BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li S, Goins B, Zhang L, Bao A. Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 2012;23:1322-32. [PMID: 22577859 DOI: 10.1021/bc300175d] [Cited by in Crossref: 119] [Cited by in F6Publishing: 130] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Esim O, Hascicek C. Cancer Nanotheranostics. Advances in Novel Formulations for Drug Delivery 2023. [DOI: 10.1002/9781394167708.ch22] [Reference Citation Analysis]
2 Ahmadi M, Emzhik M, Mosayebnia M. Nanoparticles labeled with gamma-emitting radioisotopes: an attractive approach for in vivo tracking using SPECT imaging. Drug Deliv Transl Res 2023. [PMID: 36811810 DOI: 10.1007/s13346-023-01291-1] [Reference Citation Analysis]
3 Mallik S, Seth S. Nanotheranostics in CNS Malignancy. Design and Applications of Theranostic Nanomedicines 2023. [DOI: 10.1016/b978-0-323-89953-6.00013-1] [Reference Citation Analysis]
4 Bhosale A, Paul G, Mazahir F, Yadav A. Theoretical and applied concepts of nanocarriers for the treatment of Parkinson's diseases. OpenNano 2023;9:100111. [DOI: 10.1016/j.onano.2022.100111] [Reference Citation Analysis]
5 Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022;14. [PMID: 36559301 DOI: 10.3390/pharmaceutics14122808] [Reference Citation Analysis]
6 Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022;20:395. [PMID: 36045386 DOI: 10.1186/s12951-022-01605-4] [Reference Citation Analysis]
7 Cheng X, Yan H, Pang S, Ya M, Qiu F, Qin P, Zeng C, Lu Y. Liposomes as Multifunctional Nano-Carriers for Medicinal Natural Products. Front Chem 2022;10:963004. [DOI: 10.3389/fchem.2022.963004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Poletto G, Cecchin D, Bartoletti P, Venturini F, Realdon N, Evangelista L. Radionuclide Delivery Strategies in Tumor Treatment: A Systematic Review. Curr Issues Mol Biol 2022;44:3267-82. [PMID: 35892711 DOI: 10.3390/cimb44080225] [Reference Citation Analysis]
9 Das RP, Gandhi VV, Verma G, Ajish JK, Singh BG, Kunwar A. Gelatin-lecithin-F127 gel mediated self-assembly of curcumin vesicles for enhanced wound healing. Int J Biol Macromol 2022;210:403-14. [PMID: 35526768 DOI: 10.1016/j.ijbiomac.2022.04.134] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
11 Sankaranarayanan SA, Singh SP, Rengan AK. Theranostics: Principles, Materials, and Technical Advancements. BioSensing, Theranostics, and Medical Devices 2022. [DOI: 10.1007/978-981-16-2782-8_13] [Reference Citation Analysis]
12 Fernandes DA. Theranostic Nanoparticles for Therapy and Imaging in Cancer Detection. Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications 2022. [DOI: 10.1007/978-3-031-09636-5_6] [Reference Citation Analysis]
13 De A, Das S, Ghosh S, Das B, Samanta S, Bhattacharya B, Samanta A. Theranostic nanovesicles. Applications of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91865-7.00001-8] [Reference Citation Analysis]
14 Misra SK, Pathak K. Functionalized liposomes: a nanovesicular system. Systems of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91864-0.00012-7] [Reference Citation Analysis]
15 Ovejero JG, Wang E, Veintemillas-verdaguer S, Morales MDP, Sorolla A. Nanoparticles for Neural Applications. Engineering Biomaterials for Neural Applications 2022. [DOI: 10.1007/978-3-030-81400-7_7] [Reference Citation Analysis]
16 Gültekin HE, Oner E, İlhan M, Karpuz M. Nanovesicles for intravenous drug delivery. Applications of Nanovesicular Drug Delivery 2022. [DOI: 10.1016/b978-0-323-91865-7.00018-3] [Reference Citation Analysis]
17 Bonnet S, Elfatairi R, Franconi F, Roger E, Legeay S. Organic nanoparticle tracking during pharmacokinetic studies. Nanomedicine (Lond) 2021;16:2539-6. [PMID: 34814704 DOI: 10.2217/nnm-2021-0155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev 2021;176:113851. [PMID: 34224787 DOI: 10.1016/j.addr.2021.113851] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 37.5] [Reference Citation Analysis]
19 Song J, Baeg Y, Jeong H, Lee J, Oh D, Hollmann F, Park J. Bacterial Outer Membrane Vesicles as Nano‐Scale Bioreactors: A Fatty Acid Conversion Case Study. ChemCatChem 2021;13:4080-6. [DOI: 10.1002/cctc.202100778] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Johnson KK, Koshy P, Yang J, Sorrell CC. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. Adv Funct Mater 2021;31:2104199. [DOI: 10.1002/adfm.202104199] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
21 Skupin-Mrugalska P, Zalewski T, Elvang PA, Nowaczyk G, Czajkowski M, Piotrowska-Kempisty H. Insight into theranostic nanovesicles prepared by thin lipid hydration and microfluidic method. Colloids Surf B Biointerfaces 2021;205:111871. [PMID: 34051668 DOI: 10.1016/j.colsurfb.2021.111871] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021;601:120571. [PMID: 33812967 DOI: 10.1016/j.ijpharm.2021.120571] [Cited by in Crossref: 94] [Cited by in F6Publishing: 109] [Article Influence: 47.0] [Reference Citation Analysis]
23 Das S, Imlimthan S, Airaksinen AJ, Sarparanta M. Radiolabeling of Theranostic Nanosystems. Adv Exp Med Biol 2021;1295:49-76. [PMID: 33543455 DOI: 10.1007/978-3-030-58174-9_3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Anik MI, Hossain MK, Hossain I, Ahmed I, Doha RM. Biomedical applications of magnetic nanoparticles. Magnetic Nanoparticle-Based Hybrid Materials 2021. [DOI: 10.1016/b978-0-12-823688-8.00002-8] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Misra R, Acharya S. Smart nanotheranostic hydrogels for on-demand cancer management. Drug Discov Today 2021;26:344-59. [PMID: 33212236 DOI: 10.1016/j.drudis.2020.11.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Capriotti G, Varani M, Lauri C, Franchi G, Pizzichini P, Signore A. Copper-64 labeled nanoparticles for positron emission tomography imaging: a review of the recent literature. Q J Nucl Med Mol Imaging 2020;64:346-55. [PMID: 33073558 DOI: 10.23736/S1824-4785.20.03315-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
27 Bhatia R, Sharma A, Narang RK, Rawal RK. Recent Nanocarrier Approaches for Targeted Drug Delivery in Cancer Therapy. Curr Mol Pharmacol 2021;14:350-66. [PMID: 32744982 DOI: 10.2174/1874467213666200730114943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Hindley JW, Law RV, Ces O. Membrane functionalization in artificial cell engineering. SN Appl Sci 2020;2. [DOI: 10.1007/s42452-020-2357-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
29 Chiari-andréo BG, Abuçafy MP, Manaia EB, da Silva BL, Rissi NC, Oshiro-júnior JA, Chiavacci LA. Drug Delivery Using Theranostics: An Overview of its Use, Advantages and Safety Assessment. CNANO 2020;16:3-14. [DOI: 10.2174/1573413715666190618162321] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
30 Karpuz M, Gunay MS, Ozer AY. Liposomes and phytosomes for phytoconstituents. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents 2020. [DOI: 10.1016/b978-0-12-819666-3.00018-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Theochari I, Xenakis A, Papadimitriou V. Nanocarriers for effective drug delivery. Smart Nanocontainers 2020. [DOI: 10.1016/b978-0-12-816770-0.00019-8] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
32 Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 2020;10:26777-91. [DOI: 10.1039/d0ra03491f] [Cited by in Crossref: 124] [Cited by in F6Publishing: 132] [Article Influence: 41.3] [Reference Citation Analysis]
33 Forte E, Fiorenza D, Torino E, Costagliola di Polidoro A, Cavaliere C, Netti PA, Salvatore M, Aiello M. Radiolabeled PET/MRI Nanoparticles for Tumor Imaging. J Clin Med 2019;9:E89. [PMID: 31905769 DOI: 10.3390/jcm9010089] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
34 Jaymand M. Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a de Novo Clinical Approach against Cancer? ACS Biomater Sci Eng 2020;6:134-66. [DOI: 10.1021/acsbiomaterials.9b00802] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
35 Wang L, Song Y, Parikh A, Joyce P, Chung R, Liu L, Afinjuomo F, Hayball JD, Petrovsky N, Barclay TG, Garg S. Doxorubicin-Loaded Delta Inulin Conjugates for Controlled and Targeted Drug Delivery: Development, Characterization, and In Vitro Evaluation. Pharmaceutics 2019;11:E581. [PMID: 31698755 DOI: 10.3390/pharmaceutics11110581] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
36 Le NTT, Cao VD, Nguyen TNQ, Le TTH, Tran TT, Hoang Thi TT. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int J Mol Sci 2019;20:E4706. [PMID: 31547569 DOI: 10.3390/ijms20194706] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
37 Burke BP, Cawthorne C, Archibald SJ. Multimodal nanoparticle imaging agents: design and applications. Philos Trans A Math Phys Eng Sci 2017;375:20170261. [PMID: 29038384 DOI: 10.1098/rsta.2017.0261] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 10.5] [Reference Citation Analysis]
38 Edelman R, Assaraf YG, Slavkin A, Dolev T, Shahar T, Livney YD. Developing Body-Components-Based Theranostic Nanoparticles for Targeting Ovarian Cancer. Pharmaceutics 2019;11:E216. [PMID: 31060303 DOI: 10.3390/pharmaceutics11050216] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
39 Yang T, Du G, Cui Y, Yu R, Hua C, Tian W, Zhang Y. pH-sensitive doxorubicin-loaded polymeric nanocomplex based on β-cyclodextrin for liver cancer-targeted therapy. Int J Nanomedicine 2019;14:1997-2010. [PMID: 30962684 DOI: 10.2147/IJN.S193170] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
40 Man F, Gawne PJ, T M de Rosales R. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev 2019;143:134-60. [PMID: 31170428 DOI: 10.1016/j.addr.2019.05.012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 13.8] [Reference Citation Analysis]
41 Liu CH, Tandon P, Russell LM. Translational Nanodiagnostics for In Vivo Cancer Detection. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
42 Skupin-mrugalska P. Liposome-Based Drug Delivery for Lung Cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer 2019. [DOI: 10.1016/b978-0-12-815720-6.00006-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Zamboni CG, Farahani K, Green JJ. Image-Guided Drug Delivery. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_15] [Reference Citation Analysis]
44 Ul Ain Q. Current and Future Aspects of Smart Nanotheranostic Agents in Cancer Therapeutics. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_10] [Reference Citation Analysis]
45 Hajdu I, Makhlouf A, Solomon VR, Michel D, Al-Dulaymi M, Wasan KM, Fonge H, Badea I. A 89Zr-labeled lipoplex nanosystem for image-guided gene delivery: design, evaluation of stability and in vivo behavior. Int J Nanomedicine 2018;13:7801-18. [PMID: 30538460 DOI: 10.2147/IJN.S179806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
46 Kleynhans J, Grobler AF, Ebenhan T, Sathekge MM, Zeevaart J. Radiopharmaceutical enhancement by drug delivery systems: A review. Journal of Controlled Release 2018;287:177-93. [DOI: 10.1016/j.jconrel.2018.08.008] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
47 Karpuz M, Silindir-Gunay M, Ozer AY. Current and Future Approaches for Effective Cancer Imaging and Treatment. Cancer Biother Radiopharm 2018;33:39-51. [PMID: 29634415 DOI: 10.1089/cbr.2017.2378] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 4.6] [Reference Citation Analysis]
48 Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK. The evolution of gadolinium based contrast agents: from single-modality to multi-modality. Nanoscale 2016;8:10491-510. [PMID: 27159645 DOI: 10.1039/c6nr00267f] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 11.0] [Reference Citation Analysis]
49 Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019;15:1-18. [PMID: 30581608 DOI: 10.1016/j.jare.2018.06.005] [Cited by in Crossref: 418] [Cited by in F6Publishing: 447] [Article Influence: 83.6] [Reference Citation Analysis]
50 Bolognesi G, Friddin MS, Salehi-Reyhani A, Barlow NE, Brooks NJ, Ces O, Elani Y. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat Commun 2018;9:1882. [PMID: 29760422 DOI: 10.1038/s41467-018-04282-w] [Cited by in Crossref: 89] [Cited by in F6Publishing: 91] [Article Influence: 17.8] [Reference Citation Analysis]
51 Ehlerding EB, Grodzinski P, Cai W, Liu CH. Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 2018;12:2106-21. [PMID: 29462554 DOI: 10.1021/acsnano.7b07252] [Cited by in Crossref: 94] [Cited by in F6Publishing: 100] [Article Influence: 18.8] [Reference Citation Analysis]
52 Ardizzone A, Kurhuzenkau S, Illa-Tuset S, Faraudo J, Bondar M, Hagan D, Van Stryland EW, Painelli A, Sissa C, Feiner N, Albertazzi L, Veciana J, Ventosa N. Nanostructuring Lipophilic Dyes in Water Using Stable Vesicles, Quatsomes, as Scaffolds and Their Use as Probes for Bioimaging. Small 2018;14:e1703851. [PMID: 29573545 DOI: 10.1002/smll.201703851] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
53 Wang J, Dong Y, Li Y, Li W, Cheng K, Qian Y, Xu G, Zhang X, Hu L, Chen P, Du W, Feng X, Zhao Y, Zhang Z, Liu B. Designer Exosomes for Active Targeted Chemo-Photothermal Synergistic Tumor Therapy. Adv Funct Mater 2018;28:1707360. [DOI: 10.1002/adfm.201707360] [Cited by in Crossref: 93] [Cited by in F6Publishing: 97] [Article Influence: 18.6] [Reference Citation Analysis]
54 Skupin-mrugalska P, Sobotta L, Warowicka A, Wereszczynska B, Zalewski T, Gierlich P, Jarek M, Nowaczyk G, Kempka M, Gapinski J, Jurga S, Mielcarek J. Theranostic liposomes as a bimodal carrier for magnetic resonance imaging contrast agent and photosensitizer. Journal of Inorganic Biochemistry 2018;180:1-14. [DOI: 10.1016/j.jinorgbio.2017.11.025] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 6.4] [Reference Citation Analysis]
55 Zeng G, Liu M, Jiang R, Huang Q, Huang L, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature. Materials Science and Engineering: C 2018;83:154-9. [DOI: 10.1016/j.msec.2017.11.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
56 Nam M, Lee J, Lee KY, Kim J. Sequential Targeted Delivery of Liposomes to Ischemic Tissues by Controlling Blood Vessel Permeability. ACS Biomater Sci Eng 2018;4:532-8. [PMID: 33418742 DOI: 10.1021/acsbiomaterials.7b00815] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
57 Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Int J Mol Sci 2018;19:E195. [PMID: 29315231 DOI: 10.3390/ijms19010195] [Cited by in Crossref: 233] [Cited by in F6Publishing: 242] [Article Influence: 46.6] [Reference Citation Analysis]
58 Martinez JO, Molinaro R, Hartman KA, Boada C, Sukhovershin R, De Rosa E, Kirui D, Zhang S, Evangelopoulos M, Carter AM, Bibb JA, Cooke JP, Tasciotti E. Biomimetic nanoparticles with enhanced affinity towards activated endothelium as versatile tools for theranostic drug delivery. Theranostics 2018;8:1131-45. [PMID: 29464004 DOI: 10.7150/thno.22078] [Cited by in Crossref: 70] [Cited by in F6Publishing: 71] [Article Influence: 14.0] [Reference Citation Analysis]
59 Mendes M, Sousa J, Pais A, Vitorino C. Clinical applications of nanostructured drug delivery systems. Core-Shell Nanostructures for Drug Delivery and Theranostics 2018. [DOI: 10.1016/b978-0-08-102198-9.00004-1] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
60 Cheung C, Al-jamal WT. Liposomes-Based Nanoparticles for Cancer Therapy and Bioimaging. Nanooncology 2018. [DOI: 10.1007/978-3-319-89878-0_2] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
61 . Derivatives of Macrocyclic Polyamines as Nanovector Materials. Macrocyclic Polyamines 2017. [DOI: 10.1002/9783527804108.ch4] [Reference Citation Analysis]
62 Victor SP, Gayathri Devi MG, Paul W, Vijayan VM, Muthu J, Sharma CP. Europium Doped Calcium Deficient Hydroxyapatite as Theranostic Nanoplatforms: Effect of Structure and Aspect Ratio. ACS Biomater Sci Eng 2017;3:3588-95. [PMID: 33445393 DOI: 10.1021/acsbiomaterials.7b00453] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
63 Drude N, Tienken L, Mottaghy FM. Theranostic and nanotheranostic probes in nuclear medicine. Methods 2017;130:14-22. [DOI: 10.1016/j.ymeth.2017.07.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
64 Wan J, Wu W, Zhang R, Liu S, Huang Y. Anti-EGFR antibody conjugated silica nanoparticles as probes for lung cancer detection. Exp Ther Med 2017;14:3407-12. [PMID: 29042926 DOI: 10.3892/etm.2017.4988] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
65 Hassan S, Prakash G, Ozturk A, Saghazadeh S, Sohail MF, Seo J, Dockmeci M, Zhang YS, Khademhosseini A. Evolution and Clinical Translation of Drug Delivery Nanomaterials. Nano Today 2017;15:91-106. [PMID: 29225665 DOI: 10.1016/j.nantod.2017.06.008] [Cited by in Crossref: 146] [Cited by in F6Publishing: 126] [Article Influence: 24.3] [Reference Citation Analysis]
66 Naeem S, Viswanathan G, Misran MB. Liposomes as colloidal nanovehicles: on the road to success in intravenous drug delivery. Reviews in Chemical Engineering 2018;34:365-83. [DOI: 10.1515/revce-2016-0018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
67 Zamboni CG, Kozielski KL, Vaughan HJ, Nakata MM, Kim J, Higgins LJ, Pomper MG, Green JJ. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release 2017;263:18-28. [PMID: 28351668 DOI: 10.1016/j.jconrel.2017.03.384] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 6.7] [Reference Citation Analysis]
68 Keselman P, Yu EY, Zhou XY, Goodwill PW, Chandrasekharan P, Ferguson RM, Khandhar AP, Kemp SJ, Krishnan KM, Zheng B, Conolly SM. Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging. Phys Med Biol 2017;62:3440-53. [PMID: 28177301 DOI: 10.1088/1361-6560/aa5f48] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 6.5] [Reference Citation Analysis]
69 Guler E, Demir B, Guler B, Demirkol DO, Timur S. BiofuNctionalized nanomaterials for targeting cancer cells. Nanostructures for Cancer Therapy 2017. [DOI: 10.1016/b978-0-323-46144-3.00003-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
70 Bailey CM, Nagarajan R, Camesano TA. Designing Polymer Micelles of Controlled Size, Stability, and Functionality for siRNA Delivery. ACS Symposium Series 2017. [DOI: 10.1021/bk-2017-1271.ch002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
71 Goins B, Bao A, Phillips WT. Techniques for Loading Technetium-99m and Rhenium-186/188 Radionuclides into Preformed Liposomes for Diagnostic Imaging and Radionuclide Therapy. Methods Mol Biol 2017;1522:155-78. [PMID: 27837538 DOI: 10.1007/978-1-4939-6591-5_13] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
72 Jain A, Jain SK. Application Potential of Engineered Liposomes in Tumor Targeting. Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics 2017. [DOI: 10.1016/b978-0-323-52725-5.00009-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
73 Riaz MK, Tyagi D, Yang Z. Surface Engineering: Incorporation of Bioactive Compound. Bioactivity of Engineered Nanoparticles 2017. [DOI: 10.1007/978-981-10-5864-6_6] [Reference Citation Analysis]
74 Tammam SN, Lamprecht A. Nanostructures in Drug Delivery. Pharmaceutical Nanotechnology: Innovation and Production 2016. [DOI: 10.1002/9783527800681.ch6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
75 Edmonds S, Volpe A, Shmeeda H, Parente-Pereira AC, Radia R, Baguña-Torres J, Szanda I, Severin GW, Livieratos L, Blower PJ, Maher J, Fruhwirth GO, Gabizon A, T M de Rosales R. Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines. ACS Nano 2016;10:10294-307. [PMID: 27781436 DOI: 10.1021/acsnano.6b05935] [Cited by in Crossref: 58] [Cited by in F6Publishing: 64] [Article Influence: 8.3] [Reference Citation Analysis]
76 Tran N, Bye N, Moffat BA, Wright DK, Cuddihy A, Hinton TM, Hawley AM, Reynolds NP, Waddington LJ, Mulet X, Turnley AM, Morganti-Kossmann MC, Muir BW. Dual-modality NIRF-MRI cubosomes and hexosomes: High throughput formulation and in vivo biodistribution. Mater Sci Eng C Mater Biol Appl 2017;71:584-93. [PMID: 27987748 DOI: 10.1016/j.msec.2016.10.028] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 6.7] [Reference Citation Analysis]
77 Song X, Feng L, Liang C, Gao M, Song G, Liu Z. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy. Nano Res 2017;10:1200-12. [DOI: 10.1007/s12274-016-1274-8] [Cited by in Crossref: 109] [Cited by in F6Publishing: 88] [Article Influence: 15.6] [Reference Citation Analysis]
78 Boissenot T, Fattal E, Bordat A, Houvenagel S, Valette J, Chacun H, Gueutin C, Tsapis N. Paclitaxel-loaded PEGylated nanocapsules of perfluorooctyl bromide as theranostic agents. Eur J Pharm Biopharm 2016;108:136-44. [PMID: 27594209 DOI: 10.1016/j.ejpb.2016.08.017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
79 Xing H, Hwang K, Lu Y. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics 2016;6:1336-52. [PMID: 27375783 DOI: 10.7150/thno.15464] [Cited by in Crossref: 154] [Cited by in F6Publishing: 165] [Article Influence: 22.0] [Reference Citation Analysis]
80 Victor SP, Paul W, Vineeth VM, Komeri R, Jayabalan M, Sharma CP. Neodymium doped hydroxyapatite theranostic nanoplatforms for colon specific drug delivery applications. Colloids Surf B Biointerfaces 2016;145:539-47. [PMID: 27281239 DOI: 10.1016/j.colsurfb.2016.05.067] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
81 Chakravarty R, Hong H, Cai W. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature. Curr Drug Targets 2015;16:592-609. [PMID: 25182469 DOI: 10.2174/1389450115666140902125657] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 4.7] [Reference Citation Analysis]
82 Silva ES, Pinheiro CS, Quintella CM, Ferreira F, C Pacheco LG, Alcântara-Neves NM. Advances in patent applications related to allergen immunotherapy. Expert Opin Ther Pat 2016;26:657-68. [PMID: 27011299 DOI: 10.1517/13543776.2016.1170809] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
83 Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P. Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv 2016;34:768-89. [PMID: 27090752 DOI: 10.1016/j.biotechadv.2016.04.001] [Cited by in Crossref: 102] [Cited by in F6Publishing: 114] [Article Influence: 14.6] [Reference Citation Analysis]
84 Goins B, Phillips WT, Bao A. Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy. Expert Opin Drug Deliv 2016;13:873-89. [PMID: 26981891 DOI: 10.1517/17425247.2016.1167035] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
85 Wali S, Gupta R, Yu JJ, Mfuh A, Gao X, Guentzel MN, Chambers JP, Abu Bakar S, Zhong G, Arulanandam BP. Guinea pig genital tract lipidome reveals in vivo and in vitro regulation of phosphatidylcholine 16:0/18:1 and contribution to Chlamydia trachomatis serovar D infectivity. Metabolomics 2016;12:74. [PMID: 27642272 DOI: 10.1007/s11306-016-0998-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
86 Wang G. Liposomes as Drug Delivery Vehicles. Drug Delivery 2016. [DOI: 10.1002/9781118833322.ch13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
87 Mendes R, Carreira B, Baptista PV, Fernandes AR. Non-small cell lung cancer biomarkers and targeted therapy - two faces of the same coin fostered by nanotechnology. Expert Review of Precision Medicine and Drug Development 2016;1:155-68. [DOI: 10.1080/23808993.2016.1159914] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
88 Rokka J, Snellman A, Kaasalainen M, Salonen J, Zona C, La Ferla B, Nicotra F, Re F, Masserini M, Forsback S, Lopez-Picon F, Rinne JO, Haaparanta-Solin M, Solin O. (18)F-labeling syntheses and preclinical evaluation of functionalized nanoliposomes for Alzheimer's disease. Eur J Pharm Sci 2016;88:257-66. [PMID: 26993963 DOI: 10.1016/j.ejps.2016.03.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
89 Barlas FB, Demir B, Guler E, Senisik AM, Arican HA, Unak P, Timur S. Multimodal theranostic assemblies: double encapsulation of protoporphyrine-IX/Gd 3+ in niosomes. RSC Adv 2016;6:30217-25. [DOI: 10.1039/c5ra26737d] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.6] [Reference Citation Analysis]
90 Wang H, Zhou S. Magnetic and fluorescent carbon-based nanohybrids for multi-modal imaging and magnetic field/NIR light responsive drug carriers. Biomater Sci 2016;4:1062-73. [DOI: 10.1039/c6bm00262e] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
91 Pitchaimani A, Thanh Nguyen TD, Wang H, Bossmann SH, Aryal S. Design and characterization of gadolinium infused theranostic liposomes. RSC Adv 2016;6:36898-905. [DOI: 10.1039/c6ra00552g] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.9] [Reference Citation Analysis]
92 Yue X, Dai Z. Multifunctional Liposomes for Imaging-Guided Therapy. Springer Series in Biomaterials Science and Engineering 2016. [DOI: 10.1007/978-3-662-48544-6_10] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
93 Kiani A, Esquevin A, Lepareur N, Bourguet P, Le Jeune F, Gauvrit J. Main applications of hybrid PET-MRI contrast agents: a review. Contrast Media Mol Imaging 2016;11:92-8. [PMID: 26632007 DOI: 10.1002/cmmi.1674] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
94 Ito K, Hamamichi S, Asano M, Hori Y, Matsui J, Iwata M, Funahashi Y, Umeda IO, Fujii H. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Sci 2016;107:60-7. [PMID: 26509883 DOI: 10.1111/cas.12841] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
95 Nguyen T, Tekrony A, Yaehne K, Cramb DT. Designing a better theranostic nanocarrier for cancer applications. Nanomedicine (Lond) 2014;9:2371-86. [PMID: 25413855 DOI: 10.2217/nnm.14.110] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
96 Jin S, Li S, Wang C, Liu J, Yang X, Wang PC, Zhang X, Liang XJ. Biosafe nanoscale pharmaceutical adjuvant materials. J Biomed Nanotechnol 2014;10:2393-419. [PMID: 25429253 DOI: 10.1166/jbn.2014.1898] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
97 Agrawal U, Gupta M, Jadon RS, Sharma R, Vyas SP. Multifunctional nanomedicines: potentials and prospects. Drug Deliv Transl Res 2013;3:479-97. [PMID: 25788355 DOI: 10.1007/s13346-012-0123-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
98 Felber M, Bauwens M, Mateos JM, Imstepf S, Mottaghy FM, Alberto R. 99m Tc Radiolabeling and Biological Evaluation of Nanoparticles Functionalized with a Versatile Coating Ligand. Chem Eur J 2015;21:6090-9. [DOI: 10.1002/chem.201405704] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
99 Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015;10:975-99. [PMID: 25678787 DOI: 10.2147/IJN.S68861] [Cited by in Crossref: 1173] [Cited by in F6Publishing: 1222] [Article Influence: 146.6] [Reference Citation Analysis]
100 Janjic JM, Bai M. Design and Development of Theranostic Nanomedicines. Nanotechnology for Biomedical Imaging and Diagnostics 2015. [DOI: 10.1002/9781118873151.ch15] [Reference Citation Analysis]
101 Elbayoumi T, Torchilin V. Lipid-Based Pharmaceutical Nanocarriers for Imaging Applications. Nanotechnology for Biomedical Imaging and Diagnostics 2015. [DOI: 10.1002/9781118873151.ch3] [Reference Citation Analysis]
102 Fu Y, Chen C, Chen C. Tuning of hydrogen peroxide-responsive polymeric micelles of biodegradable triblock polycarbonates as a potential drug delivery platform with ratiometric fluorescence signaling. Polym Chem 2015;6:8132-43. [DOI: 10.1039/c5py01557j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
103 Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V. Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 2015;37:415-24. [DOI: 10.1016/j.biomaterials.2014.10.014] [Cited by in Crossref: 134] [Cited by in F6Publishing: 145] [Article Influence: 16.8] [Reference Citation Analysis]
104 Charron DM, Chen J, Zheng G. Theranostic lipid nanoparticles for cancer medicine. Cancer Treat Res 2015;166:103-27. [PMID: 25895866 DOI: 10.1007/978-3-319-16555-4_5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
105 Bai RG, Muthoosamy K, Manickam S. Nanomedicine in Theranostics. Nanotechnology Applications for Tissue Engineering 2015. [DOI: 10.1016/b978-0-323-32889-0.00012-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
106 Wang C, Santos HA. Copper-Free Click Chemistry Modification of Nanovectors for Integrin-Targeted Cancer Therapy. Methods in Pharmacology and Toxicology 2015. [DOI: 10.1007/7653_2015_44] [Reference Citation Analysis]
107 Kaittanis C, Shaffer TM, Thorek DL, Grimm J. Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy. Crit Rev Oncog 2014;19:143-76. [PMID: 25271430 DOI: 10.1615/critrevoncog.2014011601] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
108 Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014;13:813-27. [PMID: 25287120 DOI: 10.1038/nrd4333] [Cited by in Crossref: 1037] [Cited by in F6Publishing: 1072] [Article Influence: 115.2] [Reference Citation Analysis]
109 Torchilin VP. Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2012;64:302-15. [DOI: 10.1016/j.addr.2012.09.031] [Cited by in Crossref: 262] [Cited by in F6Publishing: 262] [Article Influence: 29.1] [Reference Citation Analysis]
110 Phillips WT, Bao A, Brenner AJ, Goins BA. Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev 2014;76:39-59. [PMID: 25016083 DOI: 10.1016/j.addr.2014.07.001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 66] [Article Influence: 6.6] [Reference Citation Analysis]
111 Barrefelt Å, Paradossi G, Asem H, Margheritelli S, Saghafian M, Oddo L, Muhammed M, Aspelin P, Hassan M, Brismar TB. DYNAMIC MR IMAGING, BIODISTRIBUTION AND PHARMACOKINETICS OF POLYMER SHELLED MICROBUBBLES CONTAINING SPION. NANO 2014;09:1450069. [DOI: 10.1142/s1793292014500696] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
112 Lee H, Zheng J, Gaddy D, Orcutt KD, Leonard S, Geretti E, Hesterman J, Harwell C, Hoppin J, Jaffray DA, Wickham T, Hendriks BS, Kirpotin D. A gradient-loadable (64)Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomedicine 2015;11:155-65. [PMID: 25200610 DOI: 10.1016/j.nano.2014.08.011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 4.3] [Reference Citation Analysis]
113 Bennett KM, Jo J, Cabral H, Bakalova R, Aoki I. MR imaging techniques for nano-pathophysiology and theranostics. Adv Drug Deliv Rev 2014;74:75-94. [PMID: 24787226 DOI: 10.1016/j.addr.2014.04.007] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 5.6] [Reference Citation Analysis]
114 Caltagirone C, Falchi AM, Lampis S, Lippolis V, Meli V, Monduzzi M, Prodi L, Schmidt J, Sgarzi M, Talmon Y, Bizzarri R, Murgia S. Cancer-cell-targeted theranostic cubosomes. Langmuir 2014;30:6228-36. [PMID: 24815031 DOI: 10.1021/la501332u] [Cited by in Crossref: 78] [Cited by in F6Publishing: 81] [Article Influence: 8.7] [Reference Citation Analysis]
115 Seibold U, Wängler B, Schirrmacher R, Wängler C. Bimodal imaging probes for combined PET and OI: recent developments and future directions for hybrid agent development. Biomed Res Int 2014;2014:153741. [PMID: 24822177 DOI: 10.1155/2014/153741] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 5.4] [Reference Citation Analysis]
116 Guo W, Li D, Zhu J, Wei X, Men W, Yin D, Fan M, Xu Y. A Magnetic Nanoparticle Stabilized Gas Containing Emulsion for Multimodal Imaging and Triggered Drug Release. Pharm Res 2014;31:1477-84. [DOI: 10.1007/s11095-014-1365-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
117 Kim J, Pandya DN, Lee W, Park JW, Kim YJ, Kwak W, Ha YS, Chang Y, An GI, Yoo J. Vivid tumor imaging utilizing liposome-carried bimodal radiotracer. ACS Med Chem Lett 2014;5:390-4. [PMID: 24900846 DOI: 10.1021/ml400513g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
118 Min J, Moon H, Yang HJ, Shin H, Hong SY, Kang S. Development of P22 Viral Capsid Nanocomposites as Anti-Cancer Drug, Bortezomib (BTZ), Delivery Nanoplatforms: Viral Capsid-Based Drug Delivery Nanoplatforms. Macromol Biosci 2014;14:557-64. [DOI: 10.1002/mabi.201300401] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
119 Salim M, Minamikawa H, Sugimura A, Hashim R. Amphiphilic designer nano-carriers for controlled release: from drug delivery to diagnostics. Med Chem Commun 2014;5:1602-18. [DOI: 10.1039/c4md00085d] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 6.3] [Reference Citation Analysis]
120 Rangger C, Helbok A, Sosabowski J, Kremser C, Koehler G, Prassl R, Andreae F, Virgolini IJ, von Guggenberg E, Decristoforo C. Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int J Nanomedicine. 2013;8:4659-4671. [PMID: 24353415 DOI: 10.2147/ijn.s51927] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 3.8] [Reference Citation Analysis]
121 Quintero N, Cohen I, Restrepo G. RADIOLABELED NANOPARTICLES USING _+ RADIONUCLIDES AS DIAGNOSTIC AGENTS. Nanoscience and Computational Chemistry 2013. [DOI: 10.1201/b16368-3] [Reference Citation Analysis]
122 Maldonado CR, Salassa L, Gomez-blanco N, Mareque-rivas JC. Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coordination Chemistry Reviews 2013;257:2668-88. [DOI: 10.1016/j.ccr.2013.04.014] [Cited by in Crossref: 67] [Cited by in F6Publishing: 49] [Article Influence: 6.7] [Reference Citation Analysis]
123 Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR Biomed 2013;26:728-44. [PMID: 23703874 DOI: 10.1002/nbm.2971] [Cited by in Crossref: 67] [Cited by in F6Publishing: 73] [Article Influence: 6.7] [Reference Citation Analysis]
124 Hollis CP, Weiss HL, Evers BM, Gemeinhart RA, Li T. In Vivo Investigation of Hybrid Paclitaxel Nanocrystals with Dual Fluorescent Probes for Cancer Theranostics. Pharm Res 2014;31:1450-9. [DOI: 10.1007/s11095-013-1048-x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 3.6] [Reference Citation Analysis]
125 Wang L, Xing H, Zhang S, Ren Q, Pan L, Zhang K, Bu W, Zheng X, Zhou L, Peng W, Hua Y, Shi J. A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials 2013;34:3390-401. [DOI: 10.1016/j.biomaterials.2013.01.070] [Cited by in Crossref: 135] [Cited by in F6Publishing: 142] [Article Influence: 13.5] [Reference Citation Analysis]
126 Sen K, Mandal M. Second generation liposomal cancer therapeutics: transition from laboratory to clinic. Int J Pharm 2013;448:28-43. [PMID: 23500602 DOI: 10.1016/j.ijpharm.2013.03.006] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
127 Perche F, Torchilin VP. Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013;2013:705265. [PMID: 23533772 DOI: 10.1155/2013/705265] [Cited by in Crossref: 139] [Cited by in F6Publishing: 152] [Article Influence: 13.9] [Reference Citation Analysis]
128 Huynh E, Zheng G. Engineering multifunctional nanoparticles: all-in-one versus one-for-all. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5:250-65. [PMID: 23450626 DOI: 10.1002/wnan.1217] [Cited by in Crossref: 60] [Cited by in F6Publishing: 68] [Article Influence: 6.0] [Reference Citation Analysis]
129 Barrefelt AA, Brismar TB, Egri G, Aspelin P, Olsson A, Oddo L, Margheritelli S, Caidahl K, Paradossi G, Dähne L, Axelsson R, Hassan M. Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles. EJNMMI Res 2013;3:12. [PMID: 23442550 DOI: 10.1186/2191-219X-3-12] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 2.2] [Reference Citation Analysis]
130 Svenson S. Theranostics: Are We There Yet? Mol Pharmaceutics 2013;10:848-56. [DOI: 10.1021/mp300644n] [Cited by in Crossref: 107] [Cited by in F6Publishing: 119] [Article Influence: 10.7] [Reference Citation Analysis]
131 Wu X, Chang S, Sun X, Guo Z, Li Y, Tang J, Shen Y, Shi J, Tian H, Zhu W. Constructing NIR silica–cyanine hybrid nanocomposite for bioimaging in vivo: a breakthrough in photo-stability and bright fluorescence with large Stokes shift. Chem Sci 2013;4:1221. [DOI: 10.1039/c2sc22035k] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 7.0] [Reference Citation Analysis]
132 Hollis C, Zhao R, Li T. Hybrid nanocrystal as a versatile platform for cancer theranostics. Biomaterials for Cancer Therapeutics 2013. [DOI: 10.1533/9780857096760.3.188] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
133 Rangger C, Helbok A, von Guggenberg E, Sosabowski J, Radolf T, Prassl R, Andreae F, Thurner GC, Haubner R, Decristoforo C. Influence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles. Int J Nanomedicine 2012;7:5889-900. [PMID: 23226020 DOI: 10.2147/IJN.S36847] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 2.0] [Reference Citation Analysis]
134 Cheng Z, Al Zaki A, Hui JZ, Tsourkas A. Simultaneous quantification of tumor uptake for targeted and nontargeted liposomes and their encapsulated contents by ICPMS. Anal Chem 2012;84:7578-82. [PMID: 22882145 DOI: 10.1021/ac301852y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
135 de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012;2:39. [PMID: 22809406 DOI: 10.1186/2191-219X-2-39] [Cited by in Crossref: 100] [Cited by in F6Publishing: 106] [Article Influence: 9.1] [Reference Citation Analysis]