinct Structures and Kinetics.. [DOI: 10.1101/2022.08.10.503301] [Reference Citation Analysis]
2 Meisl G, Xu CK, Taylor JD, Michaels TCT, Levin A, Otzen D, Klenerman D, Matthews S, Linse S, Andreasen M, Knowles TPJ. Uncovering the universality of self-replication in protein aggregation and its link to disease. Sci Adv 2022;8:eabn6831. [PMID: 35960802 DOI: 10.1126/sciadv.abn6831] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
3 Block AJ, Bartz JC. Prion strains: shining new light on old concepts. Cell Tissue Res 2022. [PMID: 35796874 DOI: 10.1007/s00441-022-03665-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Sinnige T. Molecular mechanisms of amyloid formation in living systems. Chem Sci 2022;13:7080-97. [PMID: 35799826 DOI: 10.1039/d2sc01278b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Meisl G, Xu CK, Taylor JD, Michaels TCT, Levin A, Otzen D, Klenerman D, Matthews S, Linse S, Andreasen M, Knowles TPJ. Uncovering the universality of self-replication in protein aggregation and its link to disease.. [DOI: 10.1101/2022.06.08.495339] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Meng JX, Zhang Y, Saman D, Haider AM, De S, Sang JC, Brown K, Jiang K, Humphrey J, Julian L, Hidari E, Lee SF, Balmus G, Floto RA, Bryant CE, Benesch JLP, Ye Y, Klenerman D. Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30461-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Meisl G, Hidari E, Allinson K, Rittman T, DeVos SL, Sanchez JS, Xu CK, Duff KE, Johnson KA, Rowe JB, Hyman BT, Knowles TPJ, Klenerman D. In vivo rate-determining steps of tau seed accumulation in Alzheimer's disease. Sci Adv 2021;7:eabh1448. [PMID: 34714685 DOI: 10.1126/sciadv.abh1448] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 29.0] [Reference Citation Analysis]
8 Cortez LM, Nemani SK, Duque Velásquez C, Sriraman A, Wang Y, Wille H, McKenzie D, Sim VL. Asymmetric-flow field-flow fractionation of prions reveals a strain-specific continuum of quaternary structures with protease resistance developing at a hydrodynamic radius of 15 nm. PLoS Pathog 2021;17:e1009703. [PMID: 34181702 DOI: 10.1371/journal.ppat.1009703] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
9 Sang JC, Hidari E, Meisl G, Ranasinghe RT, Spillantini MG, Klenerman D. Super-resolution imaging reveals α-synuclein seeded aggregation in SH-SY5Y cells. Commun Biol 2021;4:613. [PMID: 34021258 DOI: 10.1038/s42003-021-02126-w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]
10 Meisl G, Kurt T, Condado-Morales I, Bett C, Sorce S, Nuvolone M, Michaels TCT, Heinzer D, Avar M, Cohen SIA, Hornemann S, Aguzzi A, Dobson CM, Sigurdson CJ, Knowles TPJ. Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nat Struct Mol Biol 2021;28:365-72. [PMID: 33767451 DOI: 10.1038/s41594-021-00565-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
11 Yang J, Perrett S, Wu S. Single Molecule Characterization of Amyloid Oligomers. Molecules 2021;26:948. [PMID: 33670093 DOI: 10.3390/molecules26040948] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Hackl S, Ng XW, Lu D, Wohland T, Becker CFW. Cytoskeleton-dependent clustering of membrane-bound prion protein on the cell surface. J Biol Chem 2021;296:100359. [PMID: 33539927 DOI: 10.1016/j.jbc.2021.100359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Meisl G, Zuo Y, Allinson K, Rittman T, Devos S, Sanchez JS, Xu CK, Duff KE, Johnson KA, Rowe JB, Hyman BT, Knowles TPJ, Klenerman D. Amplification, not spreading limits rate of tau aggregate accumulation in Alzheimer’s disease.. [DOI: 10.1101/2020.11.16.384727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. Int J Mol Sci 2020;21:E4287. [PMID: 32560229 DOI: 10.3390/ijms21124287] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
15 Meisl G, Knowles TP, Klenerman D. The molecular processes underpinning prion-like spreading and seed amplification in protein aggregation. Curr Opin Neurobiol 2020;61:58-64. [PMID: 32092527 DOI: 10.1016/j.conb.2020.01.010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
16 Lau A, So RWL, Lau HHC, Sang JC, Ruiz-Riquelme A, Fleck SC, Stuart E, Menon S, Visanji NP, Meisl G, Faidi R, Marano MM, Schmitt-Ulms C, Wang Z, Fraser PE, Tandon A, Hyman BT, Wille H, Ingelsson M, Klenerman D, Watts JC. α-Synuclein strains target distinct brain regions and cell types. Nat Neurosci 2020;23:21-31. [PMID: 31792467 DOI: 10.1038/s41593-019-0541-x] [Cited by in Crossref: 118] [Cited by in F6Publishing: 123] [Article Influence: 39.3] [Reference Citation Analysis]
17 Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019;25:e3216. [PMID: 31713950 DOI: 10.1002/psc.3216] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
18 Sang JC, Lee JE, Dear AJ, De S, Meisl G, Thackray AM, Bujdoso R, Knowles TPJ, Klenerman D. Direct observation of prion protein oligomer formation reveals an aggregation mechanism with multiple conformationally distinct species. Chem Sci 2019;10:4588-97. [PMID: 31123569 DOI: 10.1039/c8sc05627g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
19 Mehra S, Sahay S, Maji SK. α-Synuclein misfolding and aggregation: Implications in Parkinson's disease pathogenesis. Biochim Biophys Acta Proteins Proteom 2019;1867:890-908. [PMID: 30853581 DOI: 10.1016/j.bbapap.2019.03.001] [Cited by in Crossref: 113] [Cited by in F6Publishing: 121] [Article Influence: 37.7] [Reference Citation Analysis]
20 Agerschou ED, Saridaki T, Flagmeier P, Galvagnion C, Komnig D, Nagpal A, Gasterich N, Heid L, Prasad V, Shaykhalishahi H, Voigt A, Willbold D, Dobson CM, Falkenburger BH, Hoyer W, Buell AK. An engineered monomer binding-protein forα-synuclein efficiently inhibits the proliferation of amyloid fibrils.. [DOI: 10.1101/568501] [Reference Citation Analysis]
21 De S, Klenerman D. Imaging individual protein aggregates to follow aggregation and determine the role of aggregates in neurodegenerative disease. Biochim Biophys Acta Proteins Proteom 2019;1867:870-8. [PMID: 30611780 DOI: 10.1016/j.bbapap.2018.12.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]