BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles-From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021. [PMID: 34181394 DOI: 10.1021/acsnano.1c04996] [Cited by in Crossref: 156] [Cited by in F6Publishing: 186] [Article Influence: 78.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhou Y, Cai C, Wang C, Hu G, Li Y, Han M, Hu S, Cheng P. Ferric-loaded lipid nanoparticles inducing ferroptosis-like cell death for antibacterial wound healing. Drug Delivery 2023;30:1-8. [DOI: 10.1080/10717544.2022.2152134] [Reference Citation Analysis]
2 Zhang F, Yao Q, Chen X, Zhou H, Zhou M, Li Y, Cheng H. In-depth study of anticancer drug diffusion through a cross-linked -pH-responsive polymeric vesicle membrane. Drug Deliv 2023;30:2162626. [PMID: 36600638 DOI: 10.1080/10717544.2022.2162626] [Reference Citation Analysis]
3 Yu H, Dyett BP, Zhai J, Strachan JB, Drummond CJ, Conn CE. Formation of particulate lipid lyotropic liquid crystalline nanocarriers using a microfluidic platform. J Colloid Interface Sci 2023;634:279-89. [PMID: 36542965 DOI: 10.1016/j.jcis.2022.12.028] [Reference Citation Analysis]
4 Addison AP, Mcginnis J, Ortiz-guzman J, Tantry EK, Patel DM, Belfort BDW, Srivastava S, Romero JM, Arenkiel BR, Curry DJ. Molecular Neurosurgery: Introduction to Gene Therapy and Clinical Applications. Journal of Pediatric Epilepsy 2023;12:050-062. [DOI: 10.1055/s-0042-1760292] [Reference Citation Analysis]
5 Song X, Feng Z, Peng Y, Yu S, Du X, Huang P, Wang W, Xing J. Nanogels co-loading paclitaxel and curcumin prepared in situ through photopolymerization at 532 nm for synergistically suppressing breast tumors. J Mater Chem B 2023. [PMID: 36727624 DOI: 10.1039/d2tb02254k] [Reference Citation Analysis]
6 Aljabali AAA, Bashatwah RM, Obeid MA, Mishra V, Mishra Y, Serrano-Aroca Á, Lundstrom K, Tambuwala MM. Current state of, prospects for, and obstacles to mRNA vaccine development. Drug Discov Today 2023;28:103458. [PMID: 36427779 DOI: 10.1016/j.drudis.2022.103458] [Reference Citation Analysis]
7 Zaslavsky J, Bannigan P, Allen C. Re-envisioning the design of nanomedicines: harnessing automation and artificial intelligence. Expert Opin Drug Deliv 2023;20:241-57. [PMID: 36644850 DOI: 10.1080/17425247.2023.2167978] [Reference Citation Analysis]
8 Abdellatif AAH, Younis MA, Alsowinea AF, Abdallah EM, Abdel-Bakky MS, Al-Subaiyel A, Hassan YAH, Tawfeek HM. Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine. Colloids Surf B Biointerfaces 2023;222:113111. [PMID: 36586237 DOI: 10.1016/j.colsurfb.2022.113111] [Reference Citation Analysis]
9 De A, Ko YT. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out. Expert Opin Drug Deliv 2023;20:175-87. [PMID: 36588456 DOI: 10.1080/17425247.2023.2162876] [Reference Citation Analysis]
10 Tanaka H, Hagiwara S, Shirane D, Yamakawa T, Sato Y, Matsumoto C, Ishizaki K, Hishinuma M, Chida K, Sasaki K, Yonemochi E, Ueda K, Higashi K, Moribe K, Tadokoro T, Maenaka K, Taneichi S, Nakai Y, Tange K, Sakurai Y, Akita H. Ready-to-Use-Type Lyophilized Lipid Nanoparticle Formulation for the Postencapsulation of Messenger RNA. ACS Nano 2023. [PMID: 36719091 DOI: 10.1021/acsnano.2c10501] [Reference Citation Analysis]
11 Yang J, Boer JC, Khongkow M, Phunpee S, Khalil ZG, Bashiri S, Deceneux C, Goodchild G, Hussein WM, Capon RJ, Ruktanonchai U, Plebanski M, Toth I, Skwarczynski M. The Development of Surface-Modified Liposomes as an Intranasal Delivery System for Group A Streptococcus Vaccines. Vaccines 2023;11:305. [DOI: 10.3390/vaccines11020305] [Reference Citation Analysis]
12 Iacomino G. miRNAs: The Road from Bench to Bedside. Genes 2023;14:314. [DOI: 10.3390/genes14020314] [Reference Citation Analysis]
13 Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev 2023;194:114708. [PMID: 36682420 DOI: 10.1016/j.addr.2023.114708] [Reference Citation Analysis]
14 Yuan Y, Gao F, Chang Y, Zhao Q, He X. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res 2023;11:6. [PMID: 36650562 DOI: 10.1186/s40364-023-00449-w] [Reference Citation Analysis]
15 Golubovic A, Tsai S, Li B. Bioinspired Lipid Nanocarriers for RNA Delivery. ACS Bio Med Chem Au 2023. [DOI: 10.1021/acsbiomedchemau.2c00073] [Reference Citation Analysis]
16 Al Badri YN, Chaw CS, Elkordy AA. Insights into Asymmetric Liposomes as a Potential Intervention for Drug Delivery Including Pulmonary Nanotherapeutics. Pharmaceutics 2023;15. [PMID: 36678922 DOI: 10.3390/pharmaceutics15010294] [Reference Citation Analysis]
17 Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. Nano Res 2023;:1-17. [PMID: 36685637 DOI: 10.1007/s12274-022-5267-5] [Reference Citation Analysis]
18 Kim H, Kwak M. Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy. Int J Mol Sci 2023;24. [PMID: 36675110 DOI: 10.3390/ijms24021592] [Reference Citation Analysis]
19 Mizuta R, Inoue F, Sasaki Y, Sawada SI, Akiyoshi K. A Facile Method to Coat Nanoparticles with Lipid Bilayer Membrane: Hybrid Silica Nanoparticles Disguised as Biomembrane Vesicles by Particle Penetration of Concentrated Lipid Layers. Small 2023;:e2206153. [PMID: 36634998 DOI: 10.1002/smll.202206153] [Reference Citation Analysis]
20 Ayan S, Aranci-ciftci K, Ciftci F, Ustundag CB. Nanotechnology and COVID-19: Prevention, diagnosis, vaccine, and treatment strategies. Front Mater 2023;9. [DOI: 10.3389/fmats.2022.1059184] [Reference Citation Analysis]
21 Liu C, Liu Y, Xi L, He Y, Liang Y, Mak JCW, Mao S, Wang Z, Zheng Y. Interactions of Inhaled Liposome with Macrophages and Neutrophils Determine Particle Biofate and Anti-Inflammatory Effect in Acute Lung Inflammation. ACS Appl Mater Interfaces 2023;15:479-93. [PMID: 36583377 DOI: 10.1021/acsami.2c17660] [Reference Citation Analysis]
22 Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H. Artificial nanovesicles for dsRNA delivery in spray induced gene silencing for crop protection. bioRxiv 2023:2023. [PMID: 36711993 DOI: 10.1101/2023.01.03.522662] [Reference Citation Analysis]
23 Li Z, Carter J, Santos L, Webster C, van der Walle CF, Li P, Rogers SE, Lu JR. Acidification-Induced Structure Evolution of Lipid Nanoparticles Correlates with Their In Vitro Gene Transfections. ACS Nano 2023;17:979-90. [PMID: 36608273 DOI: 10.1021/acsnano.2c06213] [Reference Citation Analysis]
24 Yang M, Zhang C, Wang R, Wu X, Li H, Yoon J. Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. Small Methods 2023;:e2201381. [PMID: 36609838 DOI: 10.1002/smtd.202201381] [Reference Citation Analysis]
25 Qiao L, Niño-Sánchez J, Hamby R, Capriotti L, Chen A, Mezzetti B, Jin H. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection. Plant Biotechnol J 2023. [PMID: 36601704 DOI: 10.1111/pbi.14001] [Reference Citation Analysis]
26 Chen J, Cong X. Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects. Biomed Pharmacother 2023;157:113998. [PMID: 36399829 DOI: 10.1016/j.biopha.2022.113998] [Reference Citation Analysis]
27 Sahu KK, Pradhan M, Singh D, Singh MR, Yadav K. Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. Journal of Drug Delivery Science and Technology 2023. [DOI: 10.1016/j.jddst.2023.104152] [Reference Citation Analysis]
28 Jafari-Matanagh S, Razavi SE, Ehghaghi Bonab MB, Omidian H, Omidi Y. Multi-dimensional modeling of nanoparticles transportation from capillary bed into the tumor microenvironment. Comput Biol Med 2023;152:106477. [PMID: 36571940 DOI: 10.1016/j.compbiomed.2022.106477] [Reference Citation Analysis]
29 De A, Ko YT. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement. Expert Opin Drug Deliv 2023;20:75-91. [PMID: 36445261 DOI: 10.1080/17425247.2023.2153832] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Jain A, Sharma S. Nanotechnology in COVID-19 Vaccines. Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022) 2023. [DOI: 10.2991/978-94-6463-020-6_3] [Reference Citation Analysis]
31 Subhan MA, Torchilin VP. Biopolymer-Based Nanosystems for siRNA Drug Delivery to Solid Tumors including Breast Cancer. Pharmaceutics 2023;15. [PMID: 36678782 DOI: 10.3390/pharmaceutics15010153] [Reference Citation Analysis]
32 Grenier P, Chénard V, Bertrand N. The mechanisms of anti-PEG immune response are different in the spleen and the lymph nodes. J Control Release 2023;353:611-20. [PMID: 36493950 DOI: 10.1016/j.jconrel.2022.12.005] [Reference Citation Analysis]
33 Siva S, Jin J, Choi I, Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosensors and Bioelectronics 2023;219:114845. [DOI: 10.1016/j.bios.2022.114845] [Reference Citation Analysis]
34 Tao R, You C, Qu Q, Zhang X, Deng Y, Ma W, Huang C. Recent advances in the design of controlled- and sustained-release micro/nanocarriers of pesticide. Environ Sci : Nano 2023. [DOI: 10.1039/d2en00446a] [Reference Citation Analysis]
35 Yin Q, Song X, Yang P, Yang W, Li X, Wang X, Wang S. Incorporation of glycyrrhizic acid and polyene phosphatidylcholine in lipid nanoparticles ameliorates acute liver injury via delivering p65 siRNA. Nanomedicine 2022;48:102649. [PMID: 36584740 DOI: 10.1016/j.nano.2022.102649] [Reference Citation Analysis]
36 Bruno MC, Cristiano MC, Celia C, d'Avanzo N, Mancuso A, Paolino D, Wolfram J, Fresta M. Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano 2022;16:19665-90. [PMID: 36512378 DOI: 10.1021/acsnano.2c06393] [Reference Citation Analysis]
37 Jaschke M, Plenge M, Kunkel M, Lehrich T, Schmidt J, Stöckemann K, Heinemann D, Siroky S, Ngezahayo A, Polarz S. Surfactant Semiconductors as Trojan Horses in Cell-Membranes for On-Demand and Spatial Regulation of Oxidative Stress. Adv Healthc Mater 2022;:e2202290. [PMID: 36564363 DOI: 10.1002/adhm.202202290] [Reference Citation Analysis]
38 Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy. Front Immunol 2022;13:1029069. [PMID: 36591226 DOI: 10.3389/fimmu.2022.1029069] [Reference Citation Analysis]
39 Spinozzi F, Alcaraz JP, Ortore MG, Gayet L, Radulescu A, Martin DK, Maccarini M. Small-Angle Neutron Scattering Reveals the Nanostructure of Liposomes with Embedded OprF Porins of Pseudomonas aeruginosa. Langmuir 2022;38:15026-37. [PMID: 36459683 DOI: 10.1021/acs.langmuir.2c01342] [Reference Citation Analysis]
40 Alberto M, Paiva-Santos AC, Veiga F, Pires PC. Lipid and Polymeric Nanoparticles: Successful Strategies for Nose-to-Brain Drug Delivery in the Treatment of Depression and Anxiety Disorders. Pharmaceutics 2022;14. [PMID: 36559236 DOI: 10.3390/pharmaceutics14122742] [Reference Citation Analysis]
41 Du Q, Chen L, Ding X, Cui B, Chen H, Gao F, Wang Y, Cui H, Zeng Z. Development of emamectin benzoate-loaded liposome nano-vesicles with thermo-responsive behavior for intelligent pest control. J Mater Chem B 2022;10:9896-905. [PMID: 36448451 DOI: 10.1039/d2tb02080g] [Reference Citation Analysis]
42 Szebeni J, Kiss B, Bozó T, Turjeman K, Levi-kalisman Y, Barenholz Y, Kellermayer M. New insights into the structure of Comirnaty Covid-19 vaccine: A theory on soft nanoparticles with mRNA-lipid supercoils stabilized by hydrogen bonds.. [DOI: 10.1101/2022.12.02.518611] [Reference Citation Analysis]
43 Park Y, Moses AS, Demessie AA, Singh P, Lee H, Korzun T, Taratula OR, Alani AWG, Taratula O. Poly(aspartic acid)-Based Polymeric Nanoparticle for Local and Systemic mRNA Delivery. Mol Pharm 2022;19:4696-704. [PMID: 36409995 DOI: 10.1021/acs.molpharmaceut.2c00738] [Reference Citation Analysis]
44 Gao Z, Cui X, Cui J. Multicompartment polymer capsules. Supramolecular Materials 2022;1:100015. [DOI: 10.1016/j.supmat.2022.100015] [Reference Citation Analysis]
45 Yang Z, Liu X, Cribbin EM, Kim AM, Li JJ, Yong K. Liver-on-a-chip: Considerations, advances, and beyond. Biomicrofluidics 2022;16:061502. [DOI: 10.1063/5.0106855] [Reference Citation Analysis]
46 Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022;14. [PMID: 36559176 DOI: 10.3390/pharmaceutics14122681] [Reference Citation Analysis]
47 Shi H, Xie Z, Cao Y, Zhao Y, Zhang C, Chen Z, Reis NM, Liu Z. A microfluidic serial dilutor (MSD): Design optimization and application to tuning of liposome nanoparticle preparation. Chemical Engineering Science 2022;263:118080. [DOI: 10.1016/j.ces.2022.118080] [Reference Citation Analysis]
48 Thorn CR, Sharma D, Combs R, Bhujbal S, Romine J, Zheng X, Sunasara K, Badkar A. The journey of a lifetime - development of Pfizer's COVID-19 vaccine. Curr Opin Biotechnol 2022;78:102803. [PMID: 36162187 DOI: 10.1016/j.copbio.2022.102803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Hohokabe M, Higashi K, Yamada Y, Fujimoto T, Tokumoto T, Imamura H, Morita T, Ueda K, Limwikrant W, Moribe K. Modification of liposomes composed of a cationic lipid TMAG and an anionic lipid DSPG with a PEGylated lipid based on the investigation of lipid structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130891] [Reference Citation Analysis]
50 Spencer AC, Surnar B, Kolishetti N, Toborek M, Dhar S. Restoring the neuroprotective capacity of glial cells under opioid addiction. Addiction Neuroscience 2022;4:100027. [DOI: 10.1016/j.addicn.2022.100027] [Reference Citation Analysis]
51 Guo J, Ma S, Mai Y, Gao T, Song Z, Yang J. Combination of a cationic complexes loaded with mRNA and α-Galactose ceramide enhances antitumor immunity and affects the tumor immune microenvironment. International Immunopharmacology 2022;113:109254. [DOI: 10.1016/j.intimp.2022.109254] [Reference Citation Analysis]
52 Filimonova D, Nazarova A, Yakimova L, Stoikov I. Solid Lipid Nanoparticles Based on Monosubstituted Pillar[5]arenes: Chemoselective Synthesis of Macrocycles and Their Supramolecular Self-Assembly. Nanomaterials (Basel) 2022;12. [PMID: 36500889 DOI: 10.3390/nano12234266] [Reference Citation Analysis]
53 de Moura IA, Silva AJD, de Macêdo LS, Invenção MDCV, de Sousa MMG, de Freitas AC. Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens 2022;11. [PMID: 36558778 DOI: 10.3390/pathogens11121444] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Pontes AP, Welting TJM, Rip J, Creemers LB. Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022;14. [PMID: 36559133 DOI: 10.3390/pharmaceutics14122639] [Reference Citation Analysis]
55 Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022;10:1052436. [PMID: 36507266 DOI: 10.3389/fbioe.2022.1052436] [Reference Citation Analysis]
56 Heng WT, Yew JS, Poh CL. Nanovaccines against Viral Infectious Diseases. Pharmaceutics 2022;14. [PMID: 36559049 DOI: 10.3390/pharmaceutics14122554] [Reference Citation Analysis]
57 Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano 2022;16:17802-46. [PMID: 36354238 DOI: 10.1021/acsnano.2c08774] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
58 Ou L, Chen H, Yuan B, Yang K. Membrane-Specific Binding of 4 nm Lipid Nanoparticles Mediated by an Entropy-Driven Interaction Mechanism. ACS Nano 2022;16:18090-100. [PMID: 36278503 DOI: 10.1021/acsnano.2c04774] [Reference Citation Analysis]
59 Kalita T, Dezfouli SA, Pandey LM, Uludag H. siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics 2022;14. [PMID: 36432711 DOI: 10.3390/pharmaceutics14112520] [Reference Citation Analysis]
60 Tsai H, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022;20:535. [DOI: 10.1186/s12967-022-03747-3] [Reference Citation Analysis]
61 Khan S, Mejia F, Shin J, Hwang G, Omstead DT, Wu J, Cole SL, Littlepage LE, Bilgicer B. Disease-driven engineering of peptide-targeted DM1 loaded liposomal nanoparticles for enhanced efficacy in treating multiple myeloma by exploring DM1 prodrug chemistry. Biomaterials 2022;292:121913. [PMID: 36442437 DOI: 10.1016/j.biomaterials.2022.121913] [Reference Citation Analysis]
62 Bottacchiari M, Gallo M, Bussoletti M, Casciola CM. Activation energy and force fields during topological transitions of fluid lipid vesicles. Commun Phys 2022;5:283. [DOI: 10.1038/s42005-022-01055-2] [Reference Citation Analysis]
63 Gabel M, Knauss A, Fischer D, Neurath MF, Weigmann B. Surface Design Options in Polymer- and Lipid-Based siRNA Nanoparticles Using Antibodies. Int J Mol Sci 2022;23. [PMID: 36430411 DOI: 10.3390/ijms232213929] [Reference Citation Analysis]
64 Zhang F, Xia B, Sun J, Wang Y, Wang J, Xu F, Chen J, Lu M, Yao X, Timashev P, Zhang Y, Chen M, Che J, Li F, Liang X. Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation. Research 2022;2022:1-21. [DOI: 10.34133/2022/9808429] [Reference Citation Analysis]
65 Du JS, Chen T, Liu F, Wang S, Zhang J, Zhang R. Editorial: Nanotechnology for natural products. Front Chem 2022;10. [DOI: 10.3389/fchem.2022.1069892] [Reference Citation Analysis]
66 Li B, Han Y, Liu Y, Yang F. Fine-tuned magnetic nanobubbles for magnetic hyperthermia treatment of glioma cells. Biointerphases 2022;17:061004. [DOI: 10.1116/6.0002110] [Reference Citation Analysis]
67 Yang Y, Cai D, Shu Y, Yuan Z, Pi W, Zhang Y, Lu J, Jiao J, Cheng X, Li F, Wang P, Lei H. Natural small molecule self-assembled hydrogel inhibited tumor growth and lung metastasis of 4T1 breast cancer by regulating the CXCL1/2-S100A8/9 axis. Materials & Design 2022. [DOI: 10.1016/j.matdes.2022.111435] [Reference Citation Analysis]
68 Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.11.026] [Reference Citation Analysis]
69 Tomsen-Melero J, Merlo-Mas J, Carreño A, Sala S, Córdoba A, Veciana J, González-Mira E, Ventosa N. Liposomal formulations for treating lysosomal storage disorders. Adv Drug Deliv Rev 2022;190:114531. [PMID: 36089182 DOI: 10.1016/j.addr.2022.114531] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Rohner E, Yang R, Foo KS, Goedel A, Chien KR. Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022;40:1586-600. [PMID: 36329321 DOI: 10.1038/s41587-022-01491-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Shi Y, Huang J, Liu Y, Liu J, Guo X, Li J, Gong L, Zhou X, Cheng G, Qiu Y, You J, Lou Y. Structural and biochemical characteristics of mRNA nanoparticles determine anti-SARS-CoV-2 humoral and cellular immune responses. Sci Adv 2022;8:eabo1827. [PMID: 36417530 DOI: 10.1126/sciadv.abo1827] [Reference Citation Analysis]
72 Pham TMA, Lee DH, Na Y, Jin M, Jung M, Kim H, Yoo H, Won J, Lee J, Baek J, Han S, Lee H, Cho C. Enhancement of S(+)-zaltoprofen oral bioavailability using nanostructured lipid carrier system. Arch Pharm Res 2022. [DOI: 10.1007/s12272-022-01413-2] [Reference Citation Analysis]
73 Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1025740] [Reference Citation Analysis]
74 Al-Nemrawi NK, Darweesh RS, Al-Shriem LA, Al-Qawasmi FS, Emran SO, Khafajah AS, Abu-Dalo MA. Polymeric Nanoparticles for Inhaled Vaccines. Polymers (Basel) 2022;14:4450. [PMID: 36298030 DOI: 10.3390/polym14204450] [Reference Citation Analysis]
75 Chen J, Rizvi A, Patterson JP, Hawker CJ. Discrete Libraries of Amphiphilic Poly(ethylene glycol) Graft Copolymers: Synthesis, Assembly, and Bioactivity. J Am Chem Soc 2022. [PMID: 36240519 DOI: 10.1021/jacs.2c07859] [Reference Citation Analysis]
76 Jones BE, Kelly EA, Cowieson N, Divitini G, Evans RC. Light-Responsive Molecular Release from Cubosomes Using Swell-Squeeze Lattice Control. J Am Chem Soc 2022. [PMID: 36222426 DOI: 10.1021/jacs.2c08583] [Reference Citation Analysis]
77 Vlasova-st. Louis I, Abadie J. Prophylactic Ribonucleic Acid Vaccines to Combat RNA Viral Infections in Humans. RNA Therapeutics - History, Design, Manufacturing, and Applications [Working Title] 2022. [DOI: 10.5772/intechopen.108163] [Reference Citation Analysis]
78 Liu T, Tian Y, Zheng A, Cui C. Design Strategies for and Stability of mRNA-Lipid Nanoparticle COVID-19 Vaccines. Polymers (Basel) 2022;14. [PMID: 36236141 DOI: 10.3390/polym14194195] [Reference Citation Analysis]
79 Zhang X, Hai L, Gao Y, Yu G, Sun Y. Lipid nanomaterials-based RNA therapy and cancer treatment. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.10.004] [Reference Citation Analysis]
80 Ohishi K, Tsuchiya K, Ogura T, Ebisawa A, Sekine A, Masubuchi Y, Akamatsu M, Sakai K, Abe M, Sakai H. Characterization of lecithin liposomes prepared by polyol dilution method using 1,3-butylene glycol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;650:129592. [DOI: 10.1016/j.colsurfa.2022.129592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Lattanzi A, Maddalo D. The CRISPR Revolution in the Drug Discovery Workflow: An Industry Perspective. CRISPR J 2022;5:634-41. [PMID: 35917561 DOI: 10.1089/crispr.2022.0002] [Reference Citation Analysis]
82 Yuba E, Kado Y, Kasho N, Harada A. Cationic lipid potentiated the adjuvanticity of polysaccharide derivative-modified liposome vaccines. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.10.016] [Reference Citation Analysis]
83 Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Reference Citation Analysis]
84 Kapoor D, Sharma S, Verma K, Bisht A, Sharma M, Singhai NJ, Raval N, Maheshwari R. Quality-by-design-based engineered liposomal nanomedicines to treat cancer: an in-depth analysis. Nanomedicine (Lond) 2022. [PMID: 36178357 DOI: 10.2217/nnm-2022-0069] [Reference Citation Analysis]
85 Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022. [PMID: 36174107 DOI: 10.1021/acs.chemrev.1c01032] [Reference Citation Analysis]
86 Patel U, Rathnayake K, Hunt EC, Singh N. Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. JNT 2022;3:151-176. [DOI: 10.3390/jnt3040011] [Reference Citation Analysis]
87 Liu Y, Liu R, Dong J, Xia X, Yang H, Wei S, Fan L, Fang M, Zou Y, Zheng M, Leong KW, Shi B. Targeted Protein Degradation via Nanoparticles.. [DOI: 10.1101/2022.09.21.508905] [Reference Citation Analysis]
88 Zhou L, Emenuga M, Kumar S, Lamantia Z, Figueiredo M, Emrick T. Designing Synthetic Polymers for Nucleic Acid Complexation and Delivery: From Polyplexes to Micelleplexes to Triggered Degradation. Biomacromolecules 2022. [PMID: 36125365 DOI: 10.1021/acs.biomac.2c00767] [Reference Citation Analysis]
89 Hunckler MD, Levine AD. Navigating ethical challenges in the development and translation of biomaterials research. Front Bioeng Biotechnol 2022;10:949280. [DOI: 10.3389/fbioe.2022.949280] [Reference Citation Analysis]
90 Osouli-bostanabad K, Puliga S, Serrano DR, Bucchi A, Halbert G, Lalatsa A. Microfluidic Manufacture of Lipid-Based Nanomedicines. Pharmaceutics 2022;14:1940. [DOI: 10.3390/pharmaceutics14091940] [Reference Citation Analysis]
91 Nguyen TTT, Haam S, Park J, Lee S. Cysteine-Encapsulated Liposome for Investigating Biomolecular Interactions at Lipid Membranes. IJMS 2022;23:10566. [DOI: 10.3390/ijms231810566] [Reference Citation Analysis]
92 Duan Q, Hu T, Zhu Q, Jin X, Chi F, Chen X. How far are the new wave of mRNA drugs from us? mRNA product current perspective and future development. Front Immunol 2022;13:974433. [DOI: 10.3389/fimmu.2022.974433] [Reference Citation Analysis]
93 Shu L, Huang Z, Huang Y, Wu C, Pan X. Upon a potential approach to regulate the targeting region of inhalable liposomes. Journal of Bioactive and Compatible Polymers. [DOI: 10.1177/08839115221121862] [Reference Citation Analysis]
94 Guo J, Huang L. Nanodelivery of cGAS-STING activators for tumor immunotherapy. Trends Pharmacol Sci 2022:S0165-6147(22)00177-8. [PMID: 36089410 DOI: 10.1016/j.tips.2022.08.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Li Y, Yao R, Ren M, Yuan K, Du Y, He Y, Kang H, Yuan S, Ju W, Qiao J, Xu K, Zeng L. Liposomes trigger bone marrow niche macrophage "foam" cell formation and affect hematopoiesis in mice. J Lipid Res 2022;:100273. [PMID: 36084713 DOI: 10.1016/j.jlr.2022.100273] [Reference Citation Analysis]
96 Leong EWX, Ge R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines 2022;10:2179. [DOI: 10.3390/biomedicines10092179] [Reference Citation Analysis]
97 Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm 2022;3. [DOI: 10.1002/mco2.167] [Reference Citation Analysis]
98 Shi Y, Luo Z, You J. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1803] [Reference Citation Analysis]
99 Wu A, Guo Y, Li X, Li Q, Chen G, Zang H, Li J. Schiff base nanoarchitectonics for supramolecular assembly of dipeptide as drug carriers. Journal of Colloid and Interface Science 2022. [DOI: 10.1016/j.jcis.2022.09.122] [Reference Citation Analysis]
100 Chen Y, Xiong S, Li F, Kong X, Ouyang D, Zheng Y, Yu H, Hu Y. Delivery of therapeutic small interfering RNA: The current patent-based landscape. Molecular Therapy - Nucleic Acids 2022;29:150-161. [DOI: 10.1016/j.omtn.2022.06.011] [Reference Citation Analysis]
101 Viegas C, Seck F, Fonte P. An insight on lipid nanoparticles for therapeutic proteins delivery. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103839] [Reference Citation Analysis]
102 Rout SK, Priya V, Setia A, Mehata AK, Mohan S, Albratty M, Najmi A, Meraya AM, Makeen HA, Tambuwala MM, Muthu MS. Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomedicine & Pharmacotherapy 2022;153:113451. [DOI: 10.1016/j.biopha.2022.113451] [Reference Citation Analysis]
103 Yang C, Alpini G, Glaser S, Merlin D. Lipid nanoparticles for oral delivery of nucleic acids for treating inflammatory bowel disease. Nanomedicine (Lond) 2022;17:1501-4. [PMID: 36317587 DOI: 10.2217/nnm-2022-0222] [Reference Citation Analysis]
104 Wang H, Wang Z, Liu S. Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy. Molecules 2022;27:5607. [DOI: 10.3390/molecules27175607] [Reference Citation Analysis]
105 Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. Biosensors 2022;12:683. [DOI: 10.3390/bios12090683] [Reference Citation Analysis]
106 Jagaran K, Singh M. Lipid Nanoparticles: Promising Treatment Approach for Parkinson's Disease. Int J Mol Sci 2022;23:9361. [PMID: 36012619 DOI: 10.3390/ijms23169361] [Reference Citation Analysis]
107 Ko C, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01582-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Cao Y, He Z, Chen Q, He X, Su L, Yu W, Zhang M, Yang H, Huang X, Li J. Helper-Polymer Based Five-Element Nanoparticles (FNPs) for Lung-Specific mRNA Delivery with Long-Term Stability after Lyophilization. Nano Lett 2022. [PMID: 35969167 DOI: 10.1021/acs.nanolett.2c01784] [Reference Citation Analysis]
109 Tsakiri M, Zivko C, Demetzos C, Mahairaki V. Lipid-based nanoparticles and RNA as innovative neuro-therapeutics. Front Pharmacol 2022;13:900610. [DOI: 10.3389/fphar.2022.900610] [Reference Citation Analysis]
110 Zhang Z, Yao S, Hu Y, Zhao X, Lee RJ. Application of lipid-based nanoparticles in cancer immunotherapy. Front Immunol 2022;13:967505. [DOI: 10.3389/fimmu.2022.967505] [Reference Citation Analysis]
111 Lin T, Wang W, Zeng X, Lu Y, Shih P. Preparation, Structural Characterization of Anti-Cancer Drugs-Mediated Self-Assembly from the Pluronic Copolymers through Synchrotron SAXS Investigation. Materials 2022;15:5387. [DOI: 10.3390/ma15155387] [Reference Citation Analysis]
112 Ortega DD, Pavlakovich N, Shon YS. Effects of lipid bilayer encapsulation and lipid composition on the catalytic activity and colloidal stability of hydrophobic palladium nanoparticles in water. RSC Adv 2022;12:21866-74. [PMID: 36043067 DOI: 10.1039/d2ra03974e] [Reference Citation Analysis]
113 Gao M, Han Z, Zhou L, Li P, Xu H, Gu Y, Ma Y. DNA Framework-Programmed Ligand Positioning to Modulate the Targeting Performance. ACS Appl Mater Interfaces 2022. [PMID: 35921103 DOI: 10.1021/acsami.2c10300] [Reference Citation Analysis]
114 Wang S, Wang Y, Jin K, Zhang B, Peng S, Nayak AK, Pang Z. Recent advances in erythrocyte membrane-camouflaged nanoparticles for the delivery of anti-cancer therapeutics. Expert Opinion on Drug Delivery. [DOI: 10.1080/17425247.2022.2108786] [Reference Citation Analysis]
115 Lee Y, Kim M, Kang JY, Jung Y. Protein Cages Engineered for Interaction-Driven Selective Encapsulation of Biomolecules. ACS Appl Mater Interfaces 2022. [PMID: 35916207 DOI: 10.1021/acsami.2c06924] [Reference Citation Analysis]
116 Lee W, Suresh M. Vaccine adjuvants to engage the cross-presentation pathway. Front Immunol 2022;13:940047. [DOI: 10.3389/fimmu.2022.940047] [Reference Citation Analysis]
117 Wilson B, Geetha KM. Lipid nanoparticles in the development of mRNA vaccines for COVID-19. J Drug Deliv Sci Technol 2022;74:103553. [PMID: 35783677 DOI: 10.1016/j.jddst.2022.103553] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
118 Rissanou AN, Karatasos K. Effects of the structure of lipid-based agents in their complexation with a single stranded mRNA fragment: a computational study. Soft Matter 2022. [PMID: 35904818 DOI: 10.1039/d2sm00403h] [Reference Citation Analysis]
119 Jiménez-Morales JM, Hernández-Cuenca YE, Reyes-Abrahantes A, Ruiz-García H, Barajas-Olmos F, García-Ortiz H, Orozco L, Quiñones-Hinojosa A, Reyes-González J, Del Carmen Abrahantes-Pérez M. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J Control Release 2022:S0168-3659(22)00446-1. [PMID: 35905783 DOI: 10.1016/j.jconrel.2022.07.027] [Reference Citation Analysis]
120 Ziqi W, Kai C, Costabel U, Xiaoju Z. Nanotechnology‐facilitated vaccine development during the coronavirus disease 2019 (COVID‐19) pandemic. Exploration. [DOI: 10.1002/exp.20210082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Chavda VP, Dawre S, Pandya A, Vora LK, Modh DH, Shah V, Dave DJ, Patravale V. Lyotropic liquid crystals for parenteral drug delivery. J Control Release 2022;349:533-49. [PMID: 35792188 DOI: 10.1016/j.jconrel.2022.06.062] [Reference Citation Analysis]
122 Böldicke T. Therapeutic Potential of Intrabodies for Cancer Immunotherapy: Current Status and Future Directions. Antibodies 2022;11:49. [DOI: 10.3390/antib11030049] [Reference Citation Analysis]
123 Magen E, Mukherjee S, Bhattacharya M, Detroja R, Merzon E, Blum I, Livoff A, Shlapobersky M, Baum G, Talisman R, Cherniavsky E, Dori A, Frenkel-Morgenstern M. Clinical and Molecular Characterization of a Rare Case of BNT162b2 mRNA COVID-19 Vaccine-Associated Myositis. Vaccines (Basel) 2022;10:1135. [PMID: 35891299 DOI: 10.3390/vaccines10071135] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
124 Mohamed NA, Abou-Saleh H, Mohamed HA, Al-Ghouti MA, Crovella S, Zupin L. Think like a Virus: Toward Improving Nanovaccine Development against SARS-CoV-2. Viruses 2022;14:1553. [PMID: 35891532 DOI: 10.3390/v14071553] [Reference Citation Analysis]
125 Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.948705] [Reference Citation Analysis]
126 Wang X, Gao H, Zhang X, Qian S, Wang C, Deng L, Zhong M, Qing G. Aspartic Acid-Modified Phospholipids Regulate Cell Response and Rescue Memory Deficits in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2022. [PMID: 35818957 DOI: 10.1021/acschemneuro.2c00202] [Reference Citation Analysis]
127 Campora S, Ghersi G. Recent developments and applications of smart nanoparticles in biomedicine. Nanotechnology Reviews 2022;11:2595-631. [DOI: 10.1515/ntrev-2022-0148] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
128 Xu C, Ban Q, Wang W, Hou J, Jiang Z. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J Control Release 2022;349:184-205. [PMID: 35798093 DOI: 10.1016/j.jconrel.2022.06.061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
129 Eş I, Malfatti-Gasperini AA, de la Torre LG. The diffusion-driven microfluidic process to manufacture lipid-based nanotherapeutics with stealth properties for siRNA delivery. Colloids Surf B Biointerfaces 2022;215:112476. [PMID: 35390597 DOI: 10.1016/j.colsurfb.2022.112476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Kettunen S, Ruotsalainen AK, Ylä-Herttuala S. RNA interference-based therapies for the control of atherosclerosis risk factors. Curr Opin Cardiol 2022;37:364-71. [PMID: 35731681 DOI: 10.1097/HCO.0000000000000972] [Reference Citation Analysis]
131 Fan Y, Shi Z, Ma S, Razvi SZA, Fu Y, Chen T, Gruenhagen J, Zhang K. Spectroscopy-Based Local Modeling Method for High-Throughput Quantification of Nucleic Acid Loading in Lipid Nanoparticles. Anal Chem 2022. [PMID: 35700415 DOI: 10.1021/acs.analchem.2c01346] [Reference Citation Analysis]
132 Yuen JG, Fesler A, Hwang G, Chen L, Ju J. Development of 5-FU-modified tumor suppressor microRNAs as a platform for novel microRNA-based cancer therapeutics.. [DOI: 10.1101/2022.06.23.497408] [Reference Citation Analysis]
133 Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano 2022. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
134 Ferhan AR, Park S, Park H, Tae H, Jackman JA, Cho N. Lipid Nanoparticle Technologies for Nucleic Acid Delivery: A Nanoarchitectonics Perspective. Adv Funct Materials. [DOI: 10.1002/adfm.202203669] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
135 Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022;14:1283. [PMID: 35745855 DOI: 10.3390/pharmaceutics14061283] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
136 Britto Hurtado R, Cortez-valadez M, Flores- Acosta M. APLICACIONES TECNOLÓGICAS DE LAS NANOPARTÍCULAS EN LA MEDICINA E INDUSTRIA. Epistemus 2022;16. [DOI: 10.36790/epistemus.v16i33.223] [Reference Citation Analysis]
137 Padín-gonzález E, Lancaster P, Bottini M, Gasco P, Tran L, Fadeel B, Wilkins T, Monopoli MP. Understanding the Role and Impact of Poly (Ethylene Glycol) (PEG) on Nanoparticle Formulation: Implications for COVID-19 Vaccines. Front Bioeng Biotechnol 2022;10:882363. [DOI: 10.3389/fbioe.2022.882363] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
138 Zhu Y, Lin M, Hu W, Wang J, Zhang ZG, Zhang K, Yu B, Xu FJ. Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiol-Mediated Uptake. Angew Chem Int Ed Engl 2022;61:e202200535. [PMID: 35304808 DOI: 10.1002/anie.202200535] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
139 Khalil M, Jeanne Dit Fouque D, Berchel M, Fraix A, Sortino S, Memboeuf A, Jaffrès P. Phosphonodithioformate-amine coupling reaction: from basic discovery to application for the functionalization of liposomes. Phosphorus, Sulfur, and Silicon and the Related Elements 2022;197:462-467. [DOI: 10.1080/10426507.2021.2012177] [Reference Citation Analysis]
140 Matsuura-sawada Y, Maeki M, Nishioka T, Niwa A, Yamauchi J, Mizoguchi M, Wada K, Tokeshi M. Microfluidic Device-Enabled Mass Production of Lipid-Based Nanoparticles for Applications in Nanomedicine and Cosmetics. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c00886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Lin Tan Z, Miyanaga K, Kitamoto Y, Yamamoto N. Levilactobacillus brevis surface layer protein B promotes liposome targeting to antigen-presenting cells in Peyer’s patches. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121896] [Reference Citation Analysis]
142 Ghidini M, Silva SG, Evangelista J, do Vale MLC, Farooqi AA, Pinheiro M. Nanomedicine for the Delivery of RNA in Cancer. Cancers 2022;14:2677. [DOI: 10.3390/cancers14112677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
143 Butnarasu C, Petrini P, Bracotti F, Visai L, Guagliano G, Fiorio Pla A, Sansone E, Petrillo S, Visentin S. Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multi-Drug Delivery Platform. Adv Healthc Mater 2022;:e2200340. [PMID: 35608152 DOI: 10.1002/adhm.202200340] [Reference Citation Analysis]
144 Majerník M, Jendželovský R, Vargová J, Jendželovská Z, Fedoročko P. Multifunctional Nanoplatforms as a Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2022;14:1075. [DOI: 10.3390/pharmaceutics14051075] [Reference Citation Analysis]
145 Yamada Y, Ishizuka S, Arai M, Maruyama M, Harashima H. Recent advances in delivering RNA-based therapeutics to mitochondria. Expert Opin Biol Ther 2022;:1-11. [PMID: 35543589 DOI: 10.1080/14712598.2022.2070427] [Reference Citation Analysis]
146 Sasso JM, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022. [PMID: 35533054 DOI: 10.1021/acs.jmedchem.2c00024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
147 Fu L, Kim HN, Sterling JD, Baker SM, Lord MS. The role of the cell surface glycocalyx in drug delivery to and through the endothelium. Adv Drug Deliv Rev 2022;184:114195. [PMID: 35292326 DOI: 10.1016/j.addr.2022.114195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Zhu L, Yan T, Alimu G, Zhang L, Ma R, Alifu N, Zhang X, Wang D. Liposome-Loaded Targeted Theranostic Fluorescent Nano-Probes for Diagnosis and Treatment of Cervix Carcinoma. j biomed nanotechnol 2022;18:1289-301. [DOI: 10.1166/jbn.2022.3332] [Reference Citation Analysis]
149 Deviatkin AA, Simonov RA, Trutneva KA, Maznina AA, Khavina EM, Volchkov PY. Universal Flu mRNA Vaccine: Promises, Prospects, and Problems. Vaccines 2022;10:709. [DOI: 10.3390/vaccines10050709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
150 Holm A, Hansen SN, Klitgaard H, Kauppinen S. Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases. RNA Biol 2022;19:594-608. [PMID: 35482908 DOI: 10.1080/15476286.2022.2066334] [Reference Citation Analysis]
151 Ju Y, Liao H, Richardson JJ, Guo J, Caruso F. Nanostructured particles assembled from natural building blocks for advanced therapies. Chem Soc Rev 2022. [PMID: 35471996 DOI: 10.1039/d1cs00343g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
152 Maldonado E, Morales-pison S, Urbina F, Solari A. Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines 2022;10:587. [DOI: 10.3390/vaccines10040587] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
153 Cao Y, Dong X, Chen X. Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics 2022;14:778. [DOI: 10.3390/pharmaceutics14040778] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
154 Sharma M, Bakshi AK, Mittapelly N, Gautam S, Marwaha D, Rai N, Singh N, Tiwari P, Aggarwal N, Kumar A, Mishra PR. Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.04.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
155 Xu Z, Wang Q, Zhong H, Jiang Y, Shi X, Yuan B, Yu N, Zhang S, Yuan X, Guo S, Yang Y. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Exploration 2022;2:20210081. [DOI: 10.1002/exp.20210081] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
156 Tran TH, Phuong Tran TT. Targeting the PD-1/PD-L1 axis for cancer treatment: a review on nanotechnology. R Soc Open Sci 2022;9:211991. [PMID: 35425626 DOI: 10.1098/rsos.211991] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
157 Anas Tomeh M, Hawari Mansor M, Hadianamrei R, Sun W, Zhao X. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.121762] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
158 Cholkar SS, Gawade AR, Kuchekar AB. The Use of Medicinal Plant Extract in Hand Sanitizer and Spray to Combat Against Covid-19. Biosci , Biotech Res Asia 2022;19:183-189. [DOI: 10.13005/bbra/2977] [Reference Citation Analysis]
159 Cholkar SS, Gawade AR, Kuchekar AB. Lipid Nanoparticles: Key Facilitators of mRNA Vaccine Development. Biosci , Biotech Res Asia 2022;19:199-213. [DOI: 10.13005/bbra/2979] [Reference Citation Analysis]
160 Meng F, Wang J, Yeo Y. Nucleic acid and oligonucleotide delivery for activating innate immunity in cancer immunotherapy. J Control Release 2022;345:586-600. [PMID: 35351528 DOI: 10.1016/j.jconrel.2022.03.045] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
161 Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022;7:94. [PMID: 35322018 DOI: 10.1038/s41392-022-00950-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
162 Verma AK, Perlman S. Lipid nanoparticle-mRNA: another step in the fight against COVID-19. Cell Res 2022. [PMID: 35314770 DOI: 10.1038/s41422-022-00647-5] [Reference Citation Analysis]
163 Hussain A, Yang H, Zhang M, Liu Q, Alotaibi G, Irfan M, He H, Chang J, Liang XJ, Weng Y, Huang Y. mRNA vaccines for COVID-19 and diverse diseases. J Control Release 2022;345:314-33. [PMID: 35331783 DOI: 10.1016/j.jconrel.2022.03.032] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 14.0] [Reference Citation Analysis]
164 Dikkumbura AS, Aucoin AV, Ali RO, Dalier A, Gilbert DW, Schneider GJ, Haber LH. Influence of Acetaminophen on Molecular Adsorption and Transport Properties at Colloidal Liposome Surfaces Studied by Second Harmonic Generation Spectroscopy. Langmuir 2022. [PMID: 35298170 DOI: 10.1021/acs.langmuir.2c00086] [Reference Citation Analysis]
165 Maretti E, Molinari S, Battini R, Rustichelli C, Truzzi E, Iannuccelli V, Leo E. Design, Characterization, and In Vitro Assays on Muscle Cells of Endocannabinoid-like Molecule Loaded Lipid Nanoparticles for a Therapeutic Anti-Inflammatory Approach to Sarcopenia. Pharmaceutics 2022;14:648. [DOI: 10.3390/pharmaceutics14030648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
166 Liu J, Ma C, Shi S, Liu H, Wen W, Zhang X, Wu Z, Wang S. A general controllable release amplification strategy of liposomes for single-particle collision electrochemical biosensing. Biosens Bioelectron 2022;207:114182. [PMID: 35305388 DOI: 10.1016/j.bios.2022.114182] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
167 Huang J, Ding Y, Yao J, Zhang M, Zhang Y, Xie Z, Zuo J. Nasal Nanovaccines for SARS-CoV-2 to Address COVID-19. Vaccines 2022;10:405. [DOI: 10.3390/vaccines10030405] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
168 Malburet C, Leclercq L, Cotte JF, Thiebaud J, Bazin E, Garinot M, Cottet H. Size and Charge Characterization of Lipid Nanoparticles for mRNA Vaccines. Anal Chem 2022. [PMID: 35254048 DOI: 10.1021/acs.analchem.1c04778] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
169 Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-Viral Vectors for Delivery of Nucleic Acid Therapies for Cancer. BioTech 2022;11:6. [DOI: 10.3390/biotech11010006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
170 Byun MJ, Lim J, Kim S, Park D, Kim T, Park W, Park CG. Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. BioChip J. [DOI: 10.1007/s13206-022-00052-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
171 Kiremitler NB, Kemerli MZ, Kayaci N, Karagoz S, Pekdemir S, Sarp G, Sanduvac S, Onses MS, Yilmaz E. Nanostructures for the Prevention, Diagnosis, and Treatment of SARS-CoV-2: A Review. ACS Appl Nano Mater 2022;5:6029-54. [DOI: 10.1021/acsanm.2c00181] [Reference Citation Analysis]
172 Yao M, Han W, Feng L, Wei Z, Liu Y, Zhang H, Zhang S. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur J Med Chem 2022;233:114236. [PMID: 35247753 DOI: 10.1016/j.ejmech.2022.114236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
173 Juan A, del Mar Noblejas-lópez M, Arenas-moreira M, Alonso-moreno C, Ocaña A. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Front Cell Dev Biol 2022;9:805336. [DOI: 10.3389/fcell.2021.805336] [Reference Citation Analysis]
174 Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
175 Yuan P, Yang F, Liew SS, Yan J, Dong X, Wang J, Du S, Mao X, Gao L, Yao SQ. Intracellular Co-delivery of native antibody and siRNA for combination therapy by using biodegradable silica nanocapsules. Biomaterials 2022;281:121376. [DOI: 10.1016/j.biomaterials.2022.121376] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
176 Tan C, Hosseini SF, Jafari SM. Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. J Agric Food Chem 2022. [PMID: 35089018 DOI: 10.1021/acs.jafc.1c06747] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
177 Su C, See DHW, Huang J. Lipid-Based Nanocarriers in Renal RNA Therapy. Biomedicines 2022;10:283. [DOI: 10.3390/biomedicines10020283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
178 Walewska A, Krajewska M, Stefanowska A, Buta A, Bilewicz R, Krysiński P, Bednarczyk P, Koprowski P, Szewczyk A. Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment. Int J Mol Sci 2022;23:1210. [PMID: 35163132 DOI: 10.3390/ijms23031210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
179 Furlani F, Rossi A, Grimaudo MA, Bassi G, Giusto E, Molinari F, Lista F, Montesi M, Panseri S. Controlled Liposome Delivery from Chitosan-Based Thermosensitive Hydrogel for Regenerative Medicine. Int J Mol Sci 2022;23:894. [PMID: 35055097 DOI: 10.3390/ijms23020894] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
180 Wu B, Li Y, Li YY, Shi ZH, Bian XH, Xia Q. Nanostructured-lipid carriers-Chitosan hydrogel beads carrier system for loading of resveratrol: A new method of topical application. J Biomater Appl 2022;:8853282211053923. [PMID: 34995470 DOI: 10.1177/08853282211053923] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
181 Lopez-Cantu DO, Wang X, Carrasco-Magallanes H, Afewerki S, Zhang X, Bonventre JV, Ruiz-Esparza GU. From Bench to the Clinic: The Path to Translation of Nanotechnology-Enabled mRNA SARS-CoV-2 Vaccines. Nanomicro Lett 2022;14:41. [PMID: 34981278 DOI: 10.1007/s40820-021-00771-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
182 Sonju JJ, Dahal A, Jois SD. Liposome Nanocarriers for Peptide Drug Delivery. Peptide Therapeutics 2022. [DOI: 10.1007/978-3-031-04544-8_6] [Reference Citation Analysis]
183 Kumar S, Chauhan JS. Application of Plant-Based Nanoparticles in Wastewater Decontamination. Nano-biotechnology for Waste Water Treatment 2022. [DOI: 10.1007/978-3-031-00812-2_4] [Reference Citation Analysis]
184 Tiwari A, Gulbake AS, Kumar P. Lipid nanoparticles and nanoemulsions exploited in the diagnosis and treatment of infectious diseases. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases 2022. [DOI: 10.1016/b978-0-323-91201-3.00010-4] [Reference Citation Analysis]
185 Minocha N, Kumar V. Nanostructure system: Liposome – A bioactive carrier in drug delivery systems. Materials Today: Proceedings 2022;69:614-619. [DOI: 10.1016/j.matpr.2022.09.494] [Reference Citation Analysis]
186 Fan B, Wan J, Zhai J, Teo NKS, Huynh A, Thang SH. Photoluminescent polymer cubosomes prepared by RAFT-mediated polymerization-induced self-assembly. Polym Chem 2022;13:4333-42. [DOI: 10.1039/d2py00701k] [Reference Citation Analysis]
187 Singh P, Muhammad I, Nelson NE, Tran KTM, Vinikoor T, Chorsi MT, D'Orio E, Nguyen TD. Transdermal delivery for gene therapy. Drug Deliv Transl Res 2022;12:2613-33. [PMID: 35538189 DOI: 10.1007/s13346-022-01138-1] [Reference Citation Analysis]
188 Rajpathak S, Vyawahare R, Patil N, Sivaram A. Fundamental Techniques of Recombinant DNA Transfer. Techniques in Life Science and Biomedicine for the Non-Expert 2022. [DOI: 10.1007/978-3-030-96851-9_6] [Reference Citation Analysis]
189 Taguchi S, Kimura Y, Akiyama Y, Tachibana Y, Yamamoto T. Characterization of Oleic Acid/CHAPSO Bicellar Mixture Formation via Lipid Transfer. J Oleo Sci 2022;71:1445-52. [DOI: 10.5650/jos.ess22147] [Reference Citation Analysis]
190 Paliwal H, Prajapati BG, Khunt D, Shirisha C, Patel JK, Pathak YV. Pharmacokinetic and Tissue Distribution Study of Solid Lipid Nanoparticles. Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems 2022. [DOI: 10.1007/978-3-030-83395-4_13] [Reference Citation Analysis]
191 Yoon W, Park Y, Kim S, Bang IS. Development of an Oral Salmonella-Based Vaccine Platform against SARS-CoV-2. Vaccines (Basel) 2022;10:67. [PMID: 35062728 DOI: 10.3390/vaccines10010067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
192 Kang DD, Dong Y. Lipid nanoparticles for delivery of gene editing components. Reference Module in Materials Science and Materials Engineering 2022. [DOI: 10.1016/b978-0-12-822425-0.00096-8] [Reference Citation Analysis]
193 Ashi MO, Mami-Chouaib F, Corgnac S. Mutant and non-mutant neoantigen-based cancer vaccines: recent advances and future promises. Explor Target Antitumor Ther 2022;3:746-62. [PMID: 36654823 DOI: 10.37349/etat.2022.00111] [Reference Citation Analysis]
194 Oak U, Khare T. Nanoparticle Functionalization: Approaches and Applications. Nanotechnology in the Life Sciences 2022. [DOI: 10.1007/978-3-031-10220-2_4] [Reference Citation Analysis]
195 Jash A, Krueger A, Rizvi SSH. Venturi-based rapid expansion of supercritical solution (Vent-RESS): synthesis of liposomes for pH-triggered delivery of hydrophilic and lipophilic bioactives. Green Chem . [DOI: 10.1039/d2gc00877g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
196 Rajendran AK, Amirthalingam S, Hwang NS. A brief review of mRNA therapeutics and delivery for bone tissue engineering. RSC Adv 2022;12:8889-900. [DOI: 10.1039/d2ra00713d] [Reference Citation Analysis]
197 Carmona-ribeiro AM. Supramolecular Nanostructures for Vaccines. Biomimetics 2022;7:6. [DOI: 10.3390/biomimetics7010006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
198 Ouranidis A, Vavilis T, Mandala E, Davidopoulou C, Stamoula E, Markopoulou CK, Karagianni A, Kachrimanis K. mRNA Therapeutic Modalities Design, Formulation and Manufacturing under Pharma 4.0 Principles. Biomedicines 2022;10:50. [DOI: 10.3390/biomedicines10010050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
199 Murao A, Tan C, Jha A, Wang P, Aziz M. Exosome-Mediated eCIRP Release From Macrophages to Induce Inflammation in Sepsis. Front Pharmacol 2021;12:791648. [PMID: 34938194 DOI: 10.3389/fphar.2021.791648] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
200 Fobian SF, Cheng Z, Ten Hagen TLM. Smart Lipid-Based Nanosystems for Therapeutic Immune Induction against Cancers: Perspectives and Outlooks. Pharmaceutics 2021;14:26. [PMID: 35056922 DOI: 10.3390/pharmaceutics14010026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
201 Huang S, Zhu Y, Zhang L, Zhang Z. Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. Adv Mater 2021;:e2107946. [PMID: 34914144 DOI: 10.1002/adma.202107946] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
202 Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021;13:2053. [PMID: 34959335 DOI: 10.3390/pharmaceutics13122053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
203 Gregoriadis G. Liposomes and mRNA: Two technologies together create a COVID-19 vaccine. Medicine in Drug Discovery 2021;12:100104. [DOI: 10.1016/j.medidd.2021.100104] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
204 Walsh APG, Gordon HN, Peter K, Wang X. Ultrasonic particles: An approach for targeted gene delivery. Adv Drug Deliv Rev 2021;179:113998. [PMID: 34662671 DOI: 10.1016/j.addr.2021.113998] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
205 Tarn WY, Cheng Y, Ko SH, Huang LM. Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics 2021;13:2015. [PMID: 34959297 DOI: 10.3390/pharmaceutics13122015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
206 Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release 2021;341:132-46. [PMID: 34813879 DOI: 10.1016/j.jconrel.2021.11.025] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
207 Zhang G, Sun J. Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. Int J Nanomedicine 2021;16:7391-416. [PMID: 34764647 DOI: 10.2147/IJN.S331639] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
208 Hwang SR, Chakraborty K, An JM, Mondal J, Yoon HY, Lee YK. Pharmaceutical Aspects of Nanocarriers for Smart Anticancer Therapy. Pharmaceutics 2021;13:1875. [PMID: 34834290 DOI: 10.3390/pharmaceutics13111875] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
209 Ahn M, Song J, Hong BH. Facile Synthesis of N-Doped Graphene Quantum Dots as Novel Transfection Agents for mRNA and pDNA. Nanomaterials (Basel) 2021;11:2816. [PMID: 34835580 DOI: 10.3390/nano11112816] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
210 Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS Nano 2021. [PMID: 34677049 DOI: 10.1021/acsnano.0c10240] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
211 Monnery BD. Polycation-Mediated Transfection: Mechanisms of Internalization and Intracellular Trafficking. Biomacromolecules 2021;22:4060-83. [DOI: 10.1021/acs.biomac.1c00697] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
212 Cho HY, Chuang TH, Wu SN. Effective Perturbations on the Amplitude and Hysteresis of Erg-Mediated Potassium Current Caused by 1-Octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6(undecyloxy)hexyl]amino]-octanoate (SM-102), a Cationic Lipid. Biomedicines 2021;9:1367. [PMID: 34680484 DOI: 10.3390/biomedicines9101367] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
213 Mignani S, Shi X, Karpus A, Lentini G, Majoral JP. Functionalized Dendrimer Platforms as a New Forefront Arsenal Targeting SARS-CoV-2: An Opportunity. Pharmaceutics 2021;13:1513. [PMID: 34575589 DOI: 10.3390/pharmaceutics13091513] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
214 de Alcantara Lemos J, Oliveira AEMFM, Araujo RS, Townsend DM, Ferreira LAM, de Barros ALB. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed Pharmacother 2021;143:112137. [PMID: 34507118 DOI: 10.1016/j.biopha.2021.112137] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
215 Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021;9:988. [PMID: 34579225 DOI: 10.3390/vaccines9090988] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
216 Gambaro FM, Ummarino A, Torres Andón F, Ronzoni F, Di Matteo B, Kon E. Drug Delivery Systems for the Treatment of Knee Osteoarthritis: A Systematic Review of In Vivo Studies. Int J Mol Sci 2021;22:9137. [PMID: 34502046 DOI: 10.3390/ijms22179137] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
217 Homaeigohar S, Liu Q, Kordbacheh D. Biomedical Applications of Antiviral Nanohybrid Materials Relating to the COVID-19 Pandemic and Other Viral Crises. Polymers (Basel) 2021;13:2833. [PMID: 34451371 DOI: 10.3390/polym13162833] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
218 Weiss PS. Touting the Growing Contributions of Nanoscience and Nanotechnology. ACS Nano 2021;15:10737-8. [DOI: 10.1021/acsnano.1c05996] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]