BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xiao F, Cao B, Wang C, Guo X, Li M, Xing D, Hu X. Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. ACS Nano 2019;13:1511-25. [PMID: 30632740 DOI: 10.1021/acsnano.8b07251] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 23.0] [Reference Citation Analysis]
Number Citing Articles
1 Hu X, Zhang H, Wang Y, Shiu B, Lin J, Zhang S, Lou C, Li T. Synergistic antibacterial strategy based on photodynamic therapy: Progress and perspectives. Chemical Engineering Journal 2022;450:138129. [DOI: 10.1016/j.cej.2022.138129] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
2 Zhong Y, Zheng XT, Zhao S, Su X, Loh XJ. Stimuli-Activable Metal-Bearing Nanomaterials and Precise On-Demand Antibacterial Strategies. ACS Nano 2022. [DOI: 10.1021/acsnano.2c08262] [Reference Citation Analysis]
3 Ning X, He G, Zeng W, Xia Y. The photosensitizer-based therapies enhance the repairing of skin wounds. Front Med 2022;9. [DOI: 10.3389/fmed.2022.915548] [Reference Citation Analysis]
4 Wang G, Yang C, Shan M, Jia H, Zhang S, Chen X, Liu W, Liu X, Chen J, Wang X. Synergistic Poly(lactic acid) Antibacterial Surface Combining Superhydrophobicity for Antiadhesion and Chlorophyll for Photodynamic Therapy. Langmuir 2022. [PMID: 35839422 DOI: 10.1021/acs.langmuir.2c01377] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhou R, Cui DJ, Zhao Q, Liu KK, Zhao WB, Liu Q, Ma RN, Jiao Z, Dong L, Shan CX. Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chem 2022;388:132994. [PMID: 35460964 DOI: 10.1016/j.foodchem.2022.132994] [Reference Citation Analysis]
6 Wang J, Zhu Y, Xie X, He X, Fan J, Chen A. Effect of ultra-trace Ag doping on the antibacterial performance of carbon quantum dots. Journal of Environmental Chemical Engineering 2022;10:107112. [DOI: 10.1016/j.jece.2021.107112] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Guo Z, Zhu Y, Du G, Qin M, He C, He P, Song Y, Chen W, Bai S, Wu F, Qiao N, Jiang M, Luo X, Zhang Y, Gong T, Zhang Z, Sun X. Rapid development of a subunit nano-vaccine against drug-resistant Pseudomonas aeruginosa with effective cross-protection. Nano Today 2022;43:101398. [DOI: 10.1016/j.nantod.2022.101398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wu S, Yang Y, Wang S, Dong C, Zhang X, Zhang R, Yang L. Dextran and peptide-based pH-sensitive hydrogel boosts healing process in multidrug-resistant bacteria-infected wounds. Carbohydr Polym 2022;278:118994. [PMID: 34973798 DOI: 10.1016/j.carbpol.2021.118994] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
9 Fan D, Wang D, Han T, Tang BZ. Fused Heterocyclic Polymers with Aggregation-Induced Emission: Synthesis and Applications. ACS Appl Polym Mater 2022;4:3120-30. [DOI: 10.1021/acsapm.1c01476] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
10 Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ajps.2022.01.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
11 Liang X, Xia L, Zhu Y, Zhang C, Gong F, Zhang W. An acid-triggered BODIPY-based photosensitizer for enhanced photodynamic antibacterial efficacy. Biomater Sci . [DOI: 10.1039/d2bm00780k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Dai X, Zhang B, Yu Q, Liu Y. Multicharged Supramolecular Assembly Mediated by Polycationic Cyclodextrin for Efficiently Photodynamic Antibacteria. ACS Appl Bio Mater 2021;4:8536-42. [PMID: 35005946 DOI: 10.1021/acsabm.1c01018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Cai Y, Cheng W, Ji C, Su Z, Yin M. Perylenediimide/silver nanohybrids with visible-light photocatalysis enhanced antibacterial effect. Dyes and Pigments 2021;195:109698. [DOI: 10.1016/j.dyepig.2021.109698] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Lai Z, Jian Q, Li G, Shao C, Zhu Y, Yuan X, Chen H, Shan A. Self-Assembling Peptide Dendron Nanoparticles with High Stability and a Multimodal Antimicrobial Mechanism of Action. ACS Nano 2021;15:15824-40. [PMID: 34549935 DOI: 10.1021/acsnano.1c03301] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 18.0] [Reference Citation Analysis]
15 Yin C, Wang Z, Ding X, Chen X, Wang J, Yang E, Wang W, Martin LL, Sun D. Crystalline ruthenium polypyridine nanoparticles: a targeted treatment of bacterial infection with multifunctional antibacterial, adhesion and surface-anchoring photosensitizer properties. J Mater Chem B 2021;9:3808-25. [PMID: 33979422 DOI: 10.1039/d1tb00103e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Yu C, Gao Y, Zhang Y, Wang J, Zhang Y, Li J, Zhang X, Wu Z, Zhang X. A Targeted Photosensitizer Mediated by Visible Light for Efficient Therapy of Bacterial Keratitis. Biomacromolecules 2021. [PMID: 34380309 DOI: 10.1021/acs.biomac.1c00461] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
17 Sun J, Fan Y, Ye W, Tian L, Niu S, Ming W, Zhao J, Ren L. Near-infrared light triggered photodynamic and nitric oxide synergistic antibacterial nanocomposite membrane. Chemical Engineering Journal 2021;417:128049. [DOI: 10.1016/j.cej.2020.128049] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 38.0] [Reference Citation Analysis]
18 Zhang H, Zhu Y, Li Y, Qi X, Yang J, Qi H, Li Q, Ma Y, Zhang Y, Zhang X, Zhang L. A Bifunctional Zwitterion‐Modified Porphyrin for Photodynamic Nondestructive Tooth Whitening and Biofilm Eradication. Adv Funct Mater 2021;31:2104799. [DOI: 10.1002/adfm.202104799] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
19 Zhu J, Tian J, Yang C, Chen J, Wu L, Fan M, Cai X. L-Arg-Rich Amphiphilic Dendritic Peptide as a Versatile NO Donor for NO/Photodynamic Synergistic Treatment of Bacterial Infections and Promoting Wound Healing. Small 2021;17:e2101495. [PMID: 34213822 DOI: 10.1002/smll.202101495] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
20 Guo H, Guo Q, Lan T, Luo Y, Pan X, Yao Y, Li Y, Feng Y, Liu Y, Tao L, Shen X. Amphiphilic block versus random copolymer nanoparticles with reactive oxygen species responsiveness as berberine vehicles. J Biomater Sci Polym Ed 2021;:1-21. [PMID: 34024257 DOI: 10.1080/09205063.2021.1932356] [Reference Citation Analysis]
21 Wu S, Yu T, Zhou R, Liang Y, Li Y, Yang J, Wang Y, An J, Qin S, Zhang Z, Shi J. Adjuvant-like biomimetic nanovesicles combat New Delhi metallo-β-lactamases (NDMs) producing superbugs infections. Nano Today 2021;38:101185. [DOI: 10.1016/j.nantod.2021.101185] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
22 Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2020;8:6867-82. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 18.0] [Reference Citation Analysis]
23 Guo R, Li K, Qin J, Niu S, Hong W. Development of polycationic micelles as an efficient delivery system of antibiotics for overcoming the biological barriers to reverse multidrug resistance in Escherichia coli. Nanoscale 2020;12:11251-66. [PMID: 32412567 DOI: 10.1039/d0nr01366h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
24 Liu Y, Tian Y, Han Q, Yin J, Zhang J, Yu Y, Yang W, Deng Y. Synergism of 2D/1D MXene/cobalt nanowire heterojunctions for boosted photo-activated antibacterial application. Chemical Engineering Journal 2021;410:128209. [DOI: 10.1016/j.cej.2020.128209] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 29.0] [Reference Citation Analysis]
25 Martin J, Desfoux A, Martinez J, Amblard M, Mehdi A, Vezenkov L, Subra G. Bottom-up strategies for the synthesis of peptide-based polymers. Progress in Polymer Science 2021;115:101377. [DOI: 10.1016/j.progpolymsci.2021.101377] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Guo R, Liu Y, Li K, Tian B, Li W, Niu S, Hong W. Direct interactions between cationic liposomes and bacterial cells ameliorate the systemic treatment of invasive multidrug-resistant Staphylococcus aureus infections. Nanomedicine 2021;34:102382. [PMID: 33771706 DOI: 10.1016/j.nano.2021.102382] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
27 Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q. Conductive Antibacterial Hemostatic Multifunctional Scaffolds Based on Ti3C2Tx MXene Nanosheets for Promoting Multidrug-Resistant Bacteria-Infected Wound Healing. ACS Nano 2021;15:2468-80. [PMID: 33565857 DOI: 10.1021/acsnano.0c06287] [Cited by in Crossref: 91] [Cited by in F6Publishing: 70] [Article Influence: 91.0] [Reference Citation Analysis]
28 Xu Z, Zhang C, Wang X, Liu D. Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS Appl Bio Mater 2021;4:3985-99. [DOI: 10.1021/acsabm.0c01485] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 24.0] [Reference Citation Analysis]
29 Yu F, Chen C, Yang G, Ren Z, Cao H, Zhang L, Zhang W. An acid-triggered porphyrin-based block copolymer for enhanced photodynamic antibacterial efficacy. Sci China Chem 2021;64:459-66. [DOI: 10.1007/s11426-020-9904-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
30 Ma J, Song Z, Yang J, Wang Y, Han H. Cobalt ferrite nanozyme for efficient symbiotic nitrogen fixation via regulating reactive oxygen metabolism. Environ Sci : Nano 2021;8:188-203. [DOI: 10.1039/d0en00935k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
31 Wang S, Fang Y, Zhang Z, Jin Q, Ji J. Bacterial infection microenvironment sensitive prodrug micelles with enhanced photodynamic activities for infection control. Colloid and Interface Science Communications 2021;40:100354. [DOI: 10.1016/j.colcom.2020.100354] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 16.0] [Reference Citation Analysis]
32 Liu X, Zhang J, Liu J, Zhou Q, Liu Z, Hu P, Yuan Z, Ramakrishna S, Yang D, Long Y. Bifunctional CuS composite nanofibers via in situ electrospinning for outdoor rapid hemostasis and simultaneous ablating superbug. Chemical Engineering Journal 2020;401:126096. [DOI: 10.1016/j.cej.2020.126096] [Cited by in Crossref: 38] [Cited by in F6Publishing: 27] [Article Influence: 19.0] [Reference Citation Analysis]
33 Wu Y, Deng G, Jiang K, Wang H, Song Z, Han H. Photothermally triggered nitric oxide nanogenerator targeting type IV pili for precise therapy of bacterial infections. Biomaterials 2021;268:120588. [PMID: 33307370 DOI: 10.1016/j.biomaterials.2020.120588] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
34 Chen L, Shen T, Liu Y, Zhou J, Shi S, Wang Y, Zhao Z, Yan Z, Liao C, Wang C. Enhancing the antibacterial activity of antimicrobial peptide PMAP-37(F34-R) by cholesterol modification. BMC Vet Res 2020;16:419. [PMID: 33138816 DOI: 10.1186/s12917-020-02630-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
35 Shen T, Chen L, Liu Y, Shi S, Liu Z, Cai K, Liao C, Wang C. Decanoic acid modification enhances the antibacterial activity of PMAP-23RI-Dec. Eur J Pharm Sci 2021;157:105609. [PMID: 33141035 DOI: 10.1016/j.ejps.2020.105609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
36 Tamil Selvan S, Padmanabhan P, Zoltán Gulyás B. Nanotechnology-Based Diagnostics and Therapy for Pathogen-Related Infections in the CNS. ACS Chem Neurosci 2020;11:2371-7. [PMID: 31726008 DOI: 10.1021/acschemneuro.9b00470] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
37 Hu D, Zou L, Gao Y, Jin Q, Ji J. Emerging nanobiomaterials against bacterial infections in postantibiotic era. View 2020;1:20200014. [DOI: 10.1002/viw.20200014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
38 Bhattacharyya S, Venkateswarulu M, Sahoo J, Zangrando E, De M, Mukherjee PS. Self-Assembled Pt II8 Metallosupramolecular Tubular Cage as Dual Warhead Antibacterial Agent in Water. Inorg Chem 2020;59:12690-9. [DOI: 10.1021/acs.inorgchem.0c01777] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
39 Jin Y, Wang Y, Yang J, Zhang H, Yang Y, Chen W, Jiang W, Qu J, Guo Y, Wang B. An Integrated Theranostic Nanomaterial for Targeted Photodynamic Therapy of Infectious Endophthalmitis. Cell Reports Physical Science 2020;1:100173. [DOI: 10.1016/j.xcrp.2020.100173] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
40 Li Y, Liu Y, Yang D, Jin Q, Wu C, Cui J. Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. Journal of Hazardous Materials 2020;394:122551. [DOI: 10.1016/j.jhazmat.2020.122551] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
41 Yang Y, Tao B, Gong Y, Chen R, Yang W, Lin C, Chen M, Qin L, Jia Y, Cai K. Functionalization of Ti substrate with pH-responsive naringin-ZnO nanoparticles for the reconstruction of large bony after osteosarcoma resection. J Biomed Mater Res A 2020;108:2190-205. [PMID: 32363788 DOI: 10.1002/jbm.a.36977] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
42 Huang DN, Wang J, Ren KF, Ji J. Functionalized biomaterials to combat biofilms. Biomater Sci 2020;8:4052-66. [PMID: 32500875 DOI: 10.1039/d0bm00526f] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
43 Shabangu SM, Babu B, Soy RC, Oyim J, Amuhaya E, Nyokong T. Susceptibility of Staphylococcus aureus to porphyrin-silver nanoparticle mediated photodynamic antimicrobial chemotherapy. Journal of Luminescence 2020;222:117158. [DOI: 10.1016/j.jlumin.2020.117158] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
44 Yuan Q, Wang Y, Yao P, Lv J, Wang Q, Sun F, Feng W. Effect of unsymmetrical oligo-phenylene-ethynylene OPE3 against multidrug-resistant bacteria in vitro and in vivo. J Chemother 2021;33:156-64. [PMID: 32460634 DOI: 10.1080/1120009X.2020.1770026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Gao Y, Wang J, Chai M, Li X, Deng Y, Jin Q, Ji J. Size and Charge Adaptive Clustered Nanoparticles Targeting the Biofilm Microenvironment for Chronic Lung Infection Management. ACS Nano 2020;14:5686-99. [PMID: 32320228 DOI: 10.1021/acsnano.0c00269] [Cited by in Crossref: 98] [Cited by in F6Publishing: 84] [Article Influence: 49.0] [Reference Citation Analysis]
46 Ma W, Chen X, Fu L, Zhu J, Fan M, Chen J, Yang C, Yang G, Wu L, Mao G, Yang X, Mou X, Gu Z, Cai X. Ultra-efficient Antibacterial System Based on Photodynamic Therapy and CO Gas Therapy for Synergistic Antibacterial and Ablation Biofilms. ACS Appl Mater Interfaces 2020;12:22479-91. [PMID: 32329344 DOI: 10.1021/acsami.0c01967] [Cited by in Crossref: 58] [Cited by in F6Publishing: 67] [Article Influence: 29.0] [Reference Citation Analysis]
47 Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic-Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives. Adv Mater 2020;32:e1904106. [PMID: 31799752 DOI: 10.1002/adma.201904106] [Cited by in Crossref: 175] [Cited by in F6Publishing: 190] [Article Influence: 87.5] [Reference Citation Analysis]
48 Chen X, Huang L, Jia Y, Hu R, Gao M, Ren L, Tang BZ. AIE‐Based Theranostic Probe for Sequential Imaging and Killing of Bacteria and Cancer Cells. Adv Optical Mater 2020;8:1902191. [DOI: 10.1002/adom.201902191] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
49 Shu X, Liao J, Wang L, Shi Q, Xie X. Osteogenic, Angiogenic, and Antibacterial Bioactive Nano-Hydroxyapatite Co-Synthesized Using γ-Polyglutamic Acid and Copper. ACS Biomater Sci Eng 2020;6:1920-30. [PMID: 33455304 DOI: 10.1021/acsbiomaterials.0c00096] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
50 Guo X, Cao B, Wang C, Lu S, Hu X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. Nanoscale 2020;12:7651-9. [PMID: 32207761 DOI: 10.1039/d0nr00181c] [Cited by in Crossref: 60] [Cited by in F6Publishing: 62] [Article Influence: 30.0] [Reference Citation Analysis]
51 Chu X, Wu F, Sun B, Zhang M, Song S, Zhang P, Wang Y, Zhang Q, Zhou N, Shen J. Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination. Colloids Surf B Biointerfaces 2020;190:110930. [PMID: 32146275 DOI: 10.1016/j.colsurfb.2020.110930] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
52 Zhao YQ, Sun Y, Zhang Y, Ding X, Zhao N, Yu B, Zhao H, Duan S, Xu FJ. Well-Defined Gold Nanorod/Polymer Hybrid Coating with Inherent Antifouling and Photothermal Bactericidal Properties for Treating an Infected Hernia. ACS Nano 2020;14:2265-75. [PMID: 32017535 DOI: 10.1021/acsnano.9b09282] [Cited by in Crossref: 99] [Cited by in F6Publishing: 85] [Article Influence: 49.5] [Reference Citation Analysis]
53 Zhao W, Du M, Liu K, Zhou R, Ma R, Jiao Z, Zhao Q, Shan C. Hydrophilic ZnO Nanoparticles@Calcium Alginate Composite for Water Purification. ACS Appl Mater Interfaces 2020;12:13305-15. [DOI: 10.1021/acsami.9b23458] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
54 Wang H, Guo L, Wang Y, Feng L. Bactericidal activity-tunable conjugated polymers as a human-friendly bactericide for the treatment of wound infections. Biomater Sci 2019;7:3788-94. [PMID: 31218306 DOI: 10.1039/c9bm00695h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
55 Zhou S, Wang Z, Wang Y, Feng L. Near-Infrared Light-Triggered Synergistic Phototherapy for Antimicrobial Therapy. ACS Appl Bio Mater 2020;3:1730-7. [DOI: 10.1021/acsabm.0c00034] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
56 Chen M, Long Z, Dong R, Wang L, Zhang J, Li S, Zhao X, Hou X, Shao H, Jiang X. Titanium Incorporation into Zr‐Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrug‐Resistant Pathogens. Small 2020;16:1906240. [DOI: 10.1002/smll.201906240] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 29.0] [Reference Citation Analysis]
57 Yang J, Jia X, Wang X, Liu M, Chen M, Yang T, Wang J. Discrimination of antibiotic-resistant Gram-negative bacteria with a novel 3D nano sensing array. Chem Commun 2020;56:1717-20. [DOI: 10.1039/c9cc09462h] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
58 Lin A, Liu Y, Zhu X, Chen X, Liu J, Zhou Y, Qin X, Liu J. Bacteria-Responsive Biomimetic Selenium Nanosystem for Multidrug-Resistant Bacterial Infection Detection and Inhibition. ACS Nano 2019;13:13965-84. [PMID: 31730327 DOI: 10.1021/acsnano.9b05766] [Cited by in Crossref: 75] [Cited by in F6Publishing: 69] [Article Influence: 25.0] [Reference Citation Analysis]
59 Bazan EL, Ruan L, Zhou C. Improving the antimicrobial efficacy against resistant Staphylococcus aureus by a combined use of conjugated oligoelectrolytes. PLoS One 2019;14:e0224816. [PMID: 31730663 DOI: 10.1371/journal.pone.0224816] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
60 Jose J, Anas A, Jose B, Puthirath AB, Athiyanathil S, Jasmin C, Anantharaman MR, Nair S, Subrahmanyam C, Biju V. Extinction of Antimicrobial Resistant Pathogens Using Silver Embedded Silica Nanoparticles and an Efflux Pump Blocker. ACS Appl Bio Mater 2019;2:4681-6. [DOI: 10.1021/acsabm.9b00614] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
61 Chen H, Yang J, Sun L, Zhang H, Guo Y, Qu J, Jiang W, Chen W, Ji J, Yang Y, Wang B. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework‐Based Drug Delivery Systems. Small 2019;15:1903880. [DOI: 10.1002/smll.201903880] [Cited by in Crossref: 67] [Cited by in F6Publishing: 72] [Article Influence: 22.3] [Reference Citation Analysis]
62 Wang Y, Yuan Q, Feng W, Pu W, Ding J, Zhang H, Li X, Yang B, Dai Q, Cheng L, Wang J, Sun F, Zhang D. Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles. J Nanobiotechnology 2019;17:103. [PMID: 31581948 DOI: 10.1186/s12951-019-0537-4] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
63 Yan L, Alba M, Tabassum N, Voelcker NH. Micro‐ and Nanosystems for Advanced Transdermal Delivery. Adv Therap 2019;2:1900141. [DOI: 10.1002/adtp.201900141] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
64 Qi M, Chi M, Sun X, Xie X, Weir MD, Oates TW, Zhou Y, Wang L, Bai Y, Xu HH. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int J Nanomedicine 2019;14:6937-56. [PMID: 31695368 DOI: 10.2147/IJN.S212807] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 16.0] [Reference Citation Analysis]
65 Xue Q, Wang Q, Han Z, Tang N, Zhou C, Pan W, Wang Y, Duan X. Printed Highly Ordered Conductive Polymer Nanowires Doped with Biotinylated Polyelectrolytes for Biosensing Applications. Adv Mater Interfaces 2019;6:1900671. [DOI: 10.1002/admi.201900671] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
66 Zan P, Than A, Duong PK, Song J, Xu C, Chen P. Antimicrobial Microneedle Patch for Treating Deep Cutaneous Fungal Infection. Adv Therap 2019;2:1900064. [DOI: 10.1002/adtp.201900064] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
67 Yan S, Chen S, Gou X, Yang J, An J, Jin X, Yang Y, Chen L, Gao H. Biodegradable Supramolecular Materials Based on Cationic Polyaspartamides and Pillar[5]arene for Targeting Gram‐Positive Bacteria and Mitigating Antimicrobial Resistance. Adv Funct Mater 2019;29:1904683. [DOI: 10.1002/adfm.201904683] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 20.0] [Reference Citation Analysis]
68 Liu X, Li M, Han T, Cao B, Qiu Z, Li Y, Li Q, Hu Y, Liu Z, Lam JWY, Hu X, Tang BZ. In Situ Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. J Am Chem Soc 2019;141:11259-68. [DOI: 10.1021/jacs.9b04757] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 21.0] [Reference Citation Analysis]
69 Jiang F, Pan C, Zhang Y, Fang Y. Cellulose graft copolymers toward strong thermoplastic elastomers via RAFT polymerization. Applied Surface Science 2019;480:162-71. [DOI: 10.1016/j.apsusc.2019.02.210] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
70 Liu Y, Zhao X, Zhao C, Zhang H, Zhao Y. Responsive Porous Microcarriers With Controllable Oxygen Delivery for Wound Healing. Small 2019;15:1901254. [DOI: 10.1002/smll.201901254] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 12.7] [Reference Citation Analysis]
71 Zhai S, Hu X, Ji Z, Qin H, Wang Z, Hu Y, Xing D. Pulsed Microwave-Pumped Drug-Free Thermoacoustic Therapy by Highly Biocompatible and Safe Metabolic Polyarginine Probes. Nano Lett 2019;19:1728-35. [DOI: 10.1021/acs.nanolett.8b04723] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
72 Cheng H, Li X, Kwon N, Fang Y, Baek G, Yoon J. Photoswitchable phthalocyanine-assembled nanoparticles for controlled “double-lock” photodynamic therapy. Chem Commun 2019;55:12316-9. [DOI: 10.1039/c9cc03960k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]