BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu D, He Z, Zhao Y, Yang Y, Shi W, Li X, Ma H. Xanthene-Based NIR-II Dyes for In Vivo Dynamic Imaging of Blood Circulation. J Am Chem Soc 2021;143:17136-43. [PMID: 34632770 DOI: 10.1021/jacs.1c07711] [Cited by in Crossref: 29] [Cited by in F6Publishing: 36] [Article Influence: 29.0] [Reference Citation Analysis]
Number Citing Articles
1 Paula Militello M, Porcal GV, Bertolotti SG, Previtali CM, Arbeloa EM. The effect of PAMAM dendrimers on the excited states of little-explored xanthene dyes. In search of eco-friendly photoinitiating systems. Journal of Photochemistry and Photobiology A: Chemistry 2023;434:114234. [DOI: 10.1016/j.jphotochem.2022.114234] [Reference Citation Analysis]
2 Wang X, Jiang Z, Liang Z, Wang T, Chen Y, Liu Z. Discovery of BODIPY J-aggregates with absorption maxima beyond 1200 nm for biophotonics. Sci Adv 2022;8. [DOI: 10.1126/sciadv.add5660] [Reference Citation Analysis]
3 Khan Z, Sekar N. Far-red to NIR emitting xanthene-based fluorophores. Dyes and Pigments 2022;208:110735. [DOI: 10.1016/j.dyepig.2022.110735] [Reference Citation Analysis]
4 Li J, Feng Z, Yu X, Wu D, Wu T, Qian J. Aggregation-induced emission fluorophores towards the second near-infrared optical windows with suppressed imaging background. Coordination Chemistry Reviews 2022;472:214792. [DOI: 10.1016/j.ccr.2022.214792] [Reference Citation Analysis]
5 Gao Y, Lei Z. The pursuit of xanthenoid fluorophores with near-infrared-II emission for in vivo applications. Anal Bioanal Chem 2022. [DOI: 10.1007/s00216-022-04463-z] [Reference Citation Analysis]
6 Long Y, Chen J, Zeng F, Wu S. An activatable NIR‐II fluorescent probe for tracking heavy‐metal ion and high‐level salt‐induced oxidative stress in plant sprouts. Aggregate 2022. [DOI: 10.1002/agt2.288] [Reference Citation Analysis]
7 Lan Q, Yu P, Yan K, Li X, Zhang F, Lei Z. Polymethine Molecular Platform for Ratiometric Fluorescent Probes in the Second near-Infrared Window. J Am Chem Soc 2022. [DOI: 10.1021/jacs.2c10041] [Reference Citation Analysis]
8 Liu S, Xu W, Li X, Pang DW, Xiong H. BOIMPY-Based NIR-II Fluorophore with High Brightness and Long Absorption beyond 1000 nm for In Vivo Bioimaging: Synergistic Steric Regulation Strategy. ACS Nano 2022. [PMID: 36239245 DOI: 10.1021/acsnano.2c08619] [Reference Citation Analysis]
9 Chen P, Qu F, Chen S, Li J, Shen Q, Sun P, Fan Q. Bandgap Modulation and Lipid Intercalation Generates Ultrabright D–A–D‐Based Zwitterionic Small‐Molecule Nanoagent for Precise NIR‐II Excitation Phototheranostic Applications. Adv Funct Materials. [DOI: 10.1002/adfm.202208463] [Reference Citation Analysis]
10 Cui L, Maeda M, Hisaeda Y, Ono T. Unsymmetric Molecular Hinges Showing Intramolecular Charge Transfer Excitation: Strong Photoluminescence Properties in the Red to Near-Infrared Region Exhibited by Tri-BF 2 Complexes. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c05511] [Reference Citation Analysis]
11 Li J, Pu R, He X, Chen Q, Liu S, Liu W, Li J. A Precipitation-Enhanced Emission (PEE) Strategy for Increasing the Brightness and Reducing the Liver Retention of NIR-II Fluorophores. Small 2022;:e2204153. [PMID: 36209389 DOI: 10.1002/smll.202204153] [Reference Citation Analysis]
12 Ma W, Quan X, Yan B. A dual-emission Eu(Ⅲ) functionalized multi-ligand MOFs for wide range pH sensing. Dyes and Pigments 2022;206:110648. [DOI: 10.1016/j.dyepig.2022.110648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Zhang C, An J, Wu J, Liu W, Rha H, Kim JS, Wang P. Structural modification of NIR-II fluorophores for angiography beyond 1300 nm: Expanding the xanthene universe. Biosens Bioelectron 2022;217:114701. [PMID: 36115125 DOI: 10.1016/j.bios.2022.114701] [Reference Citation Analysis]
14 Ma Y, Wang Z, Wang Y, Liu Z, Wang Y, Lv R. Coumarin derivative dye sensitized NaYGdF4:Yb,Er nanoparticles with enhanced NIR II luminescence for bio-vascular imaging. Journal of Rare Earths 2022. [DOI: 10.1016/j.jre.2022.08.013] [Reference Citation Analysis]
15 Chatterjee S, Shaik AK, Wijesinghe KH, Ndaleh D, Dass A, Hammer NI, Delcamp JH. Design and Synthesis of RhodIndolizine Dyes with Improved Stability and Shortwave Infrared Emission up to 1250 nm. J Org Chem 2022. [PMID: 35984405 DOI: 10.1021/acs.joc.2c00678] [Reference Citation Analysis]
16 Hu X, Chen Z, Ao H, Fan Q, Yang Z, Huang W. Rational Molecular Engineering of Organic Semiconducting Nanoplatforms for Advancing NIR‐II Fluorescence Theranostics. Advanced Optical Materials. [DOI: 10.1002/adom.202201067] [Reference Citation Analysis]
17 Li C, Guan X, Zhang X, Zhou D, Son S, Xu Y, Deng M, Guo Z, Sun Y, Kim JS. NIR-II bioimaging of small molecule fluorophores: From basic research to clinical applications. Biosens Bioelectron 2022;216:114620. [PMID: 36001931 DOI: 10.1016/j.bios.2022.114620] [Reference Citation Analysis]
18 Wu L, Zhao Q, Wang Q, Zhang Q, Yang F, Zheng B, Hu H, Xing N. Membrane dual-targeting probes: A promising strategy for fluorescence-guided prostate cancer surgery and lymph node metastases detection. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.07.018] [Reference Citation Analysis]
19 Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Lv S, Liu Y, Zhao Y, Fan X, Lv F, Feng E, Liu D, Song F. Rational design of a small organic photosensitizer for NIR-I imaging-guided synergistic photodynamic and photothermal therapy. Biomater Sci 2022. [PMID: 35852125 DOI: 10.1039/d2bm00661h] [Reference Citation Analysis]
21 Zhang L, Zhang Y, Chi W, Yan C, Zhao Z, Liu X, Zhu W, Guo Z. “Crossbreeding” Small-Molecular Weight NIR-II Flavchromenes Endows Activatable Multiplexed In Vivo Imaging. ACS Materials Lett . [DOI: 10.1021/acsmaterialslett.2c00451] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Lv F, Fan X, Liu D, Song F. Photothermal agents based on small organic fluorophores with intramolecular motion. Acta Biomater 2022:S1742-7061(22)00398-1. [PMID: 35817339 DOI: 10.1016/j.actbio.2022.07.004] [Reference Citation Analysis]
23 Chen Y, Hu Z, Yang M, Gao J, Luo J, Li H, Yuan Z. Monitoring the different changing behaviors of •OH and cysteine in two ferroptosis pathways by a dual-functional fluorescence probe. Sensors and Actuators B: Chemical 2022;362:131742. [DOI: 10.1016/j.snb.2022.131742] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Zhang C, Wu J, Liu W, Zhang W, Lee CS, Wang P. New Xanthene Dyes with NIR-II Emission Beyond 1200 nm for Efficient Tumor Angiography and Photothermal Therapy. Small 2022;:e2202078. [PMID: 35730913 DOI: 10.1002/smll.202202078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Yang Y, Sun C, Wang S, Yan K, Zhao M, Wu B, Zhang F. Counterion-Paired Bright Heptamethine Fluorophores with NIR-II Excitation and Emission Enable Multiplexed Biomedical Imaging. Angew Chem Int Ed Engl 2022;61:e202117436. [PMID: 35294084 DOI: 10.1002/anie.202117436] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Li Q, Liu Y, Zhao B, Lei J, Lu S, Gong W, Liang K, Wu J, Hong X, Xiao Y. A single-molecular ruthenium(II) complex-based NIR-II fluorophore for enhanced chemo-photothermal therapy. Chem Commun (Camb) 2022;58:6546-9. [PMID: 35579558 DOI: 10.1039/d2cc00082b] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Bai X, Tan W, Abdurahman A, Li X, Li F. Stable red nanoparticles loaded neutral luminescent radicals for fluorescence imaging. Dyes and Pigments 2022;202:110260. [DOI: 10.1016/j.dyepig.2022.110260] [Reference Citation Analysis]
28 Qin Z, Ren TB, Zhou H, Zhang X, He L, Li Z, Zhang XB, Yuan L. NIRII-HDs: A Versatile Platform for Developing Activatable NIR-II Fluorogenic Probes for Reliable In Vivo Analyte Sensing. Angew Chem Int Ed Engl 2022;61:e202201541. [PMID: 35218130 DOI: 10.1002/anie.202201541] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
29 Xu W, Yang Q, Zeng J, Tan L, Zhou L, Peng L, Zhou Y, Xie C, Luo K, Zhang Z. A biomarker (ONOO-)-activated multicolor fluorescent probe for early detection and assessment of arthritis. Sensors and Actuators B: Chemical 2022;359:131565. [DOI: 10.1016/j.snb.2022.131565] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Yang Y, Sun C, Wang S, Yan K, Zhao M, Wu B, Zhang F. Counterion‐Paired Bright Heptamethine Fluorophores with NIR‐II Excitation and Emission Enable Multiplexed Biomedical Imaging. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202117436] [Reference Citation Analysis]
31 Singh R, Pradeep CP. Mono- and Rare Trinuclear Zn(II) Complexes with Near-Infrared Emissive Ligands: Anion-Responsive Nuclearity Control, Interconversion, Solid-State NIR Emission, and Latent Fingerprint Imaging. Crystal Growth & Design 2022;22:2910-24. [DOI: 10.1021/acs.cgd.1c01319] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Wong KCY, Sletten EM. Extending optical chemical tools and technologies to mice by shifting to the shortwave infrared region. Curr Opin Chem Biol 2022;68:102131. [PMID: 35366502 DOI: 10.1016/j.cbpa.2022.102131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Wu J, Han C, Cao X, Lv Z, Wang C, Huo X, Feng L, Zhang B, Tian X, Ma X. Mitochondria targeting fluorescent probe for MAO-A and the application in the development of drug candidate for neuroinflammation. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339573] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Fan J, Miao J, Li N, Zeng Y, Ye C, Yin X, Yang C. A dual rigid donor and acceptor enabling red thermally activated delayed fluorescence emitters for efficient OLEDs with low efficiency roll-off. J Mater Chem C 2022;10:10255-61. [DOI: 10.1039/d2tc02146c] [Reference Citation Analysis]
35 Brøndsted F, Stains CI. Heteroatom-Substituted Xanthene Fluorophores Enter the Shortwave-Infrared Region. Photochem Photobiol 2021. [PMID: 34953073 DOI: 10.1111/php.13578] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Liu P, Chen S, Zhao W, Wang Q, Wu S, Xu L, Bai D. Novel Pyrazine-Bridged D-A-D Type Charge Neutral Probe for Membrane Permeable Long-Term Live Cell Imaging. Front Chem 2021;9:782827. [PMID: 34926403 DOI: 10.3389/fchem.2021.782827] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]