1 |
Sarkar P, Khatana S, Mukherjee B, Shukla J, Das B, Dutta G. Application of Radiopharmaceuticals in Diagnostics and Therapy. Next-Generation Nanobiosensor Devices for Point-Of-Care Diagnostics 2023. [DOI: 10.1007/978-981-19-7130-3_10] [Reference Citation Analysis]
|
2 |
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. Biosensors 2022;12:478. [DOI: 10.3390/bios12070478] [Reference Citation Analysis]
|
3 |
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
4 |
Petroni D, Riccardi C, Cavasso D, Russo Krauss I, Paduano L, Montesarchio D, Menichetti L. Synthesis and Characterization of Multifunctional Nanovesicles Composed of POPC Lipid Molecules for Nuclear Imaging. Molecules 2021;26:6591. [PMID: 34770999 DOI: 10.3390/molecules26216591] [Reference Citation Analysis]
|
5 |
Sarcan ET, Silindir-gunay M, Ozer AY, Hartman N. 89Zr as a promising radionuclide and it’s applications for effective cancer imaging. J Radioanal Nucl Chem 2021;330:15-28. [DOI: 10.1007/s10967-021-07928-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
6 |
Sharma S, Zvyagin AV, Roy I. Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. JNT 2021;2:131-56. [DOI: 10.3390/jnt2030009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
7 |
Qiu J, Liu Y, Xia Y. Radiolabeling of Gold Nanocages for Potential Applications in Tracking, Diagnosis, and Image-Guided Therapy. Adv Healthc Mater 2021;10:e2002031. [PMID: 33470560 DOI: 10.1002/adhm.202002031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
8 |
Mari M, Carrozza D, Ferrari E, Asti M. Applications of Radiolabelled Curcumin and Its Derivatives in Medicinal Chemistry. Int J Mol Sci 2021;22:7410. [PMID: 34299029 DOI: 10.3390/ijms22147410] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
9 |
Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021;13:591. [PMID: 33919150 DOI: 10.3390/pharmaceutics13050591] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
10 |
Zhang X, Detering L, Sultan D, Luehmann H, Li L, Heo GS, Zhang X, Lou L, Grierson PM, Greco S, Ruzinova M, Laforest R, Dehdashti F, Lim KH, Liu Y. CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma. ACS Nano 2021;15:1186-98. [PMID: 33406361 DOI: 10.1021/acsnano.0c08185] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
11 |
Munch M, Rotstein BH, Ulrich G. Fluorine-18-Labeled Fluorescent Dyes for Dual-Mode Molecular Imaging. Molecules 2020;25:E6042. [PMID: 33371284 DOI: 10.3390/molecules25246042] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
12 |
Badeggi UM, Ismail E, Adeloye AO, Botha S, Badmus JA, Marnewick JL, Cupido CN, Hussein AA. Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules 2020;10:E452. [PMID: 32183213 DOI: 10.3390/biom10030452] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
|
13 |
Pérez-Medina C, Teunissen AJP, Kluza E, Mulder WJM, van der Meel R. Nuclear imaging approaches facilitating nanomedicine translation. Adv Drug Deliv Rev 2020;154-155:123-41. [PMID: 32721459 DOI: 10.1016/j.addr.2020.07.017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
|
14 |
Ghiassian S, Yu L, Gobbo P, Nazemi A, Romagnoli T, Luo W, Luyt LG, Workentin MS. Nitrone-Modified Gold Nanoparticles: Synthesis, Characterization, and Their Potential as 18F-Labeled Positron Emission Tomography Probes via I-SPANC. ACS Omega 2019;4:19106-15. [PMID: 31763533 DOI: 10.1021/acsomega.9b02322] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
15 |
Szkop M, Brygoła K, Janczewska M, Ciach T. A simple time-resolved fluorescence assay for quantitative determination of DOTA chelator. Anal Biochem 2019;584:113384. [PMID: 31356774 DOI: 10.1016/j.ab.2019.113384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
16 |
Park JY, Park S, Lee TS, Hwang YH, Kim JY, Kang WJ, Key J. Biodegradable micro-sized discoidal polymeric particles for lung-targeted delivery system. Biomaterials 2019;218:119331. [PMID: 31299455 DOI: 10.1016/j.biomaterials.2019.119331] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
|
17 |
Lobatto ME, Binderup T, Robson PM, Giesen LFP, Calcagno C, Witjes J, Fay F, Baxter S, Wessel CH, Eldib M, Bini J, Carlin SD, Stroes ESG, Storm G, Kjaer A, Lewis JS, Reiner T, Fayad ZA, Mulder WJM, Pérez-Medina C. Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall. Bioconjug Chem 2020;31:360-8. [PMID: 31095372 DOI: 10.1021/acs.bioconjchem.9b00256] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
|
18 |
Pretze M, van der Meulen N, Wängler C, Schibli R, Wängler B. Targeted 64 Cu-labeled gold nanoparticles for dual imaging with positron emission tomography and optical imaging. J Label Compd Radiopharm 2019;62:471-82. [DOI: 10.1002/jlcr.3736] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
|
19 |
Zhao Y, Sultan D, Liu Y. Biodistribution, Excretion, and Toxicity of Nanoparticles. Theranostic Bionanomaterials. Elsevier; 2019. pp. 27-53. [DOI: 10.1016/b978-0-12-815341-3.00002-x] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
|
20 |
Mchugh CI, Blocker SJ, Viola-villegas N, Shields AF. Cancer imaging in preclinical models. Animal Models in Cancer Drug Discovery 2019. [DOI: 10.1016/b978-0-12-814704-7.00016-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
21 |
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Eng DNC, Halldin C, Gulyás B. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics 2018;8:6210-32. [PMID: 30613293 DOI: 10.7150/thno.26610] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 8.6] [Reference Citation Analysis]
|
22 |
Hajdu I, Makhlouf A, Solomon VR, Michel D, Al-Dulaymi M, Wasan KM, Fonge H, Badea I. A 89Zr-labeled lipoplex nanosystem for image-guided gene delivery: design, evaluation of stability and in vivo behavior. Int J Nanomedicine 2018;13:7801-18. [PMID: 30538460 DOI: 10.2147/IJN.S179806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
|
23 |
Arms L, Smith DW, Flynn J, Palmer W, Martin A, Woldu A, Hua S. Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of Nanoparticles. Front Pharmacol 2018;9:802. [PMID: 30154715 DOI: 10.3389/fphar.2018.00802] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 11.6] [Reference Citation Analysis]
|
24 |
Xu X, Li Y, Cao T, Cheng J, Zhang Y. A novel, chelator-free method for 64Cu labeling of dendrimers. J Nanopart Res 2018;20. [DOI: 10.1007/s11051-018-4291-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Sultan D, Ye D, Heo GS, Zhang X, Luehmann H, Yue Y, Detering L, Komarov S, Taylor S, Tai YC, Rubin JB, Chen H, Liu Y. Focused Ultrasound Enabled Trans-Blood Brain Barrier Delivery of Gold Nanoclusters: Effect of Surface Charges and Quantification Using Positron Emission Tomography. Small 2018;14:e1703115. [PMID: 29966035 DOI: 10.1002/smll.201703115] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
|
26 |
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018;179:209-45. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Cited by in Crossref: 87] [Cited by in F6Publishing: 91] [Article Influence: 17.4] [Reference Citation Analysis]
|
27 |
Zhang P, Cui Y, Anderson CF, Zhang C, Li Y, Wang R, Cui H. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem Soc Rev 2018;47:3490-529. [PMID: 29497722 DOI: 10.1039/c7cs00793k] [Cited by in Crossref: 82] [Cited by in F6Publishing: 86] [Article Influence: 16.4] [Reference Citation Analysis]
|
28 |
Perlman O, Azhari H. MRI and Ultrasound Imaging of Nanoparticles for Medical Diagnosis. Nanotechnology Characterization Tools for Biosensing and Medical Diagnosis 2018. [DOI: 10.1007/978-3-662-56333-5_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
|
29 |
Djordjevic DM, Cirkovic ST, Mandic DS. Biomedical applications. Magnetic, Ferroelectric, and Multiferroic Metal Oxides 2018. [DOI: 10.1016/b978-0-12-811180-2.00020-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
|
30 |
Chen W, Ma W, Zou C, Yang Y, Yang G, Liu L, Liu Z. Functional Micro-/Nanomaterials for Imaging Technology. Advances in Functional Micro-/Nanoimaging Probes 2018. [DOI: 10.1007/978-981-10-4804-3_1] [Reference Citation Analysis]
|
31 |
Zhao L, Shi X, Zhao J. Dendrimer-based contrast agents for PET imaging. Drug Delivery 2017;24:81-93. [DOI: 10.1080/10717544.2017.1399299] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
|
32 |
Lamb J, Holland JP. Advanced Methods for Radiolabeling Multimodality Nanomedicines for SPECT/MRI and PET/MRI. J Nucl Med 2018;59:382-9. [PMID: 29025988 DOI: 10.2967/jnumed.116.187419] [Cited by in Crossref: 65] [Cited by in F6Publishing: 73] [Article Influence: 10.8] [Reference Citation Analysis]
|
33 |
Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017;22:E1350. [PMID: 28841180 DOI: 10.3390/molecules22091350] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
|
34 |
Huang L, Hu J, Huang S, Wang B, Siaw-Debrah F, Nyanzu M, Zhang Y, Zhuge Q. Nanomaterial applications for neurological diseases and central nervous system injury. Prog Neurobiol 2017;157:29-48. [PMID: 28743465 DOI: 10.1016/j.pneurobio.2017.07.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 4.7] [Reference Citation Analysis]
|
35 |
Montiel Schneider MG, Lassalle VL. Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis. Biomed Pharmacother 2017;93:1098-115. [PMID: 28738519 DOI: 10.1016/j.biopha.2017.07.012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
|
36 |
Quini CC, Próspero AG, Calabresi MF, Moretto GM, Zufelato N, Krishnan S, Pina DR, Oliveira RB, Baffa O, Bakuzis AF, Miranda JR. Real-time liver uptake and biodistribution of magnetic nanoparticles determined by AC biosusceptometry. Nanomedicine: Nanotechnology, Biology and Medicine 2017;13:1519-29. [DOI: 10.1016/j.nano.2017.02.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 4.7] [Reference Citation Analysis]
|
37 |
Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater 2017;6. [PMID: 28218487 DOI: 10.1002/adhm.201601115] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
|
38 |
Hong SC, Yoo SY, Kim H, Lee J. Chitosan-Based Multifunctional Platforms for Local Delivery of Therapeutics. Mar Drugs 2017;15:E60. [PMID: 28257059 DOI: 10.3390/md15030060] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
|
39 |
Kennel S, Appavoo A, Schulz J, Barthélémy P. Nanoparticles for Radionuclide Imaging and Therapy: Principles. Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine Tumors 2017. [DOI: 10.1007/978-3-319-46038-3_22] [Reference Citation Analysis]
|
40 |
Devasena T. Diagnostic and Therapeutic Techniques. Therapeutic and Diagnostic Nanomaterials 2017. [DOI: 10.1007/978-981-10-0923-5_4] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
|
41 |
Yang M, Huo D, Gilroy KD, Sun X, Sultan D, Luehmann H, Detering L, Li S, Qin D, Liu Y, Xia Y. Facile Synthesis of 64 Cu-Doped Au Nanocages for Positron Emission Tomography Imaging. ChemNanoMat 2017;3:44-50. [DOI: 10.1002/cnma.201600281] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
|
42 |
Liu JM, Liu YY, Zhang DD, Fang GZ, Wang S. Synthesis of GdAlO3:Mn4+,Ge4+@Au Core-Shell Nanoprobes with Plasmon-Enhanced Near-Infrared Persistent Luminescence for in Vivo Trimodality Bioimaging. ACS Appl Mater Interfaces 2016;8:29939-49. [PMID: 27759378 DOI: 10.1021/acsami.6b09580] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 7.9] [Reference Citation Analysis]
|
43 |
Aanei IL, ElSohly AM, Farkas ME, Netirojjanakul C, Regan M, Taylor Murphy S, O'Neil JP, Seo Y, Francis MB. Biodistribution of Antibody-MS2 Viral Capsid Conjugates in Breast Cancer Models. Mol Pharm 2016;13:3764-72. [PMID: 27611245 DOI: 10.1021/acs.molpharmaceut.6b00566] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
|
44 |
Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 2017;8:63-77. [PMID: 28451149 DOI: 10.1039/c6sc02403c] [Cited by in Crossref: 163] [Cited by in F6Publishing: 174] [Article Influence: 23.3] [Reference Citation Analysis]
|
45 |
Zhao Y, Detering L, Sultan D, Cooper ML, You M, Cho S, Meier SL, Luehmann H, Sun G, Rettig M, Dehdashti F, Wooley KL, DiPersio JF, Liu Y. Gold Nanoclusters Doped with (64)Cu for CXCR4 Positron Emission Tomography Imaging of Breast Cancer and Metastasis. ACS Nano 2016;10:5959-70. [PMID: 27159079 DOI: 10.1021/acsnano.6b01326] [Cited by in Crossref: 64] [Cited by in F6Publishing: 65] [Article Influence: 9.1] [Reference Citation Analysis]
|
46 |
Woodard PK, Liu Y, Pressly ED, Luehmann HP, Detering L, Sultan DE, Laforest R, McGrath AJ, Gropler RJ, Hawker CJ. Design and Modular Construction of a Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% (64)Cu-CANF-Comb. Pharm Res 2016;33:2400-10. [PMID: 27286872 DOI: 10.1007/s11095-016-1963-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
|
47 |
Badun GA, Chernysheva MG, Aldobaev VN. Preparation of tritium-labeled modified single-walled carbon nanotubes for pharmacokinetic studies. Radiochemistry 2016;58:305-310. [DOI: 10.1134/s1066362216030139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
|
48 |
Zhao Y, Pang B, Luehmann H, Detering L, Yang X, Sultan D, Harpstrite S, Sharma V, Cutler CS, Xia Y, Liu Y. Gold Nanoparticles Doped with (199) Au Atoms and Their Use for Targeted Cancer Imaging by SPECT. Adv Healthc Mater 2016;5:928-35. [PMID: 26865221 DOI: 10.1002/adhm.201500992] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 5.9] [Reference Citation Analysis]
|
49 |
Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today (Kidlington) 2016;19:157-68. [PMID: 27524934 DOI: 10.1016/j.mattod.2015.08.022] [Cited by in Crossref: 384] [Cited by in F6Publishing: 319] [Article Influence: 54.9] [Reference Citation Analysis]
|
50 |
Rokka J, Snellman A, Kaasalainen M, Salonen J, Zona C, La Ferla B, Nicotra F, Re F, Masserini M, Forsback S, Lopez-Picon F, Rinne JO, Haaparanta-Solin M, Solin O. (18)F-labeling syntheses and preclinical evaluation of functionalized nanoliposomes for Alzheimer's disease. Eur J Pharm Sci 2016;88:257-66. [PMID: 26993963 DOI: 10.1016/j.ejps.2016.03.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
|
51 |
Nallathamby PD, Mortensen NP, Palko HA, Malfatti M, Smith C, Sonnett J, Doktycz MJ, Gu B, Roeder RK, Wang W, Retterer ST. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale 2015;7:6545-55. [PMID: 25790032 DOI: 10.1039/c4nr06441k] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
|
52 |
Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, Gropler RJ, Hawker CJ, Liu Y. PET/CT Imaging of Chemokine Receptors in Inflammatory Atherosclerosis Using Targeted Nanoparticles. J Nucl Med 2016;57:1124-9. [PMID: 26795285 DOI: 10.2967/jnumed.115.166751] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.7] [Reference Citation Analysis]
|
53 |
Sillerud LO. Quantitative [Fe]MRI of PSMA-targeted SPIONs specifically discriminates among prostate tumor cell types based on their PSMA expression levels. Int J Nanomedicine 2016;11:357-71. [PMID: 26855574 DOI: 10.2147/IJN.S93409] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
|
54 |
Kalidasan V, Liu X, Ding J, Dasgupta A, Sajikumar S. A combinatorial approach to enhance the biocompatibility and heating efficiency of magnetic hyperthermia- Serum Albumin conjugated ferrimagneticmagnetite nanoparticles. MRS Advances 2016;1:247-254. [DOI: 10.1557/adv.2016.28] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
|
55 |
Buckway B, Ghandehari H. Nanotheranostics and In-Vivo Imaging. Advances in Delivery Science and Technology 2016. [DOI: 10.1007/978-1-4939-3634-2_6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
56 |
Kalidasan V, Liu XL, Herng TS, Yang Y, Ding J. Bovine Serum Albumin-Conjugated Ferrimagnetic Iron Oxide Nanoparticles to Enhance the Biocompatibility and Magnetic Hyperthermia Performance. Nanomicro Lett 2016;8:80-93. [PMID: 30464997 DOI: 10.1007/s40820-015-0065-1] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 6.0] [Reference Citation Analysis]
|
57 |
Paik T, Chacko AM, Mikitsh JL, Friedberg JS, Pryma DA, Murray CB. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging. ACS Nano 2015;9:8718-28. [PMID: 26257288 DOI: 10.1021/acsnano.5b03355] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
|
58 |
Rhim W, Kim M, Hartman KL, Kang KW, Nam J. Radionuclide-labeled nanostructures for In Vivo imaging of cancer. Nano Convergence 2015;2. [DOI: 10.1186/s40580-014-0041-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
|
59 |
Burke BP, Baghdadi N, Clemente GS, Camus N, Guillou A, Kownacka AE, Domarkas J, Halime Z, Tripier R, Archibald SJ. Final step gallium-68 radiolabelling of silica-coated iron oxide nanorods as potential PET/MR multimodal imaging agents. Faraday Discuss 2014;175:59-71. [PMID: 25325197 DOI: 10.1039/c4fd00137k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
|
60 |
Li Y, Lin R, Wang L, Huang J, Wu H, Cheng G, Zhou Z, MacDonald T, Yang L, Mao H. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting. J Mater Chem B 2015;3:3591-603. [PMID: 26594360 DOI: 10.1039/C4TB01828A] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 4.5] [Reference Citation Analysis]
|
61 |
Cho B, Park JH, Jung SJ, Lee J, Lee JH, Hur MG, Justin Raj C, Yu K. Synthesis and characterization of 68Ga labeled Fe3O4 nanoparticles for positron emission tomography (PET) and magnetic resonance imaging (MRI). J Radioanal Nucl Chem 2015;305:169-78. [DOI: 10.1007/s10967-015-4026-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
|
62 |
Aweda T, Sultan D, Liu Y. Radio-Labeled Nanoparticles for Biomedical Imaging. Nanotechnology for Biomedical Imaging and Diagnostics 2015. [DOI: 10.1002/9781118873151.ch7] [Reference Citation Analysis]
|
63 |
Guo W, Sun X, Jacobson O, Yan X, Min K, Srivatsan A, Niu G, Kiesewetter DO, Chang J, Chen X. Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence. ACS Nano 2015;9:488-95. [PMID: 25549258 DOI: 10.1021/nn505660r] [Cited by in Crossref: 115] [Cited by in F6Publishing: 124] [Article Influence: 14.4] [Reference Citation Analysis]
|
64 |
Groult H, Ruiz-cabello J, Pellico J, Lechuga-vieco AV, Bhavesh R, Zamai M, Almarza E, Martín-padura I, Cantelar E, Martínez-alcázar MP, Herranz F. Parallel Multifunctionalization of Nanoparticles: A One-Step Modular Approach for in Vivo Imaging. Bioconjugate Chem 2015;26:153-60. [DOI: 10.1021/bc500536y] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 3.9] [Reference Citation Analysis]
|
65 |
Hu H, Li D, Liu S, Wang M, Moats R, Conti PS, Li Z. Integrin α2β1 targeted GdVO4:Eu ultrathin nanosheet for multimodal PET/MR imaging. Biomaterials 2014;35:8649-58. [DOI: 10.1016/j.biomaterials.2014.06.059] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 4.3] [Reference Citation Analysis]
|
66 |
Puttick S, Boase NR, Blakey I, Thurecht KJ. Imaging tumour distribution of a polymeric drug delivery platform in vivo by PET-MRI. J Chem Technol Biotechnol 2015;90:1237-44. [DOI: 10.1002/jctb.4489] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
|
67 |
Herranz F, Salinas B, Groult H, Pellico J, Lechuga-Vieco AV, Bhavesh R, Ruiz-Cabello J. Superparamagnetic Nanoparticles for Atherosclerosis Imaging. Nanomaterials (Basel) 2014;4:408-38. [PMID: 28344230 DOI: 10.3390/nano4020408] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.3] [Reference Citation Analysis]
|
68 |
Zhu J, Chin J, Wängler C, Wängler B, Lennox RB, Schirrmacher R. Rapid (18)F-labeling and loading of PEGylated gold nanoparticles for in vivo applications. Bioconjug Chem 2014;25:1143-50. [PMID: 24807200 DOI: 10.1021/bc5001593] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 4.9] [Reference Citation Analysis]
|
69 |
Stockhofe K, Postema JM, Schieferstein H, Ross TL. Radiolabeling of Nanoparticles and Polymers for PET Imaging. Pharmaceuticals (Basel) 2014;7:392-418. [PMID: 24699244 DOI: 10.3390/ph7040392] [Cited by in Crossref: 82] [Cited by in F6Publishing: 85] [Article Influence: 9.1] [Reference Citation Analysis]
|
70 |
Pombo García K, Zarschler K, Barbaro L, Barreto JA, O'Malley W, Spiccia L, Stephan H, Graham B. Zwitterionic-coated "stealth" nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 2014;10:2516-29. [PMID: 24687857 DOI: 10.1002/smll.201303540] [Cited by in Crossref: 348] [Cited by in F6Publishing: 357] [Article Influence: 38.7] [Reference Citation Analysis]
|
71 |
Luehmann HP, Pressly ED, Detering L, Wang C, Pierce R, Woodard PK, Gropler RJ, Hawker CJ, Liu Y. PET/CT imaging of chemokine receptor CCR5 in vascular injury model using targeted nanoparticle. J Nucl Med 2014;55:629-34. [PMID: 24591489 DOI: 10.2967/jnumed.113.132001] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 6.4] [Reference Citation Analysis]
|
72 |
Sharma R, Xu Y, Kim SW, Schueller MJ, Alexoff D, Smith SD, Wang W, Schlyer D. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging. Nanoscale 2013;5:7476-83. [PMID: 23832243 DOI: 10.1039/c3nr02519e] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 5.2] [Reference Citation Analysis]
|
73 |
Lee S, Kang S, Ryu JH, Na JH, Lee D, Han SJ, Kang CM, Choe YS, Lee KC, Leary JF, Choi K, Lee K, Kim K. Tumor-Homing Glycol Chitosan-Based Optical/PET Dual Imaging Nanoprobe for Cancer Diagnosis. Bioconjugate Chem 2014;25:601-10. [DOI: 10.1021/bc500020g] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 5.1] [Reference Citation Analysis]
|
74 |
Shen Y, Shrestha R, Ibricevic A, Gunsten SP, Welch MJ, Wooley KL, Brody SL, Taylor JS, Liu Y. Antisense peptide nucleic acid-functionalized cationic nanocomplex for in vivo mRNA detection. Interface Focus 2013;3:20120059. [PMID: 24427537 DOI: 10.1098/rsfs.2012.0059] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
|
75 |
Zhao Y, Sultan D, Detering L, Luehmann H, Liu Y. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64 Cu–Au alloy nanoclusters. Nanoscale 2014;6:13501-9. [DOI: 10.1039/c4nr04569f] [Cited by in Crossref: 63] [Cited by in F6Publishing: 68] [Article Influence: 7.0] [Reference Citation Analysis]
|
76 |
Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, Lindén M. Synthesis, characterization, and biodistribution of multiple 89 Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. Nanoscale 2014;6:4928-35. [DOI: 10.1039/c3nr06800e] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 5.8] [Reference Citation Analysis]
|
77 |
Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, Wooley KL, Liu Y. Copper-64-Alloyed Gold Nanoparticles for Cancer Imaging: Improved Radiolabel Stability and Diagnostic Accuracy. Angew Chem 2014;126:160-3. [DOI: 10.1002/ange.201308494] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
|
78 |
Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, Wooley KL, Liu Y. Copper-64-Alloyed Gold Nanoparticles for Cancer Imaging: Improved Radiolabel Stability and Diagnostic Accuracy. Angew Chem Int Ed 2014;53:156-9. [DOI: 10.1002/anie.201308494] [Cited by in Crossref: 115] [Cited by in F6Publishing: 120] [Article Influence: 11.5] [Reference Citation Analysis]
|
79 |
Quintero N, Cohen I, Restrepo G. RADIOLABELED NANOPARTICLES USING _+ RADIONUCLIDES AS DIAGNOSTIC AGENTS. Nanoscience and Computational Chemistry 2013. [DOI: 10.1201/b16368-3] [Reference Citation Analysis]
|
80 |
Tu C, Ng TS, Jacobs RE, Louie AY. Multimodality PET/MRI agents targeted to activated macrophages. J Biol Inorg Chem 2014;19:247-58. [PMID: 24166283 DOI: 10.1007/s00775-013-1054-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
|
81 |
Yan K, Li H, Li P, Zhu H, Shen J, Yi C, Wu S, Yeung KW, Xu Z, Xu H, Chu PK. Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging. Biomaterials 2014;35:344-55. [PMID: 24103655 DOI: 10.1016/j.biomaterials.2013.09.035] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 6.3] [Reference Citation Analysis]
|
82 |
Cao T, Yang Y, Sun Y, Wu Y, Gao Y, Feng W, Li F. Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles. Biomaterials 2013;34:7127-34. [PMID: 23796579 DOI: 10.1016/j.biomaterials.2013.05.028] [Cited by in Crossref: 83] [Cited by in F6Publishing: 86] [Article Influence: 8.3] [Reference Citation Analysis]
|
83 |
Bartlett G, Antoun J, Zgheib NK. Theranostics in primary care: pharmacogenomics tests and beyond. Expert Rev Mol Diagn 2012;12:841-55. [PMID: 23249202 DOI: 10.1586/erm.12.115] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
|
84 |
Liu Y, Pierce R, Luehmann HP, Sharp TL, Welch MJ. PET imaging of chemokine receptors in vascular injury-accelerated atherosclerosis. J Nucl Med 2013;54:1135-41. [PMID: 23658218 DOI: 10.2967/jnumed.112.114777] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
|
85 |
Lee DE, Na JH, Lee S, Kang CM, Kim HN, Han SJ, Kim H, Choe YS, Jung KH, Lee KC, Choi K, Kwon IC, Jeong SY, Lee KH, Kim K. Facile method to radiolabel glycol chitosan nanoparticles with (64)Cu via copper-free click chemistry for MicroPET imaging. Mol Pharm 2013;10:2190-8. [PMID: 23586421 DOI: 10.1021/mp300601r] [Cited by in Crossref: 53] [Cited by in F6Publishing: 57] [Article Influence: 5.3] [Reference Citation Analysis]
|
86 |
Yamamoto F, Yamahara R, Makino A, Kurihara K, Tsukada H, Hara E, Hara I, Kizaka-kondoh S, Ohkubo Y, Ozeki E, Kimura S. Radiosynthesis and initial evaluation of 18F labeled nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide. Nuclear Medicine and Biology 2013;40:387-94. [DOI: 10.1016/j.nucmedbio.2012.12.008] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
|
87 |
Pressly ED, Pierce RA, Connal LA, Hawker CJ, Liu Y. Nanoparticle PET/CT imaging of natriuretic peptide clearance receptor in prostate cancer. Bioconjug Chem 2013;24:196-204. [PMID: 23272904 DOI: 10.1021/bc300473x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
|
88 |
Sun X, Chen X. Synergistically integrated nanomaterials for multimodal cancer cell imaging. Biomaterials for Cancer Therapeutics 2013. [DOI: 10.1533/9780857096760.3.165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
|
89 |
Laxdal RE, Morton AC, Schaffer P. Radioactive Ion Beams and Radiopharmaceuticals. Rev Accl Sci Tech 2013;06:37-57. [DOI: 10.1142/s179362681330003x] [Reference Citation Analysis]
|
90 |
Yan K, Li P, Zhu H, Zhou Y, Ding J, Shen J, Li Z, Xu Z, Chu PK. Recent advances in multifunctional magnetic nanoparticles and applications to biomedical diagnosis and treatment. RSC Adv 2013;3:10598. [DOI: 10.1039/c3ra40348c] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 7.9] [Reference Citation Analysis]
|
91 |
Zhang Z, Liu Y, Jarreau C, Welch MJ, Taylor JS. Nucleic Acid-directed Self-assembly of Multifunctional Gold Nanoparticle Imaging Agents. Biomater Sci 2013;1:1055-64. [PMID: 24058728 DOI: 10.1039/C3BM60070J] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
|
92 |
Kamiti M, Boldridge D, Ndoping LM, Remsen EE. Simultaneous absolute determination of particle size and effective density of submicron colloids by disc centrifuge photosedimentometry. Anal Chem 2012;84:10526-30. [PMID: 23157599 DOI: 10.1021/ac3022086] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
|
93 |
Li A, Luehmann HP, Sun G, Samarajeewa S, Zou J, Zhang S, Zhang F, Welch MJ, Liu Y, Wooley KL. Synthesis and in vivo pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings. ACS Nano 2012;6:8970-82. [PMID: 23043240 DOI: 10.1021/nn303030t] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 7.8] [Reference Citation Analysis]
|
94 |
Zeng D, Lee NS, Liu Y, Zhou D, Dence CS, Wooley KL, Katzenellenbogen JA, Welch MJ. 64Cu Core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 2012;6:5209-19. [PMID: 22548282 DOI: 10.1021/nn300974s] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 5.5] [Reference Citation Analysis]
|